#!/usr/bin/env python # coding: utf-8 # In[ ]: from solcore import material from solcore import si from solcore.material_system import create_new_material from solcore.absorption_calculator import create_nk_txt, download_db, search_db import matplotlib.pyplot as plt import numpy as np # #
# When adding custom materials - or getting the refractive index database - the
# information will be stored in the Solcore's users folder. These can be setup by setting
# the SOLCORE_USER_DATA environmental variable to your prefered location or, by default,
# it will be in your home directory, in a directory called .solcore.
# # #
# EXAMPLE 1
# need to have n and k data, and a parameter file in the correct format -
# see examples of parameter files in e.g. material_data/Adachi/binaries.txt
# create a new material, silicon-germanium-tin, from input files. Here,
# the parameters in SiGeSn_params.txt have been copied directly from Ge.
# # In[ ]: create_new_material('SiGeSn', '../data/SiGeSn_n.txt', '../data/SiGeSn_k.txt', '../data/SiGeSn_params.txt') # can now create an instance of it like any Solcore material # In[ ]: SiGeSn = material('SiGeSn')() # In[ ]: plt.figure() plt.plot(si(np.arange(300, 1700, 5), 'nm')*1e9, SiGeSn.n(si(np.arange(300, 1700, 5), 'nm'))) plt.plot(si(np.arange(300, 1700, 5), 'nm')*1e9, SiGeSn.k(si(np.arange(300, 1700, 5), 'nm'))) plt.xlabel('Wavelength (nm)') plt.ylabel('SiGeSn n / k') plt.show() # #
# EXAMPLE 2
# Can also create a Solcore material from a material in the refractiveindex.info database:
# if necessary, download database:
# (Lines below are commented out to avoid issues during testing. Uncomment to run the example). # # In[ ]: # download_db() # search what options are available for diamond, then use the first result's pageid to
# create data files for the n & k of diamond: # In[ ]: # results = search_db('Diamond') # create_nk_txt(pageid=results[0][0], file='C_Diamond') # create_new_material(mat_name = 'Diamond', n_source='C_Diamond_n.txt', k_source='C_Diamond_k.txt') # In[ ]: # Diamond = material('Diamond')() # In[ ]: # plt.figure() # plt.plot(si(np.arange(100, 800, 5), 'nm')*1e9, Diamond.n(si(np.arange(100, 800, 5), 'nm'))) # plt.plot(si(np.arange(100, 800, 5), 'nm')*1e9, Diamond.k(si(np.arange(100, 800, 5), 'nm'))) # plt.xlabel('Wavelength (nm)') # plt.ylabel('Diamond n / k') # plt.show()