%pylab inline from qutip import * wc = 1.0 * 2 * pi # cavity frequency wa = 1.0 * 2 * pi # atom frequency g = 0.05 * 2 * pi # coupling strength kappa = 0.005 # cavity dissipation rate gamma = 0.05 # atom dissipation rate N = 15 # number of cavity fock states tlist = linspace(0,25,100) a = tensor(destroy(N), qeye(2)) sm = tensor(qeye(N), destroy(2)) psi0 = tensor(basis(N,0), basis(2,1)) H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() * sm + a * sm.dag()) c_ops = [sqrt(kappa) * a, sqrt(gamma) * sm] e_ops = [a.dag() * a, sm.dag() * sm] result = mesolve(H, psi0, tlist, c_ops, e_ops) len(result.expect) result.expect[0].shape plot_expectation_values(result); e_ops = [] result = mesolve(H, psi0, tlist, c_ops, e_ops) len(result.states) result.states[0] # loop over states and calculate the atom entropy entropy_atom_vec = zeros(len(result.states)) for idx, state in enumerate(result.states): entropy_atom_vec[idx] = entropy_linear(ptrace(state, 0)) fig, ax = plt.subplots(1,1) ax.plot(tlist, entropy_atom_vec) ax.set_xlabel('time', fontsize=16) ax.set_ylabel(r'$E(\rho_{\rm atom})$', fontsize=16); entropy_cavity_vec = zeros(len(tlist)) # calculate the entropy of the cavity in a callback function def e_ops_func(t, rho): # rho is only the data, so do Qobj(rho) to obtain a Qobj representation # of rho entropy_cavity_vec[e_ops_func.idx] = entropy_linear(ptrace(Qobj(rho), 1)) e_ops_func.idx += 1 e_ops_func.idx = 0 result = mesolve(H, psi0, tlist, c_ops, e_ops_func) fig, ax = plt.subplots(1,1) ax.plot(tlist, entropy_atom_vec, label='atom') ax.plot(tlist, entropy_cavity_vec, label='cavity') ax.legend() ax.set_xlabel('time', fontsize=16) ax.set_ylabel(r'$E$', fontsize=16); from qutip.ipynbtools import version_table version_table()