#!/usr/bin/env python # coding: utf-8 # In[1]: from datetime import datetime, timedelta from matplotlib import pyplot as plt from matplotlib import dates as mpl_dates import pandas as pd # In[2]: plt.style.use('seaborn') plt.rc('figure', figsize=(12, 10)) # In[3]: dates = [ datetime(2019, 5, 24), datetime(2019, 5, 25), datetime(2019, 5, 26), datetime(2019, 5, 27), datetime(2019, 5, 28), datetime(2019, 5, 29), datetime(2019, 5, 30) ] # print(dates) y = [0, 1, 3, 4, 6, 5, 7] plt.plot_date(dates, y, linestyle='solid') # to get current figure plt.gcf().autofmt_xdate() # change date format dates = [x.strftime("%b, %d %Y") for x in dates] # %b - month # %d - day # %Y - year plt.gca().set_xticklabels(dates) # plt.set_xticklabels(dates) plt.show() # In[4]: # example # In[5]: data = pd.read_csv(r'examples/data_8.csv') data.head() # In[6]: data['Date'] = pd.to_datetime(data['Date']) data.sort_values('Date', inplace=True) # In[7]: price_date = data['Date'] price_close = data['Close'] # In[8]: plt.plot_date(price_date, price_close, linestyle='solid') plt.gcf().autofmt_xdate() plt.title('Bitcoin Prices') plt.xlabel('Date') plt.ylabel('Closing Price') plt.tight_layout() plt.show()