# This chapter uses packages that takes a few minutes to download on Google Colab. # Run this first so it's ready by the time you need it install.packages("ggformula") install.packages("dplyr") library(ggformula) library(dplyr) studentdata <- read.csv("https://raw.githubusercontent.com/smburns47/Psyc158/main/studentdata.csv") thumb_model <- #use lm() here with the variable "Thumb" in dataset "studentdata" studentdata$Thumb_residuals <- #use resid() or thumb_model$residuals here head(studentdata) gf_histogram( ~ Thumb_residuals, data = studentdata) %>% gf_vline(., xintercept = mean(studentdata$Thumb_residuals)) not_the_mean <- 50 studentdata$Thumb_bad_residuals <- studentdata$Thumb - not_the_mean gf_histogram( ~ Thumb_bad_residuals, data = studentdata) %>% gf_vline(., xintercept = mean(studentdata$Thumb_bad_residuals), color = "red") gf_histogram( ~ Thumb_residuals, data = studentdata) %>% gf_vline(., xintercept = mean(studentdata$Thumb_residuals)) sum(studentdata$Thumb_residuals) sum(studentdata$Thumb_residuals^2) install.packages("supernova") library(supernova) supernova(thumb_model) var(studentdata$Thumb_residuals) #same as dividing the sum of squares by N-1 sum(studentdata$Thumb_residuals^2) / (length(studentdata$Thumb) - 1) supernova(#YOUR CODE HERE) 12970.4846566879/156 #same as the variance in the residuals var(studentdata$Thumb_residuals) sd(studentdata$Thumb_residuals) #same as taking the square root of variance sqrt(var(studentdata$Thumb_residuals)) #same as dividing the sum of squares by N-1 and then taking the square root sqrt(sum(studentdata$Thumb_residuals^2) / (length(studentdata$Thumb) - 1)) gf_histogram( ~ Thumb_residuals, data = studentdata) %>% gf_vline(., xintercept = mean(studentdata$Thumb_residuals)) # find the standard deviation of studentdata$Thumb thumb_sd <- gf_histogram( ~ Thumb, data = studentdata) %>% gf_vline(., xintercept = mean(studentdata$Thumb), color = 'blue') %>% gf_vline(., xintercept = 64, color = 'red') studentdata$Thumb_rescaled <- (studentdata$Thumb - mean(studentdata$Thumb)) / sd(studentdata$Thumb) studentdata$Thumb[11] # value of Zelda's thumb length, in original units studentdata$Thumb_rescaled[11] # new value of Zelda's thumb length, in new units studentdata$Thumb[3] studentdata$Thumb_rescaled[3]