#!/usr/bin/env python # coding: utf-8 # In[8]: import matplotlib.pyplot as plt import numpy as np import sympy as sy sy.init_printing() # # Linear Transformation # There are many new terminologies in this chapter, however they are not entirely new to us. # Let $V$ and $W$ be vector spaces. The mapping $T:\ V\rightarrow W$ is called a _linear transformation_ if an only if # # $$ # T(u+v)=T(u)+T(v)\quad \text{and} \quad T(cu)=cT(u) # $$ # # for all $u,v\in V$ and all $c\in R$. If $T:\ V\rightarrow W$, then $T$ is called a _linear operator_. For each $u\in V$, the vector $w=T(u)$ is called the _image_ of $u$ under $T$. # ## Parametric Function Plotting # We need one tool for illustrating linear transformation. # # We want to plot any line in vector space by an equation: $p = p_0+tv $. We need to know vector $p_0$ and $v$ to plot the line. # # For instance, $p_0 = (2, 6)$, $v=(5, 3)$ and $p = (x, y)$, subsitute them into our equation # $$ # \left[ # \begin{matrix} # x\\y # \end{matrix} # \right]=\left[ # \begin{matrix} # 2\\6 # \end{matrix} # \right]+ # t\left[ # \begin{matrix} # 5\\3 # \end{matrix} # \right] # $$ # We will create a plot to illustrate the linear transformation later. # In[15]: def paraEqPlot(p0, v0, p1, v1): t = np.linspace(-5, 5) ################### First Line #################### fig, ax = plt.subplots(figsize=(10, 10)) # Plot first line x = p0[0, 0] + v0[0, 0] * t y = p0[1, 0] + v0[1, 0] * t ax.plot(x, y, lw=3, color='red') ax.grid(True) ax.scatter(p0[0, 0], p0[1, 0], s=150, edgecolor='red', facecolor='black', zorder=3) # Plot second line x = p1[0, 0] + v1[0, 0] * t y = p1[1, 0] + v1[1, 0] * t ax.plot(x, y, lw=3, color='blue') ax.grid(True) ax.scatter(p1[0, 0], p1[1, 0], s=150, edgecolor='red', facecolor='black', zorder=3) # Set the position of the spines ax.spines['left'].set_position('zero') ax.spines['bottom'].set_position('zero') # Eliminate upper and right axes ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # Show ticks in the left and lower axes only ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') # Add text annotations string = f'$({int(p0[0, 0])}, {int(p0[1, 0])})$' ax.text(x=p0[0, 0] + 0.5, y=p0[1, 0], s=string, size=14) string = f'$({int(p1[0, 0])}, {int(p1[1, 0])})$' ax.text(x=p1[0, 0] + 0.5, y=p1[1, 0], s=string, size=14) plt.show() # Example usage p0 = np.array([[1], [2]]) v0 = np.array([[1], [0.5]]) p1 = np.array([[2], [3]]) v1 = np.array([[0.5], [1]]) paraEqPlot(p0, v0, p1, v1) # ## A Simple Linear Transformation # Now we know the parametric functions in $\mathbb{R}^2$, we can show how a linear transformation acturally works on a line. # Let's say, we perform linear transformation on a vector $(x, y)$, # # $$ # T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{pmatrix} 3x - 2y \\ -2x + 3y \end{pmatrix} # $$ # and substitute the parametric function into the linear operator. # # $$ # T\left(\begin{bmatrix} 4+t \\ 5+3t \end{bmatrix}\right) = \begin{pmatrix} 3(4+t) - 2(5+3t) \\ -2(4+t) + 3(5+3t) \end{pmatrix} = \begin{bmatrix} 2 - 3t \\ 7 + 7t \end{bmatrix} # $$ # The red line is transformed into blue line and point $(4, 5)$ transformed into $(2, 7)$ # In[16]: p0 = np.array([[4],[5]]) v0 = np.array([[1],[3]]) p1 = np.array([[2],[7]]) v1 = np.array([[-3],[7]]) paraEqPlot(p0,v0,p1, v1) # ## Visualization of Change of Basis # Change of basis is also a kind of linear transformation. Let's create a grid. # In[11]: u1, u2 = np.linspace(-5, 5, 10), np.linspace(-5, 5, 10) U1, U2 = np.meshgrid(u1, u2) # We plot each row of $U2$ again each row of $U1$ # In[12]: fig, ax = plt.subplots(figsize = (10, 10)) ax.plot(U1,U2, color = 'black') ax.plot(U1.T,U2.T, color = 'black') plt.show() # Let $A$ and $B$ be two bases in $\mathbb{R}^3$ # # $$ # A = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \\ # B = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \ \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} # $$ # # If we want to use basis $A$ to represent $B$, we can construct an augmented matrix like we did before. # # $$ # [A|B]= # \left[ # \begin{matrix} # 2 & 1 & 3 & 0\\ # 1 & 1 & 2 & -1 # \end{matrix} # \right] # $$ # In[13]: AB = sy.Matrix([[2,1,3,0],[1,1,2,-1]]); AB.rref() # We find the transition matrix $P_{A\leftarrow B}$ # $$ # [A|B]=[I|P_{A\leftarrow B}] # $$ # We can write # # $$ # \big[x\big]_A = P_{A\leftarrow B}\big[u\big]_B\\ # \left[ # \begin{matrix} # x_1\\x_2 # \end{matrix} # \right] # = # \left[ # \begin{matrix} # 1 & 1\\1 & -2 # \end{matrix} # \right] # \left[ # \begin{matrix} # u_1\\u_2 # \end{matrix} # \right]\\ # $$ # Therefore # $$ # x_1 = u_1+u_2\\ # x_2 = u_1 - 2u_2 # $$ # Let's plot original and transformed coordinates together. # In[14]: u1, u2 = np.linspace(-10, 10, 21), np.linspace(-10, 10, 21) U1, U2 = np.meshgrid(u1, u2) fig, ax = plt.subplots(figsize = (10, 10)) ax.plot(U1,U2, color = 'black', lw = 1) ax.plot(U1.T,U2.T, color = 'black', lw = 1) X1 = U1 +U2 X2 = U1 - 2*U2 ax.plot(X1,X2, color = 'red', ls = '--') ax.plot(X1.T,X2.T, color = 'red', ls = '--') ax.arrow(0, 0, 1, 1, color = 'blue', width = .07, length_includes_head = True, head_width = .2, # default: 3*width head_length = .3, zorder = 4, overhang = .4) ax.arrow(0, 0, 1, -2, color = 'blue', width = .07, length_includes_head = True, head_width = .2, # default: 3*width head_length = .3,zorder = 4, overhang = .4) ax.text(0.1,0.1,'$(0, 0)$',size = 14) ax.scatter(0,0,s = 120, zorder = 5, ec = 'red', fc = 'black') ax.axis([-4, 4, -5, 5]) plt.show()