#!/usr/bin/env python # coding: utf-8 # In[ ]: import numpy as np import matplotlib.pyplot as plt # In[ ]: from solcore.solar_cell import SolarCell from solcore.light_source import LightSource from solcore.spice.pv_module_solver import solve_pv_module from solcore.structure import Junction # In[ ]: T = 298 # First we define the properties of the MJ solar cell that the solar module is made of. We use junctions of kind 2-diode # In[ ]: db_junction = Junction(kind='2D', T=T, reff=1, jref=300, Eg=0.66, A=1, R_series=0.00236, R_shunt=1e14, n=3.5) db_junction2 = Junction(kind='2D', T=T, reff=1, jref=300, Eg=1.4, A=1, R_series=0.00012, R_shunt=1e14, n=3.5) db_junction3 = Junction(kind='2D', T=T, reff=1, jref=300, Eg=1.9, A=1, R_series=8.0e-5, R_shunt=1e14, n=3.5) # In[ ]: my_solar_cell = SolarCell([db_junction3, db_junction2, db_junction], T=T, R_series=0.0, area=0.1) # In[ ]: wl = np.linspace(350, 2000, 301) * 1e-9 light_source = LightSource(source_type='standard', version='AM1.5g', x=wl, output_units='photon_flux_per_m', concentration=1) # In[ ]: options = {'light_iv': True, 'wavelength': wl, 'light_source': light_source, 'optics_method': 'BL'} # After defining the individual solar cell, we solve the module IV characteristics adding some dispersion in the
# values of the short circuit currents. # In[ ]: voltage, current, all_Isc_values, raw_data = solve_pv_module(my_solar_cell, options, jscSigma=0.02) # In[ ]: plt.figure(1) plt.subplot(311) plt.title('Histogram of sub-cell photocurrents') plt.ylabel('InGaP') plt.hist(([row[0] for row in all_Isc_values]), bins=20) plt.subplot(312) plt.hist(([row[1] for row in all_Isc_values]), bins=20) plt.ylabel('GaAs') plt.subplot(313) plt.xlabel('Current (A)') plt.ylabel('Ge') plt.hist(([row[2] for row in all_Isc_values]), bins=20) plt.figure(2) plt.plot(voltage, current) plt.xlabel('Voltage (V)') plt.ylabel('Current (A)') plt.xlim(0, 80) plt.ylim(0, 17) plt.show()