#!/usr/bin/env python # coding: utf-8 # As a research of bird behavior I am tracking birds with accelerometers using the https://uva-bits.nl system. To study the birds energy usage I want to create a machine learning model. To train this model I need some artificial data. # # # Real data set # # The https://github.com/NLeSC/eEcology-Annotation-UI/raw/master/demo/tracker.json was derived from the uva-bits database of tracker 355 on 2010-06-28. # In[12]: import json import urllib.request import pandas as pd with urllib.request.urlopen('https://github.com/NLeSC/eEcology-Annotation-UI/raw/master/demo/tracker.json') as f: data = json.load(f) frame = 34 df = pd.DataFrame({ 'x': data[frame]['x_acceleration'], 'y': data[frame]['y_acceleration'], 'z': data[frame]['z_acceleration']}, index=data[frame]['time_acceleration'] ) df.info() df.plot() # # Let us recreate this with sequgen # In[56]: import numpy as np from sequgen.deterministic.sine import sine from sequgen.deterministic.constant import constant # In[79]: t_predict = np.linspace(0, 2, 40) # 2 seconds of 20Hz # In[80]: x = sine(t_predict, wavelength=2/6, amplitude=0.25, phase_shift=0.25) + \ sine(t_predict, wavelength=2/6, amplitude=0.1, phase_shift=0.1) + \ constant(t_predict, -0.2) # In[81]: z = sine(t_predict, wavelength=2/6, # 6 flaps in 2 seconds amplitude=1, phase_shift=0.05) + constant(t_predict, 1) # add Earths gravity # In[82]: y = sine(t_predict, wavelength=2/6, amplitude=0.25, phase_shift=0.05) + \ sine(t_predict, wavelength=2/6, amplitude=0.1, phase_shift=0.2) # In[83]: pd.DataFrame({'x':x, 'y':y, 'z': z}, index=t_predict).plot() # In[ ]: