#!/usr/bin/env python # coding: utf-8 # In this notebook we will look how we can use Cython to generate a faster callback and hopefully shave off some running time from our integration. # In[ ]: import json import numpy as np from scipy2017codegen.odesys import ODEsys from scipy2017codegen.chem import mk_rsys # The `ODEsys` class and convenience functions from previous notebook (35) has been put in two modules for easy importing. Recapping what we did last: # In[ ]: watrad_data = json.load(open('../scipy2017codegen/data/radiolysis_300_Gy_s.json')) watrad = mk_rsys(ODEsys, **watrad_data) tout = np.logspace(-6, 3, 200) # close to one hour of operation c0 = {'H2O': 55.4e3, 'H+': 1e-4, 'OH-': 1e-4} y0 = [c0.get(symb.name, 0) for symb in watrad.y] # In[ ]: get_ipython().run_line_magic('timeit', 'yout, info = watrad.integrate_odeint(tout, y0)') # so that is the benchmark to beat, we will export our expressions as Cython code. We then subclass `ODEsys` to have it render, compile and import the code: # In[ ]: # %load ../scipy2017codegen/odesys_cython.py import uuid import numpy as np import sympy as sym import setuptools import pyximport from scipy2017codegen import templates from scipy2017codegen.odesys import ODEsys pyximport.install() cython_template = """ cimport numpy as cnp import numpy as np def f(cnp.ndarray[cnp.float64_t, ndim=1] y, double t, %(args)s): cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.empty(y.size) %(f_exprs)s return out def j(cnp.ndarray[cnp.float64_t, ndim=1] y, double t, %(args)s): cdef cnp.ndarray[cnp.float64_t, ndim=2] out = np.empty((y.size, y.size)) %(j_exprs)s return out """ class CythonODEsys(ODEsys): def setup(self): self.mod_name = 'ode_cython_%s' % uuid.uuid4().hex[:10] idxs = list(range(len(self.f))) subs = {s: sym.Symbol('y[%d]' % i) for i, s in enumerate(self.y)} f_exprs = ['out[%d] = %s' % (i, str(self.f[i].xreplace(subs))) for i in idxs] j_exprs = ['out[%d, %d] = %s' % (ri, ci, self.j[ri, ci].xreplace(subs)) for ri in idxs for ci in idxs] ctx = dict( args=', '.join(map(str, self.p)), f_exprs = '\n '.join(f_exprs), j_exprs = '\n '.join(j_exprs), ) open('%s.pyx' % self.mod_name, 'wt').write(cython_template % ctx) open('%s.pyxbld' % self.mod_name, 'wt').write(templates.pyxbld % dict( sources=[], include_dirs=[np.get_include()], library_dirs=[], libraries=[], extra_compile_args=[], extra_link_args=[] )) mod = __import__(self.mod_name) self.f_eval = mod.f self.j_eval = mod.j # In[ ]: cython_sys = mk_rsys(CythonODEsys, **watrad_data) # In[ ]: get_ipython().run_line_magic('timeit', 'cython_sys.integrate(tout, y0)') # That is a considerable speed up from before. But the solver still has to # allocate memory for creating new arrays at each call, and each evaluation # has to pass the python layer which is now the bottleneck for the integration. # # In order to speed up integration further we need to make sure the solver can evaluate the function and Jacobian without calling into Python. # In[ ]: import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # Just to see that everything looks alright: # In[ ]: fig, ax = plt.subplots(1, 1, figsize=(14, 6)) cython_sys.plot_result(tout, *cython_sys.integrate_odeint(tout, y0), ax=ax) ax.set_xscale('log') ax.set_yscale('log')