#!/usr/bin/env python
# coding: utf-8
# # Buckingham $\pi$: Dimensional Analysis
# **Mokbel Karam, and Prof. Tony Saad (www.tsaad.net)
Department of Chemical Engineering
University of Utah**
#
# In[1]:
from IPython.display import Image
from IPython.core.display import HTML
# In this Jupyter notebook we will execute the code presented in the paper.
# # Example 1: Pressure Inside a Bubble
# ---
# Using mass, length and time as fundamental physical dimensions:
# In[2]:
from buckinghampy import BuckinghamPi
Pressure_In_Bubble = BuckinghamPi()
Pressure_In_Bubble.add_variable(name='{\\Delta}p',units='M*L^(-1)*T^(-2)') # pressure
Pressure_In_Bubble.add_variable(name='R',units='L') # diameter
Pressure_In_Bubble.add_variable(name='\\sigma',units='M*T^(-2)') # surface tension
try:
Pressure_In_Bubble.generate_pi_terms()
Pressure_In_Bubble.print_all()
except Exception as e:
print(e)
# ---
# Using force and length as fundamental physical dimensions:
# In[3]:
from buckinghampy import BuckinghamPi
Pressure_In_Bubble = BuckinghamPi()
Pressure_In_Bubble.add_variable(name='{\\Delta}p',units='F*L^(-2)') # pressure
Pressure_In_Bubble.add_variable(name='R',units='L') # diameter
Pressure_In_Bubble.add_variable(name='\\sigma',units='F*L^(-1)') # surface tension
Pressure_In_Bubble.generate_pi_terms()
Pressure_In_Bubble.print_all()
# # Example 2: Pressure Drop in a Pipe
# ---
# In[4]:
from buckinghampy import BuckinghamPi
Pressure_Drop = BuckinghamPi()
Pressure_Drop.add_variable(name='{\\Delta}p',units='M*L^(-1)*T^(-2)') # pressure drop
Pressure_Drop.add_variable(name='R',units='L') # length of the pipe
Pressure_Drop.add_variable(name='d',units='L') # diameter of the pipe
Pressure_Drop.add_variable(name='\\mu',units='M*L^(-1)*T^(-1)') # viscosity
Pressure_Drop.add_variable(name='Q',units='L^(3)*T^(-1)') # volumetic flow rate
Pressure_Drop.generate_pi_terms()
Pressure_Drop.print_all()
# # Example 3: Economic Growth
# ---
# In[5]:
from buckinghampy import BuckinghamPi
Economic_Growth = BuckinghamPi()
Economic_Growth.add_variable(name='P',units='K',explicit=True) # capital
Economic_Growth.add_variable(name='L',units='Q/T') # labor per period of time
Economic_Growth.add_variable(name='{\\omega_{L}}',units='K/Q') # wages per labor
Economic_Growth.add_variable(name='Y',units='K/T') # profit per period of time
Economic_Growth.add_variable(name='r',units='1/T') # rental rate period of time
Economic_Growth.add_variable(name='{\\delta}',units='1/T') # depreciation rate
Economic_Growth.generate_pi_terms()
Economic_Growth.print_all()