#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import StratifiedKFold as skStratifiedKFold # In[2]: class StratifiedKFold(): def __init__(self, n_splits=5, shuffle=False, random_state=0): self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def _kfold(self, count, rng): indices = np.arange(count) if self.shuffle: rng.shuffle(indices) fold_sizes = np.full(self.n_splits, count // self.n_splits) fold_sizes[:count % self.n_splits] += 1 current = 0 for fold_size in fold_sizes: test_mask = np.zeros(count, dtype=bool) test_mask[current:current + fold_size] = True yield indices[test_mask] current += fold_size def _make_test_folds(self, X, y): rng = np.random.RandomState(self.random_state) unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = np.bincount(y_inversed) test_folds = np.zeros(X.shape[0]) per_cls_cvs = [self._kfold(count, rng) for count in y_counts] test_folds = np.zeros(X.shape[0]) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, test_split in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds def _iter_test_masks(self, X, y): test_folds = self._make_test_folds(X, y) for i in range(self.n_splits): yield test_folds == i def split(self, X, y): indices = np.arange(X.shape[0]) for test_index in self._iter_test_masks(X, y): yield indices[~test_index], indices[test_index] # In[3]: X, y = load_iris(return_X_y=True) cv1 = StratifiedKFold(n_splits=5) cv2 = skStratifiedKFold(n_splits=5) for (train1, test1), (train2, test2) in zip(cv1.split(X, y), cv2.split(X, y)): assert np.array_equal(train1, train2) assert np.array_equal(test1, test2) # In[4]: X, y = load_iris(return_X_y=True) cv1 = StratifiedKFold(n_splits=5, shuffle=True, random_state=0) cv2 = skStratifiedKFold(n_splits=5, shuffle=True, random_state=0) for (train1, test1), (train2, test2) in zip(cv1.split(X, y), cv2.split(X, y)): assert np.array_equal(train1, train2) assert np.array_equal(test1, test2)