#!/usr/bin/env python # coding: utf-8 # # Summary # #

# This notebook computes the auto and cross-correlation between spots and pixels # from a smFRET experiment on a 48-spot smFRET-PAX setup. #

# # Find data file # In[1]: fname = 'data/pax-2017-07-11_06_12d_22d_mix_D200mW_A400mW.hdf5' # In[2]: from pathlib import Path fname = Path(fname) assert fname.is_file(), 'File not found.' mlabel = '_'.join(fname.stem.replace('pax-', '').replace('alex-', '').split('_')[:3]) mlabel # In[3]: import time time.ctime() # # Imports # In[4]: import os import numpy as np from IPython.display import display, HTML, Math import pandas as pd import matplotlib.pyplot as plt from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets from tqdm import tnrange, tqdm_notebook get_ipython().run_line_magic('matplotlib', 'inline') plt.rcParams['font.sans-serif'].insert(0, 'Arial') plt.rcParams['font.size'] = 14 plt.rcParams['path.simplify'] = True plt.rcParams['path.simplify_threshold'] = 1 # In[5]: import pycorrelate as pyc pyc.__version__ # In[6]: from fretbursts import * # In[7]: skip_ch = (12, 13) # In[8]: save_figures = True savefigdir = 'figures' highres = False # # Define functions # In[9]: def info_html(d): """Display measurement info in the notebook""" Dex, Aex = d.setup['excitation_input_powers']*1e3 s = """

File:       {fname}

{descr}

""".format(fname=d.fname, time=float(d.acquisition_duration), Dex=Dex, Aex=Aex, period=d.alex_period, period_us=d.alex_period*d.clk_p*1e6, offset=d.offset, descr=d.description.decode()) return HTML(s) def save_name(name, folder='.', label=None, nospaces=False): """Compute file name for saving a figure""" if label is None: label = mlabel sname = '%s/%s_%s' % (folder, label, name) if nospaces: sname = sname.replace(' ', '_') return sname def savefig(name, nospaces=True, label=None, **kwargs): """Save a figure prepending the measurement label and other options""" if not save_figures: return savefigpath = Path(savefigdir) savefigpath.mkdir(exist_ok=True) kwargs_ = dict(dpi=200, bbox_inches='tight') #frameon=True, facecolor='white', transparent=False) kwargs_.update(kwargs) fname = save_name(name, savefigdir, nospaces=nospaces, label=label) plt.savefig(fname, **kwargs_) print('Saved: %s.png' % fname, flush=True) if highres: kwargs_['dpi'] = 300 name = name[:-4] if name.lower().endswith('.png') else name fname = save_name(name + '_highres', savefigdir, nospaces=nospaces, label=label) print('Saved hires: %s.png' % fname, flush=True) plt.savefig(fname, **kwargs_) # In[10]: def normalize_G(G, t, u, bins): """Normalize ACF and CCF. """ duration = max((t.max(), u.max())) - min((t.min(), u.min())) Gn = G.copy() for i, tau in enumerate(bins[1:]): Gn[i] *= ((duration - tau) / (float((t >= tau).sum()) * float((u <= (u.max() - tau)).sum()))) return Gn # # Load Data # In[11]: d = loader.photon_hdf5(str(fname), ondisk=True) # In[12]: info_html(d) # ## SPAD positions # # We can get the SPAD positon information from the `/setup/detectors` group in Photon-HDF5. # We access this group in the loaded file like this: # In[13]: detectors = d.setup['detectors'] print('Arrays in `detectors` dict:') print([*detectors]) # All the arrays in `/setup/detectors` have the same length, and is is equal to the number of detectors. # In this case all the arrays have length 96. # # The **`spot`** array indicate the spot each detectors belongs to: # In[14]: detectors['spot'] # The **`id`** array indicates the value used in `/photon_dataN/detectors` to indicate each detector: # In[15]: detectors['id'] # The **`id_hardware`** array indicates the original detctor number from the acquisition hardware: # In[16]: detectors['id_hardware'] # The **`position`** array indicates the detector position on the chip, # as a pair of (x, y) coordinates. For example `(0,0)` and `(11, 3)` # are positions of diagonally opposite corners on the SPAD array. # In[17]: detectors['position'][:5] # In[18]: def pixel_rowcol_to_ch(d, row, col): i = np.where((d.setup['detectors']['position'] == (row, col)).sum(axis=1) == 2)[0][0] ich = d.setup['detectors']['spot'][i] return ich # # Spotwise # ## Cross-correlation between spots # # We compute the CCF betweel all-photons in two nearby spots. # We choose all the closest pairs in the 2x2 central pixels. # These pixels have the largest signal so if something is detectable it should # show up for these pairs. # In[19]: pos_pairs = [ ([5, 2], [6, 2]), ([5, 1], [6, 1]), ([5, 1], [5, 2]), ([6, 1], [6, 2]), ] # In[20]: unit = d.clk_p bins = pyc.make_loglags(-3, 1, 10) / unit # In[21]: bins.astype('int') # In[22]: GG = [] GN = [] for pos1, pos2 in tqdm_notebook(pos_pairs): print('Processing positions %s, %s' % (pos1, pos2), flush=True) ich1 = pixel_rowcol_to_ch(d, *pos1) ich2 = pixel_rowcol_to_ch(d, *pos2) t = d.ph_times_t[ich1][:] u = d.ph_times_t[ich2][:] G = pyc.pcorrelate(t, u, bins) GG.append(G) GN.append(normalize_G(G, t, u, bins)) # In[23]: fig, ax = plt.subplots(figsize=(10, 6)) for G, pair in zip(GN, pos_pairs): plt.semilogx(bins[1:]*unit, G, drawstyle='steps-pre', label=pair) plt.xlabel('Time (s)') plt.grid(True); plt.grid(True, which='minor', lw=0.3) plt.legend() plt.title('CCF of all photons between pairs of spots') plt.xlim(1e-3, 1); plt.ylim(0.99, 1.01); # > **NOTE** The effect of molecule diffusing from a spot to the other should # > be visible as a correlation between 10^-2 and 10^-1 s. In the above plot # > there may be something # > if we look it with loving eyes, but nothing we can rely on. Trying to extract any # > probability from such data would be pointless. # ## Auto-correlation for spots # In[24]: unit = d.clk_p bins_per_dec = 10 bins = pyc.make_loglags(-8, 1, bins_per_dec) / unit # In[25]: acf_fname = f'results/{mlabel}_ACF_all-ph_spots_bins{bins_per_dec}.csv' acf_fname_n = f'results/{mlabel}_ACF_all-ph_spots_bins{bins_per_dec}_normalized.csv' acf_fname # In[26]: recompute = False if Path(acf_fname_n).exists() and not recompute: print('- Loading ACF from cache', flush=True) GG = np.loadtxt(acf_fname) GN = np.loadtxt(acf_fname_n) else: GG = np.zeros((48, bins.size - 1), dtype=float) GN = GG.copy() for ich in tnrange(48, desc='Calculating ACFs: '): if ich in skip_ch: continue #print('Processing spot %s ...' % ich, flush=True) t = d.ph_times_t[ich][:] G = pyc.pcorrelate(t, t, bins) Gn = normalize_G(G, t, t, bins) GG[ich] += G GN[ich] += Gn np.savetxt(acf_fname, GG) np.savetxt(acf_fname_n, GN) # In[27]: fig, ax = plt.subplots(figsize=(10, 6)) plt.xlabel('Time (s)') plt.grid(True); plt.grid(True, which='minor', lw=0.3) plt.title('ACF of all photons. Spot %d' % 0) plt.ylim(0.0, 4) plt.xlim(10**-8, 1) lines = plt.semilogx(bins[1:]*unit, GN.T, drawstyle='steps-pre', alpha=0.05, color='C0') line = lines[0] line.set_alpha(1) # In[28]: @interact( spot=(0, 47), ylim=widgets.FloatRangeSlider(value=[0, 7.5], min=0, max=10.0, step=0.1,)) def plot_spot(spot, ylim): for line in lines: line.set_alpha(0.05) line = lines[spot] line.set_alpha(1) ax.set_ylim(ylim) ax.set_title('ACF of all photons. Spot %d' % spot) display(fig) # # Pixelwise # # ## Cross-correlations between pixels # In[29]: pos_pairs = [ ([4, 1], [4, 2]), ([4, 2], [5, 2]), ([4, 1], [5, 1]), ([5, 1], [5, 2]), #([5, 2], [6, 2]), #([5, 1], [6, 1]), #([6, 1], [6, 2]), ] # In[30]: p = np.array(pos_pairs).reshape(len(pos_pairs)*2, 2) spots = np.unique([pixel_rowcol_to_ch(d, *i) for i in p]) str(spots) # In[31]: unit = d.clk_p bins_per_dec = 10 bins = pyc.make_loglags(-8, 1, bins_per_dec) / unit # In[32]: ccf_fname = f'results/{mlabel}_CCF_pixels_{str(spots)}_bins{bins_per_dec}.csv' ccf_fname_n = f'results/{mlabel}_CCF_pixels_{str(spots)}_bins{bins_per_dec}_normalized.csv' ccf_fname # In[33]: recompute = False if Path(ccf_fname_n).exists() and not recompute: print('- Loading CCF from cache', flush=True) XC = np.loadtxt(ccf_fname).reshape(2, len(spots), -1) XCN = np.loadtxt(ccf_fname_n).reshape(2, len(spots), -1) else: XC = np.zeros((2, len(pos_pairs), bins.size - 1), dtype=float) XCN = np.zeros((2, len(pos_pairs), bins.size - 1), dtype=float) for ipair, (pos1, pos2) in tqdm_notebook(enumerate(pos_pairs), total=len(pos_pairs), desc='Spot pair'): print('Processing positions %s, %s' % (pos1, pos2), flush=True) ich1 = pixel_rowcol_to_ch(d, *pos1) ich2 = pixel_rowcol_to_ch(d, *pos2) for donor_or_accept in tnrange(2, desc='Detector', leave=False): ph1 = d.ph_times_t[ich1][:] det = d.det_t[ich1][:] t = ph1[det == donor_or_accept] ph2 = d.ph_times_t[ich2][:] det = d.det_t[ich2][:] u = ph2[det == donor_or_accept] G = pyc.pcorrelate(t, u, bins) XC[donor_or_accept, ipair] = G XCN[donor_or_accept, ipair] = normalize_G(G, t, u, bins) np.savetxt(ccf_fname, XC.reshape(2*len(spots), -1)) np.savetxt(ccf_fname_n, XCN.reshape(2*len(spots), -1)) # ### CCFs plots # In[34]: fig, ax = plt.subplots(figsize=(10, 6)) plt.xlabel('Time (s)') plt.grid(True); plt.grid(True, which='minor', lw=0.3) plt.title('CCF of pixels - Donor SPAD') plt.ylim(0, 3) plt.xlim(10**-8, 1) plt.semilogx(bins[1:]*unit, XCN[0].T, drawstyle='steps-pre'); # In[35]: fig, ax = plt.subplots(figsize=(10, 6)) plt.xlabel('Time (s)') plt.grid(True); plt.grid(True, which='minor', lw=0.3) plt.title('CCF of pixels - Donor SPAD') plt.ylim(0.9, 1.1) plt.xlim(10**-8, 1) plt.semilogx(bins[1:]*unit, XCN[0].T, drawstyle='steps-pre'); # In[36]: fig, ax = plt.subplots(figsize=(10, 6)) plt.xlabel('Time (s)') plt.grid(True); plt.grid(True, which='minor', lw=0.3) plt.title('CCF of pixels- Acceptor SPAD') plt.ylim(0, 2) plt.xlim(10**-8, 1) plt.semilogx(bins[1:]*unit, XCN[1].T, drawstyle='steps-pre'); # ## Auto-correlation for pixels # In[37]: unit = d.clk_p bins_per_dec = 10 bins = pyc.make_loglags(-8, 1, bins_per_dec) / unit # In[38]: acf_fname = f'results/{mlabel}_ACF_all-ph_pixels_bins{bins_per_dec}.csv' acf_fname_n = f'results/{mlabel}_ACF_all-ph_pixels_bins{bins_per_dec}_normalized.csv' acf_fname # In[39]: recompute = False if Path(acf_fname_n).exists() and not recompute: print('- Loading ACF from cache', flush=True) GG = np.loadtxt(acf_fname).reshape(2, 48, -1) GN = np.loadtxt(acf_fname_n).reshape(2, 48, -1) else: GG = np.zeros((2, 48, bins.size - 1), dtype=float) GN = GG.copy() for ich in tnrange(48, desc='Calculating ACFs: '): if ich in skip_ch: continue for donor_or_accept in (0, 1): ph = d.ph_times_t[ich][:] det = d.det_t[ich][:] t = ph[det == donor_or_accept] G = pyc.pcorrelate(t, t, bins) GG[donor_or_accept, ich] = G GN[donor_or_accept, ich] = normalize_G(G, t, t, bins) np.savetxt(acf_fname, GG.reshape(96, -1)) np.savetxt(acf_fname_n, GN.reshape(96, -1)) # In[40]: det = 0 fig, ax = plt.subplots(figsize=(10, 6)) def _plot(det): ax.set_xlabel('Time (s)') ax.grid(True); ax.grid(True, which='minor', lw=0.3) ax.set_title('ACF of all photons. Pixel %d' % 0) ax.set_ylim(0.0, 6) ax.set_xlim(10**-7, 1) return ax.semilogx(bins[1:]*unit, GN[det].T - 1, drawstyle='steps-pre', alpha=0.05, color='C0') lines = _plot(det) lines[0].set_alpha(1) # In[41]: @interact( pixel=(0, 47), detector=['donor', 'acceptor'], ylim=widgets.FloatRangeSlider(value=[0, 7.5], min=0, max=10.0, step=0.1,)) def plot_spot(pixel, detector, ylim): global det, lines new_det = 0 if detector == 'donor' else 1 if new_det != det: det = new_det ax.clear() lines = _plot(det) for line in lines: line.set_alpha(0.05) line = lines[pixel] line.set_alpha(1) ax.set_ylim(ylim) ax.set_title('ACF of all photons. Spot %d' % pixel) display(fig) # ## Pixelwise ACF - CCF comparison # In[42]: p = np.array(pos_pairs).reshape(len(pos_pairs)*2, 2) spots = np.unique([pixel_rowcol_to_ch(d, *i) for i in p]) spots # In[43]: np.reshape([pixel_rowcol_to_ch(d, *i) for i in p], (-1, 2)) # In[44]: det = 0 fig, (ax, ax2) = plt.subplots(2, 1, figsize=(10, 8), sharex=True) plt.subplots_adjust(hspace=0) for a in (ax, ax2): a.grid(True) a.grid(True, which='minor', lw=0.3) #ax.set_title('ACF of all photons. Donor SPAD') ax.set_ylim(0.8, 4.5) ax.set_xlim(10**-6, 1) for spot in spots: ax.semilogx(bins[1:]*unit, GN[det][spot], drawstyle='steps-pre', label='Pixel: %d' % spot) ax.legend() #ax2 = plt.twinx() ax2.semilogx(bins[1:]*unit, XCN[det].T, drawstyle='steps-pre'); ax2.legend([f'Pair: {i}, {j}' for i, j in np.reshape([pixel_rowcol_to_ch(d, *i) for i in p], (-1, 2))]) ax2.set_ylim(0.98, 1.05) ax.text(0.5, 0.95, 'ACF', transform=ax.transAxes, va='top', fontsize=22) ax2.text(0.5, 0.95, 'CCF', transform=ax2.transAxes, va='top', fontsize=22) ax2.set_xlabel('Time (s)'); savefig('ACF-CCF comparison') # # Burst-filtered # In[45]: fig, ax = plt.subplots(figsize=(12, 8)) bpl.plot_alternation_hist_usalex(d, ax=ax, bins=np.arange(0, 4097, 16)) # In[46]: loader.alex_apply_period(d) # In[47]: d.calc_bg_cache(bg.exp_fit, time_s=5, tail_min_us='auto', F_bg=1.7) # In[48]: d.burst_search(min_rate_cps=50e3, pax=True) # In[49]: d.ph_in_bursts_ich() # ## ACF for pixels bursts # In[50]: unit = d.clk_p bins_per_dec = 10 bins = pyc.make_loglags(-8, 1, bins_per_dec) / unit # In[51]: acf_fname = f'results/{mlabel}_ACF_all-ph_pixels-bursts-all-ph_bins{bins_per_dec}.csv' acf_fname_n = f'results/{mlabel}_ACF_all-ph_pixels-bursts-all-ph_bins{bins_per_dec}_normalized.csv' acf_fname # In[52]: recompute = False if Path(acf_fname_n).exists() and not recompute: print('- Loading ACF from cache', flush=True) GG = np.loadtxt(acf_fname) GN = np.loadtxt(acf_fname_n) else: GG = np.zeros((48, bins.size - 1), dtype=float) GN = GG.copy() for ich in tnrange(48, desc='Calculating ACFs: '): if ich in skip_ch: continue t = d.ph_in_bursts_ich(ich) G = pyc.pcorrelate(t, t, bins) GG[ich] = G GN[ich] = normalize_G(G, t, t, bins) np.savetxt(acf_fname, GG) np.savetxt(acf_fname_n, GN) # In[53]: det = 0 fig, ax = plt.subplots(figsize=(10, 6)) def _plot(det): ax.set_xlabel('Time (s)') ax.grid(True); ax.grid(True, which='minor', lw=0.3) ax.set_title('ACF of all photons. Spot %d' % 0) #ax.set_ylim(0.0, 6) ax.set_xlim(10**-7, 1) return ax.semilogx(bins[1:]*unit, GN.T - 1, drawstyle='steps-pre', alpha=0.05, color='C0') lines = _plot(det) lines[0].set_alpha(1) # In[54]: @interact( pixel=(0, 47), ylim=widgets.FloatRangeSlider(value=[0, 150], min=0, max=200, step=1,)) def plot_spot(pixel, ylim): for line in lines: line.set_alpha(0.05) line = lines[pixel] line.set_alpha(1) ax.set_ylim(ylim) ax.set_title('ACF of all photons. Spot %d' % pixel) display(fig) # ## CCF for pixels bursts # In[55]: pos_pairs = [ ([5, 2], [6, 2]), ([5, 1], [6, 1]), ([5, 1], [5, 2]), ([6, 1], [6, 2]), ] # In[56]: unit = d.clk_p bins = pyc.make_loglags(-8, 1, 10) / unit # In[57]: XC = np.zeros((2, len(pos_pairs), bins.size - 1), dtype=float) XCN = np.zeros((2, len(pos_pairs), bins.size - 1), dtype=float) for ipair, (pos1, pos2) in tqdm_notebook(enumerate(pos_pairs), total=len(pos_pairs), desc='Spot pair'): print('Processing positions %s, %s' % (pos1, pos2), flush=True) ich1 = pixel_rowcol_to_ch(d, *pos1) ich2 = pixel_rowcol_to_ch(d, *pos2) for i_det, ph_sel in enumerate((Ph_sel(Dex='Dem', Aex='Dem'), Ph_sel(Dex='Aem', Aex='Aem'))): t = d.ph_in_bursts_ich(ich1, ph_sel=ph_sel) u = d.ph_in_bursts_ich(ich2, ph_sel=ph_sel) G = pyc.pcorrelate(t, u, bins) XC[i_det, ipair] = G XCN[i_det, ipair] = normalize_G(G, t, u, bins) # ### CCFs plots # In[58]: fig, ax = plt.subplots(figsize=(10, 6)) plt.xlabel('Time (s)') plt.grid(True); plt.grid(True, which='minor', lw=0.3) plt.title('CCF of pixels (burst-filtered) - Donor SPAD') plt.ylim(0, 3) #plt.xlim(10**-8, 1) plt.semilogx(bins[1:]*unit, XCN[0].T, drawstyle='steps-pre'); # In[59]: fig, ax = plt.subplots(figsize=(10, 6)) plt.xlabel('Time (s)') plt.grid(True); plt.grid(True, which='minor', lw=0.3) plt.title('CCF of pixels (burst-filtered) - Acceptor') plt.ylim(0, 3) #plt.xlim(10**-8, 1) plt.semilogx(bins[1:]*unit, XCN[1].T, drawstyle='steps-pre'); # In[ ]: