#!/usr/bin/env python
# coding: utf-8
# # Creating Text-Fabric from LowFat XML trees (0.1.6)
# The source data for the conversion are the LowFat XML trees files representing the macula-greek version of the Nestle 1904 Greek New Testment. The most recent source data can be found on github https://github.com/Clear-Bible/macula-greek/tree/main/Nestle1904/lowfat. Attribution: "MACULA Greek Linguistic Datasets, available at https://github.com/Clear-Bible/macula-greek/".
#
# The production of the Text-Fabric files consist of two steps. First the creation of piclke files (part 1). Secondly the actual Text-Fabric creation process (part 2). Both steps are independent allowing to start from Part 2 by using the pickle files as input.
#
# Be advised that this Text-Fabric version is a test version (proof of concept) and requires further finetuning, especialy with regards of nomenclature and presentation of (sub)phrases and clauses.
# ## Table of content
# * [Part 1: Read LowFat XML data and store in pickle](#first-bullet)
# * [part 2: Sort the nodes](#second-bullet)
# * [Part 3: Nestle1904 production from pickle input](#third-bullet)
# * [Part 4: Testing the created textfabric data](#fourth-bullet)
# ## Part 1: Read LowFat XML data and store in pickle
# ##### [back to TOC](#TOC)
#
# This script harvests all information from the LowFat tree data (XML nodes), puts it into a Panda DataFrame and stores the result per book in a pickle file. Note: pickling (in Python) is serialising an object into a disk file (or buffer).
#
# In the context of this script, 'Leaf' refers to those node containing the Greek word as data, which happen to be the nodes without any child (hence the analogy with the leaves on the tree). These 'leafs' can also be refered to as 'terminal nodes'. Futher, Parent1 is the leaf's parent, Parent2 is Parent1's parent, etc.
#
# For a full description of the source data see document [MACULA Greek Treebank for the Nestle 1904 Greek New Testament.pdf](https://github.com/Clear-Bible/macula-greek/blob/main/doc/MACULA%20Greek%20Treebank%20for%20the%20Nestle%201904%20Greek%20New%20Testament.pdf)
# ### Step 1: import various libraries
# In[1]:
import pandas as pd
import sys
import os
import time
import pickle
import re #regular expressions
from os import listdir
from os.path import isfile, join
import xml.etree.ElementTree as ET
# ### Step 2: initialize global data
#
# Change BaseDir, XmlDir and PklDir to match location of the datalocation and the OS used.
# In[2]:
BaseDir = 'C:\\Users\\tonyj\\my_new_Jupyter_folder\\Read_from_lowfat\\data\\'
XmlDir = BaseDir+'xml\\'
PklDir = BaseDir+'pkl\\'
XlsxDir = BaseDir+'xlsx\\'
# note: create output directory prior running this part
# key: filename, [0]=book_long, [1]=book_num, [3]=book_short
bo2book = {'01-matthew': ['Matthew', '1', 'Matt'],
'02-mark': ['Mark', '2', 'Mark'],
'03-luke': ['Luke', '3', 'Luke'],
'04-john': ['John', '4', 'John'],
'05-acts': ['Acts', '5', 'Acts'],
'06-romans': ['Romans', '6', 'Rom'],
'07-1corinthians': ['I_Corinthians', '7', '1Cor'],
'08-2corinthians': ['II_Corinthians', '8', '2Cor'],
'09-galatians': ['Galatians', '9', 'Gal'],
'10-ephesians': ['Ephesians', '10', 'Eph'],
'11-philippians': ['Philippians', '11', 'Phil'],
'12-colossians': ['Colossians', '12', 'Col'],
'13-1thessalonians':['I_Thessalonians', '13', '1Thess'],
'14-2thessalonians':['II_Thessalonians','14', '2Thess'],
'15-1timothy': ['I_Timothy', '15', '1Tim'],
'16-2timothy': ['II_Timothy', '16', '2Tim'],
'17-titus': ['Titus', '17', 'Titus'],
'18-philemon': ['Philemon', '18', 'Phlm'],
'19-hebrews': ['Hebrews', '19', 'Heb'],
'20-james': ['James', '20', 'Jas'],
'21-1peter': ['I_Peter', '21', '1Pet'],
'22-2peter': ['II_Peter', '22', '2Pet'],
'23-1john': ['I_John', '23', '1John'],
'24-2john': ['II_John', '24', '2John'],
'25-3john': ['III_John', '25', '3John'],
'26-jude': ['Jude', '26', 'Jude'],
'27-revelation': ['Revelation', '27', 'Rev']}
bo2book = {'01-matthew': ['Matthew', '1', 'Matt']}
# ### step 3: define Function to add parent info to each node of the XML tree
#
# In order to traverse from the 'leafs' (terminating nodes) upto the root of the tree, it is required to add information to each node pointing to the parent of each node.
#
# (concept taken from https://stackoverflow.com/questions/2170610/access-elementtree-node-parent-node)
# In[6]:
def addParentInfo(et):
for child in et:
child.attrib['parent'] = et
addParentInfo(child)
def getParent(et):
if 'parent' in et.attrib:
return et.attrib['parent']
else:
return None
# ### Step 4: read and process the XML data and store panda dataframe in pickle
# In[48]:
# set some globals
monad=1
CollectedItems= 0
# process books in order
for bo, bookinfo in bo2book.items():
CollectedItems=0
SentenceNumber=0
WordGroupNumber=0
full_df=pd.DataFrame({})
book_long=bookinfo[0]
booknum=bookinfo[1]
book_short=bookinfo[2]
InputFile = os.path.join(XmlDir, f'{bo}.xml')
OutputFile = os.path.join(PklDir, f'{bo}.pkl')
print(f'Processing {book_long} at {InputFile}')
# send xml document to parsing process
tree = ET.parse(InputFile)
# Now add all the parent info to the nodes in the xtree [important!]
addParentInfo(tree.getroot())
start_time = time.time()
# walk over all the XML data
for elem in tree.iter():
if elem.tag == 'sentence':
# add running number to 'sentence' tags
SentenceNumber+=1
elem.set('SN', SentenceNumber)
if elem.tag == 'wg':
# add running number to 'wg' tags
WordGroupNumber+=1
elem.set('WGN', WordGroupNumber)
if elem.tag == 'w':
# all nodes containing words are tagged with 'w'
# show progress on screen
CollectedItems+=1
if (CollectedItems%100==0): print (".",end='')
#Leafref will contain list with book, chapter verse and wordnumber
Leafref = re.sub(r'[!: ]'," ", elem.attrib.get('ref')).split()
#push value for monad to element tree
elem.set('monad', monad)
monad+=1
# add some important computed data to the leaf
elem.set('LeafName', elem.tag)
elem.set('word', elem.text)
elem.set('book_long', book_long)
elem.set('booknum', int(booknum))
elem.set('book_short', book_short)
elem.set('chapter', int(Leafref[1]))
elem.set('verse', int(Leafref[2]))
# folling code will trace down parents upto the tree and store found attributes
parentnode=getParent(elem)
index=0
while (parentnode):
index+=1
elem.set('Parent{}Name'.format(index), parentnode.tag)
elem.set('Parent{}Type'.format(index), parentnode.attrib.get('type'))
elem.set('Parent{}Appos'.format(index), parentnode.attrib.get('appositioncontainer'))
elem.set('Parent{}Class'.format(index), parentnode.attrib.get('class'))
elem.set('Parent{}Rule'.format(index), parentnode.attrib.get('rule'))
elem.set('Parent{}Role'.format(index), parentnode.attrib.get('role'))
elem.set('Parent{}Cltype'.format(index), parentnode.attrib.get('cltype'))
elem.set('Parent{}Unit'.format(index), parentnode.attrib.get('unit'))
elem.set('Parent{}Junction'.format(index), parentnode.attrib.get('junction'))
elem.set('Parent{}SN'.format(index), parentnode.attrib.get('SN'))
elem.set('Parent{}WGN'.format(index), parentnode.attrib.get('WGN'))
currentnode=parentnode
parentnode=getParent(currentnode)
elem.set('parents', int(index))
#this will push all elements found in the tree into a DataFrame
df=pd.DataFrame(elem.attrib, index={monad})
full_df=pd.concat([full_df,df])
#store the resulting DataFrame per book into a pickle file for further processing
df = df.convert_dtypes(convert_string=True)
# sort by s=id
sortkey='{http://www.w3.org/XML/1998/namespace}id'
full_df.rename(columns={sortkey: 'id'}, inplace=True)
full_df.sort_values(by=['id'])
output = open(r"{}".format(OutputFile), 'wb')
pickle.dump(full_df, output)
output.close()
print("\nFound ",CollectedItems, " items in %s seconds\n" % (time.time() - start_time))
# In[ ]:
# just dump some things to test the result
for bo in bo2book:
'''
load all data into a dataframe
process books in order (bookinfo is a list!)
'''
InputFile = os.path.join(PklDir, f'{bo}.pkl')
print(f'\tloading {InputFile}...')
pkl_file = open(InputFile, 'rb')
df = pickle.load(pkl_file)
pkl_file.close()
# not sure if this is needed
# fill dictionary of column names for this book
IndexDict = {} # init an empty dictionary
ItemsInRow=1
for itemname in df.columns.to_list():
IndexDict.update({'i_{}'.format(itemname): ItemsInRow})
print (itemname)
ItemsInRow+=1
# ## Part 3: Nestle1904 Text-Fabric production from pickle input
# ##### [back to TOC](#TOC)
#
# This script creates the Text-Fabric files by recursive calling the TF walker function.
# API info: https://annotation.github.io/text-fabric/tf/convert/walker.html
#
# The pickle files created by step 1 are stored on Github location T.B.D.
# ### Step 1: Load libraries and initialize some data
#
#
# In[33]:
import pandas as pd
import os
import re
import gc
from tf.fabric import Fabric
from tf.convert.walker import CV
from tf.parameters import VERSION
from datetime import date
import pickle
BaseDir = 'C:\\Users\\tonyj\\my_new_Jupyter_folder\\Read_from_lowfat\\data\\'
XmlDir = BaseDir+'xml\\'
PklDir = BaseDir+'pkl\\'
XlsxDir = BaseDir+'xlsx\\'
# key: filename, [0]=book_long, [1]=book_num, [3]=book_short
bo2book = {'01-matthew': ['Matthew', '1', 'Matt'],
'02-mark': ['Mark', '2', 'Mark'],
'03-luke': ['Luke', '3', 'Luke'],
'04-john': ['John', '4', 'John'],
'05-acts': ['Acts', '5', 'Acts'],
'06-romans': ['Romans', '6', 'Rom'],
'07-1corinthians': ['I_Corinthians', '7', '1Cor'],
'08-2corinthians': ['II_Corinthians', '8', '2Cor'],
'09-galatians': ['Galatians', '9', 'Gal'],
'10-ephesians': ['Ephesians', '10', 'Eph'],
'11-philippians': ['Philippians', '11', 'Phil'],
'12-colossians': ['Colossians', '12', 'Col'],
'13-1thessalonians':['I_Thessalonians', '13', '1Thess'],
'14-2thessalonians':['II_Thessalonians','14', '2Thess'],
'15-1timothy': ['I_Timothy', '15', '1Tim'],
'16-2timothy': ['II_Timothy', '16', '2Tim'],
'17-titus': ['Titus', '17', 'Titus'],
'18-philemon': ['Philemon', '18', 'Phlm'],
'19-hebrews': ['Hebrews', '19', 'Heb'],
'20-james': ['James', '20', 'Jas'],
'21-1peter': ['I_Peter', '21', '1Pet'],
'22-2peter': ['II_Peter', '22', '2Pet'],
'23-1john': ['I_John', '23', '1John'],
'24-2john': ['II_John', '24', '2John'],
'25-3john': ['III_John', '25', '3John'],
'26-jude': ['Jude', '26', 'Jude'],
'27-revelation': ['Revelation', '27', 'Rev']}
bo2book_ = {'26-jude': ['Jude', '26', 'Jude']}
# ## Optional: export to Excel for investigation
# In[ ]:
# test: sorting the data
import openpyxl
import pickle
#if True:
for bo in bo2book:
'''
load all data into a dataframe
process books in order (bookinfo is a list!)
'''
InputFile = os.path.join(PklDir, f'{bo}.pkl')
#InputFile = os.path.join(PklDir, '01-matthew.pkl')
print(f'\tloading {InputFile}...')
pkl_file = open(InputFile, 'rb')
df = pickle.load(pkl_file)
pkl_file.close()
# not sure if this is needed
# fill dictionary of column names for this book
IndexDict = {} # init an empty dictionary
ItemsInRow=1
for itemname in df.columns.to_list():
IndexDict.update({'i_{}'.format(itemname): ItemsInRow})
ItemsInRow+=1
#print(itemname)
# sort by id
#print(df)
df_sorted=df.sort_values(by=['id'])
df_sorted.to_excel(os.path.join(XlsxDir, f'{bo}.xlsx'), index=False)
# ### Step 2 Running the TF walker function
#
# API info: https://annotation.github.io/text-fabric/tf/convert/walker.html
#
# The logic of interpreting the data is included in the director function.
# In[164]:
TF = Fabric(locations=BaseDir, silent=False)
cv = CV(TF)
version = "0.1.6 (moved all phrases and claused to wordgroup nodes)"
def sanitize(input):
if isinstance(input, float): return ''
if isinstance(input, type(None)): return ''
else: return (input)
def ExpandRole(input):
if input=="adv": return 'Adverbial'
if input=="io": return 'Indirect Object'
if input=="o": return 'Object'
if input=="o2": return 'Second Object'
if input=="s": return 'Subject'
if input=="p": return 'Predicate'
if input=="v": return 'Verbal'
if input=="vc": return 'Verbal Copula'
return ''
# Expantion of part of speach labels. See also the description in
# "MACULA Greek Treebank for the Nestle 1904 Greek New Testament.pdf" page 6&7
# (2.2. Syntactic Categories at Word Level: Part of Speech Labels)
def ExpandSP(input):
if input=='adj': return 'adjective'
if input=='conj': return 'conjunction'
if input=='det': return 'determiner'
if input=='intj': return 'interjection'
if input=='noun': return 'noun'
if input=='num': return 'numeral'
if input=='prep': return 'preposition'
if input=='ptcl': return 'particle'
if input=='pron': return 'pronoun'
if input=='verb': return 'verb'
return input
def director(cv):
NoneType = type(None) # needed as tool to validate certain data
IndexDict = {} # init an empty dictionary
Arrays2Dump=200
DumpedArrays=0
WordGroupDict={} # init a dummy dictionary
PrevWordGroupSet = WordGroupSet = []
PrevWordGroupList = WordGroupList = []
RootWordGroup = 0
WordNumber=FoundWords=WordGroupTrack=0
DummyWGN=200000 # this number is arbitrary but should be high enough not to clash with 'real' WG numbers
'''
process books in order (bookinfo is a list!)
'''
for bo,bookinfo in bo2book.items():
Book = bookinfo[0]
BookNumber = int(bookinfo[1])
BookShort = bookinfo[2]
BookLoc = os.path.join(PklDir, f'{bo}.pkl')
'''
load data for this book into a dataframe. Make sure wordorder is correct
'''
print(f'\tWe are loading {BookLoc}...')
pkl_file = open(BookLoc, 'rb')
df_unsorted = pickle.load(pkl_file)
pkl_file.close()
df=df_unsorted.sort_values(by=['id'])
'''
set up nodes for new book
'''
ThisBookPointer = cv.node('book')
cv.feature(ThisBookPointer, book=Book, booknumber=BookNumber, bookshort=BookShort)
ThisChapterPointer = cv.node('chapter')
cv.feature(ThisChapterPointer, chapter=1)
PreviousChapter=1
ThisVersePointer = cv.node('verse')
cv.feature(ThisVersePointer, verse=1)
PreviousVerse=1
ThisSentencePointer = cv.node('sentence')
cv.feature(ThisSentencePointer, verse=1)
PreviousSentence=1
'''
fill dictionary of column names for this book
sort to ensure proper wordorder
'''
ItemsInRow=1
for itemname in df.columns.to_list():
IndexDict.update({'i_{}'.format(itemname): ItemsInRow})
ItemsInRow+=1
df.sort_values(by=['id'])
'''
Walks through the texts and trigger slot and node creation events.
iterate through words and construct objects
'''
for row in df.itertuples():
WordNumber += 1
FoundWords +=1
'''
First act upon changes in sentences, verse and chapter
'''
NumberOfParents = row[IndexDict.get("i_parents")]
ThisSentence=int(row[IndexDict.get("i_Parent{}SN".format(NumberOfParents-1))])
ThisVerse = sanitize(row[IndexDict.get("i_verse")])
ThisChapter = sanitize(row[IndexDict.get("i_chapter")])
if (ThisSentence!=PreviousSentence):
#cv.feature(ThisSentencePointer, statdata?)
cv.terminate(ThisSentencePointer)
if (ThisVerse!=PreviousVerse):
#cv.feature(ThisVersePointer, statdata?)
cv.terminate(ThisVersePointer)
if (ThisChapter!=PreviousChapter):
#cv.feature(ThisChapterPointer, statdata?)
cv.terminate(ThisChapterPointer)
PreviousChapter = ThisChapter
ThisChapterPointer = cv.node('chapter')
cv.feature(ThisChapterPointer, chapter=ThisChapter)
if (ThisVerse!=PreviousVerse):
PreviousVerse = ThisVerse
ThisVersePointer = cv.node('verse')
cv.feature(ThisVersePointer, verse=ThisVerse, chapter=ThisChapter)
if (ThisSentence!=PreviousSentence):
PreviousSentence=ThisSentence
ThisSentencePointer = cv.node('sentence')
cv.feature(ThisSentencePointer, verse=ThisVerse, chapter=ThisChapter)
# get number of parent nodes (this differs per word)
# decoding the WordGroup data
PrevWordGroupList=WordGroupList
WordGroupList=[] # stores current active WordGroup numbers
for i in range(NumberOfParents-2,0,-1): # reversed itteration
_WGN=row[IndexDict.get("i_Parent{}WGN".format(i))]
if isinstance(_WGN, type(None)):
# handling conditions where XML data has e.g. Acts 26:12
# to recover, we need to create a dummy WG with a sufficient high WGN so it can never match any real WGN.
WGN=DummyWGN
else:
WGN=int(_WGN)
if WGN!='':
WordGroupList.append(WGN)
WordGroupDict[(WGN,0)]=WGN
WordGroupDict[(WGN,1)]=sanitize(row[IndexDict.get("i_Parent{}Rule".format(i))])
WordGroupDict[(WGN,2)]=sanitize(row[IndexDict.get("i_Parent{}Cltype".format(i))])
WordGroupDict[(WGN,3)]=sanitize(row[IndexDict.get("i_Parent{}Junction".format(i))])
WordGroupDict[(WGN,6)]=sanitize(row[IndexDict.get("i_Parent{}Class".format(i))])
WordGroupDict[(WGN,7)]=sanitize(row[IndexDict.get("i_Parent{}Role".format(i))])
WordGroupDict[(WGN,8)]=sanitize(row[IndexDict.get("i_Parent{}Type".format(i))])
WordGroupDict[(WGN,9)]=sanitize(row[IndexDict.get("i_Parent{}Appos".format(i))])
if not PrevWordGroupList==WordGroupList:
if RootWordGroup != WordGroupList[0]:
RootWordGroup = WordGroupList[0]
SuspendableWordGoupList = []
# we have a new sentence. rebuild suspendable wordgroup list
# some cleaning of data may be added here to save on memmory...
#for k in range(6): del WordGroupDict[item,k]
for item in reversed(PrevWordGroupList):
if (item not in WordGroupList):
# CLOSE/SUSPEND CASE
SuspendableWordGoupList.append(item)
cv.terminate(WordGroupDict[item,4])
for item in WordGroupList:
if (item not in PrevWordGroupList):
if (item in SuspendableWordGoupList):
# RESUME CASE
#print ('\n resume: '+str(item),end=' ')
cv.resume(WordGroupDict[(item,4)])
else:
# CREATE CASE
#print ('\n create: '+str(item),end=' ')
WordGroupDict[(item,4)]=cv.node('wg')
WordGroupDict[(item,5)]=WordGroupTrack
WordGroupTrack += 1
cv.feature(WordGroupDict[(item,4)], wordgroup=WordGroupDict[(item,0)], junction=WordGroupDict[(item,3)],
clausetype=WordGroupDict[(item,2)], rule=WordGroupDict[(item,1)], wgclass=WordGroupDict[(item,6)],
wgrole=WordGroupDict[(item,7)],wgrolelong=ExpandRole(WordGroupDict[(item,7)]),
wgtype=WordGroupDict[(item,8)],appos=WordGroupDict[(item,8)])
# determine syntactic categories of words or wordgroup. See also the description in
# "MACULA Greek Treebank for the Nestle 1904 Greek New Testament.pdf" page 5&6
# (section 2.4 Syntactic Categories at Clause Level)
# word level roles:
Role=row[IndexDict.get("i_role")]
ValidRoles=["adv","io","o","o2","s","p","v","vc"]
if isinstance (Role,str) and Role in ValidRoles:
WordRole=Role
WordRoleLong=ExpandRole(WordRole)
else:
WordRole=WordRoleLong=''
'''
-- create word nodes --
'''
# determine syntactic categories at word level.
PartOfSpeech=sanitize(row[IndexDict.get("i_class")])
PartOfSpeechFull=ExpandSP(PartOfSpeech)
# some attributes are not present inside some (small) books. The following is to prevent exceptions.
degree=''
if 'i_degree' in IndexDict:
degree=sanitize(row[IndexDict.get("i_degree")])
subjref=''
if 'i_subjref' in IndexDict:
subjref=sanitize(row[IndexDict.get("i_subjref")])
# create the word slots
this_word = cv.slot()
cv.feature(this_word,
after= sanitize(row[IndexDict.get("i_after")]),
id= sanitize(row[IndexDict.get("i_id")]),
unicode= sanitize(row[IndexDict.get("i_unicode")]),
word= sanitize(row[IndexDict.get("i_word")]),
monad= sanitize(row[IndexDict.get("i_monad")]),
orig_order= FoundWords,
book_long= sanitize(row[IndexDict.get("i_book_long")]),
booknumber= BookNumber,
bookshort= sanitize(row[IndexDict.get("i_book_short")]),
chapter= ThisChapter,
ref= sanitize(row[IndexDict.get("i_ref")]),
sp= PartOfSpeech,
sp_full= PartOfSpeechFull,
verse= ThisVerse,
sentence= ThisSentence,
normalized= sanitize(row[IndexDict.get("i_normalized")]),
morph= sanitize(row[IndexDict.get("i_morph")]),
strongs= sanitize(row[IndexDict.get("i_strong")]),
lex_dom= sanitize(row[IndexDict.get("i_domain")]),
ln= sanitize(row[IndexDict.get("i_ln")]),
gloss= sanitize(row[IndexDict.get("i_gloss")]),
gn= sanitize(row[IndexDict.get("i_gender")]),
nu= sanitize(row[IndexDict.get("i_number")]),
case= sanitize(row[IndexDict.get("i_case")]),
lemma= sanitize(row[IndexDict.get("i_lemma")]),
person= sanitize(row[IndexDict.get("i_person")]),
mood= sanitize(row[IndexDict.get("i_mood")]),
tense= sanitize(row[IndexDict.get("i_tense")]),
number= sanitize(row[IndexDict.get("i_number")]),
voice= sanitize(row[IndexDict.get("i_voice")]),
degree= degree,
type= sanitize(row[IndexDict.get("i_type")]),
reference= sanitize(row[IndexDict.get("i_ref")]),
subj_ref= subjref,
nodeID= sanitize(row[1]), #this is a fixed position in dataframe
wordrole= WordRole,
wordrolelong= WordRoleLong
)
cv.terminate(this_word)
'''
wrap up the book. At the end of the book we need to close all nodes in proper order.
'''
for item in WordGroupList:
#cv.feature(WordGroupDict[(item,4)], add some stats?)
cv.terminate(WordGroupDict[item,4])
#cv.feature(ThisSentencePointer, statdata?)
cv.terminate(ThisSentencePointer)
#cv.feature(ThisVersePointer, statdata?)
cv.terminate(ThisVersePointer)
#cv.feature(ThisChapterPonter, statdata?)
cv.terminate(ThisChapterPointer)
#cv.feature(ThisBookPointer, statdata?)
cv.terminate(ThisBookPointer)
# clear dataframe for this book, clear the index dictionary
del df
IndexDict.clear()
gc.collect()
'''
-- output definitions --
'''
slotType = 'word' # or whatever you choose
otext = { # dictionary of config data for sections and text formats
'fmt:text-orig-full':'{word}{after}',
'sectionTypes':'book,chapter,verse',
'sectionFeatures':'book,chapter,verse',
'structureFeatures': 'book,chapter,verse',
'structureTypes': 'book,chapter,verse',
}
# configure metadata
generic = { # dictionary of metadata meant for all features
'Name': 'Greek New Testament (NA1904)',
'Version': '1904',
'Editors': 'Nestle',
'Data source': 'MACULA Greek Linguistic Datasets, available at https://github.com/Clear-Bible/macula-greek/tree/main/Nestle1904/lowfat',
'Availability': 'Creative Commons Attribution 4.0 International (CC BY 4.0)',
'Converter_author': 'Tony Jurg, Vrije Universiteit Amsterdam, Netherlands',
'Converter_execution': 'Tony Jurg, Vrije Universiteit Amsterdam, Netherlands',
'Convertor_source': 'https://github.com/tonyjurg/n1904_lft',
'Converter_version': '{}'.format(version),
'TextFabric version': '{}'.format(VERSION) #imported from tf.parameters
}
intFeatures = { # set of integer valued feature names
'booknumber',
'chapter',
'verse',
'sentence',
'wordgroup',
'orig_order',
'monad'
}
featureMeta = { # per feature dicts with metadata
'after': {'description': 'Characters (eg. punctuations) following the word'},
'id': {'description': 'id of the word'},
'book': {'description': 'Book'},
'book_long': {'description': 'Book name (fully spelled out)'},
'booknumber': {'description': 'NT book number (Matthew=1, Mark=2, ..., Revelation=27)'},
'bookshort': {'description': 'Book name (abbreviated)'},
'chapter': {'description': 'Chapter number inside book'},
'verse': {'description': 'Verse number inside chapter'},
'sentence': {'description': 'Sentence number (counted per chapter)'},
'type' : {'description': 'Wordgroup type information (verb, verbless, elided, minor, etc.)'},
'rule' : {'description': 'Wordgroup rule information '},
'orig_order': {'description': 'Word order within corpus (per book)'},
'monad':{'description': 'Monad (currently: order of words in XML tree file!)'},
'word': {'description': 'Word as it appears in the text (excl. punctuations)'},
'unicode': {'description': 'Word as it arears in the text in Unicode (incl. punctuations)'},
'ref': {'description': 'ref Id'},
'sp': {'description': 'Part of Speech (abbreviated)'},
'sp_full': {'description': 'Part of Speech (long description)'},
'normalized': {'description': 'Surface word stripped of punctations'},
'lemma': {'description': 'Lexeme (lemma)'},
'morph': {'description': 'Morphological tag (Sandborg-Petersen morphology)'},
# see also discussion on relation between lex_dom and ln @ https://github.com/Clear-Bible/macula-greek/issues/29
'lex_dom': {'description': 'Lexical domain according to Semantic Dictionary of Biblical Greek, SDBG (not present everywhere?)'},
'ln': {'description': 'Lauw-Nida lexical classification (not present everywhere?)'},
'strongs': {'description': 'Strongs number'},
'gloss': {'description': 'English gloss'},
'gn': {'description': 'Gramatical gender (Masculine, Feminine, Neuter)'},
'nu': {'description': 'Gramatical number (Singular, Plural)'},
'case': {'description': 'Gramatical case (Nominative, Genitive, Dative, Accusative, Vocative)'},
'person': {'description': 'Gramatical person of the verb (first, second, third)'},
'mood': {'description': 'Gramatical mood of the verb (passive, etc)'},
'tense': {'description': 'Gramatical tense of the verb (e.g. Present, Aorist)'},
'number': {'description': 'Gramatical number of the verb'},
'voice': {'description': 'Gramatical voice of the verb'},
'degree': {'description': 'Degree (e.g. Comparitative, Superlative)'},
'type': {'description': 'Gramatical type of noun or pronoun (e.g. Common, Personal)'},
'reference': {'description': 'Reference (to nodeID in XML source data, not yet post-processes)'},
'subj_ref': {'description': 'Subject reference (to nodeID in XML source data, not yet post-processes)'},
'nodeID': {'description': 'Node ID (as in the XML source data, not yet post-processes)'},
'junction': {'description': 'Junction data related to a wordgroup'},
'wordgroup' : {'description': 'Wordgroup number (counted per book)'},
'wgclass' : {'description': 'Class of the wordgroup ()'},
'wgrole' : {'description': 'Role of the wordgroup (abbreviated)'},
'wgrolelong' : {'description': 'Role of the wordgroup (abbreviated)'},
'wordrole' : {'description': 'Role of the word (abbreviated)'},
'wordrolelong': {'description': 'Role of the word (full)'},
'wgtype': {'description': 'Wordgroup type details'},
'clausetype': {'description': 'Clause type details'},
'appos': {'description': 'Apposition details'}
}
'''
-- the main function --
'''
good = cv.walk(
director,
slotType,
otext=otext,
generic=generic,
intFeatures=intFeatures,
featureMeta=featureMeta,
warn=True,
force=True
)
if good:
print ("done")
# ## Part 4: Testing the created textfabric data
# ##### [back to TOC](#TOC)
# ### Step 1 load the TF data
#
# The TF will be loaded from github repository https://github.com/tonyjurg/n1904_lft
# In[1]:
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
# In[126]:
# First, I have to laod different modules that I use for analyzing the data and for plotting:
import sys, os, collections
import pandas as pd
import numpy as np
import re
from tf.fabric import Fabric
from tf.app import use
# The following cell loads the TextFabric files from github repository.
# In[183]:
# Loading-the-New-Testament-Text-Fabric (add a specific version, eg. 0.1.2)
NA = use ("tonyjurg/n1904_lft", version="0.1.6", hoist=globals())
# In[128]:
N.otypeRank
# In[168]:
T.formats
# ### Step 2 Perform some basic display
#
# note: the implementation with regards how phrases need to be displayed (esp. with regards to conjunctions) is still to be done.
# In[184]:
Search0 = '''
book book=Matthew
chapter chapter=1
verse
'''
Search0 = NA.search(Search0)
NA.show(Search0, start=1, end=2, condensed=True, extraFeatures={'sp','gloss','wordrolelong'}, suppress={'chapter'}, withNodes=False)
# ### Step 3 dump some structure information
# In[132]:
T.structureInfo()
# In[133]:
TF.features['otext'].metaData
# ## Running text fabric browser
# ##### [back to TOC](#TOC)
# In[134]:
get_ipython().system('text-fabric app')
# In[ ]:
get_ipython().system('text-fabric app -k')
# In[135]:
tf.core.nodes.Nodes.otypeRank
# In[ ]: