#!/usr/bin/env python # coding: utf-8 # # # # # The BSSN Time-Evolution Equations # # ## Author: Zach Etienne # ### Formatting improvements courtesy Brandon Clark # # ## This notebook focuses on a detailed construction and explanation of the BSSN formulation's time evolution equations, given in [Ruchlin, Etienne, and Baumgarte (2018)](https://arxiv.org/abs/1712.07658), within the NRPy+ environment. It incorporates an upwinded finite difference stencil approach in handling the shift advection terms, enhancing the numerical precision. # # **Notebook Status:** Validated # # **Validation Notes:** All expressions generated in this module have been validated against a trusted code (the original NRPy+/SENR code, which itself was validated against [Baumgarte's code](https://arxiv.org/abs/1211.6632)). # # ### NRPy+ Source Code for this module: [BSSN/BSSN_RHS.py](../edit/BSSN/BSSN_RHSs.py) # # ## Introduction: # This module documents and constructs the time evolution equations of the BSSN formulation of Einstein's equations, as defined in [Ruchlin, Etienne, and Baumgarte (2018)](https://arxiv.org/abs/1712.07658) (see also [Baumgarte, Montero, Cordero-Carrión, and Müller (2012)](https://arxiv.org/abs/1211.6632)). # # **This module is part of the following set of NRPy+ tutorial notebooks on the BSSN formulation of general relativity:** # # * An overview of the BSSN formulation of Einstein's equations, as well as links for background reading/lectures, are provided in [the NRPy+ tutorial notebook on the BSSN formulation](Tutorial-BSSN_formulation.ipynb). # * Basic BSSN quantities are defined in the [BSSN quantities NRPy+ tutorial notebook](Tutorial-BSSN_quantities.ipynb). # * Other BSSN equation tutorial notebooks: # * [Time-evolution equations the BSSN gauge quantities $\alpha$, $\beta^i$, and $B^i$](Tutorial-BSSN_time_evolution-BSSN_gauge_RHSs.ipynb). # * [BSSN Hamiltonian and momentum constraints](Tutorial-BSSN_constraints.ipynb) # * [Enforcing the $\bar{\gamma} = \hat{\gamma}$ constraint](Tutorial-BSSN_enforcing_determinant_gammabar_equals_gammahat_constraint.ipynb) # # ### A Note on Notation # # As is standard in NRPy+, # # * Greek indices refer to four-dimensional quantities where the zeroth component indicates temporal (time) component. # * Latin indices refer to three-dimensional quantities. This is somewhat counterintuitive since Python always indexes its lists starting from 0. As a result, the zeroth component of three-dimensional quantities will necessarily indicate the first *spatial* direction. # # As a corollary, any expressions involving mixed Greek and Latin indices will need to offset one set of indices by one: A Latin index in a four-vector will be incremented and a Greek index in a three-vector will be decremented (however, the latter case does not occur in this tutorial notebook). # # # # Table of Contents # $$\label{toc}$$ # # This notebook is organized as follows # # 0. [Preliminaries](#bssntimeevolequations): BSSN time-evolution equations, as described in the [BSSN formulation NRPy+ tutorial notebook](Tutorial-BSSN_formulation.ipynb) # 1. [Step 1](#initializenrpy): Initialize core Python/NRPy+ modules # 1. [Step 2](#gammabar): Right-hand side of $\partial_t \bar{\gamma}_{ij}$ # 1. [Step 2.a](#term1_partial_gamma): Term 1 of $\partial_t \bar{\gamma}_{i j}$ # 1. [Step 2.b](#term2_partial_gamma): Term 2 of $\partial_t \bar{\gamma}_{i j}$ # 1. [Step 2.c](#term3_partial_gamma): Term 3 of $\partial_t \bar{\gamma}_{i j}$ # 1. [Step 3](#abar): Right-hand side of $\partial_t \bar{A}_{ij}$ # 1. [Step 3.a](#term1_partial_upper_a): Term 1 of $\partial_t \bar{A}_{i j}$ # 1. [Step 3.c](#term2_partial_upper_a): Term 2 of $\partial_t \bar{A}_{i j}$ # 1. [Step 3.c](#term3_partial_upper_a): Term 3 of $\partial_t \bar{A}_{i j}$ # 1. [Step 4](#cf): Right-hand side of $\partial_t \phi \to \partial_t (\text{cf})$ # 1. [Step 5](#trk): Right-hand side of $\partial_t \text{tr} K$ # 1. [Step 6](#lambdabar): Right-hand side of $\partial_t \bar{\Lambda}^i$ # 1. [Step 6.a](#term1_partial_lambda): Term 1 of $\partial_t \bar{\Lambda}^i$ # 1. [Step 6.b](#term2_partial_lambda): Term 2 of $\partial_t \bar{\Lambda}^i$ # 1. [Step 6.c](#term3_partial_lambda): Term 3 of $\partial_t \bar{\Lambda}^i$ # 1. [Step 6.d](#term4_partial_lambda): Term 4 of $\partial_t \bar{\Lambda}^i$ # 1. [Step 6.e](#term5_partial_lambda): Term 5 of $\partial_t \bar{\Lambda}^i$ # 1. [Step 6.f](#term6_partial_lambda): Term 6 of $\partial_t \bar{\Lambda}^i$ # 1. [Step 6.g](#term7_partial_lambda): Term 7 of $\partial_t \bar{\Lambda}^i$ # 1. [Step 7](#rescalingrhss): Rescaling the BSSN right-hand sides; rewriting them in terms of the rescaled quantities $\left\{h_{i j},a_{i j},\text{cf}, K, \lambda^{i}, \alpha, \mathcal{V}^i, \mathcal{B}^i\right\}$ # 1. [Step 8](#code_validation): Code Validation against `BSSN.BSSN_RHSs` NRPy+ module # 1. [Step 9](#latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF file # # # # Preliminaries: BSSN time-evolution equations \[Back to [top](#toc)\] # $$\label{bssntimeevolequations}$$ # # As described in the [BSSN formulation NRPy+ tutorial notebook](Tutorial-BSSN_formulation.ipynb), the BSSN time-evolution equations are given by # # \begin{align} # \partial_t \bar{\gamma}_{i j} {} = {} & \left[\beta^k \partial_k \bar{\gamma}_{ij} + \partial_i \beta^k \bar{\gamma}_{kj} + \partial_j \beta^k \bar{\gamma}_{ik} \right] + \frac{2}{3} \bar{\gamma}_{i j} \left (\alpha \bar{A}_{k}^{k} - \bar{D}_{k} \beta^{k}\right ) - 2 \alpha \bar{A}_{i j} \; , \\ # \partial_t \bar{A}_{i j} {} = {} & \left[\beta^k \partial_k \bar{A}_{ij} + \partial_i \beta^k \bar{A}_{kj} + \partial_j \beta^k \bar{A}_{ik} \right] - \frac{2}{3} \bar{A}_{i j} \bar{D}_{k} \beta^{k} - 2 \alpha \bar{A}_{i k} {\bar{A}^{k}}_{j} + \alpha \bar{A}_{i j} K \nonumber \\ # & + e^{-4 \phi} \left \{-2 \alpha \bar{D}_{i} \bar{D}_{j} \phi + 4 \alpha \bar{D}_{i} \phi \bar{D}_{j} \phi + 4 \bar{D}_{(i} \alpha \bar{D}_{j)} \phi - \bar{D}_{i} \bar{D}_{j} \alpha + \alpha \bar{R}_{i j} \right \}^{\text{TF}} \; , \\ # \partial_t \phi {} = {} & \left[\beta^k \partial_k \phi \right] + \frac{1}{6} \left (\bar{D}_{k} \beta^{k} - \alpha K \right ) \; , \\ # \partial_{t} K {} = {} & \left[\beta^k \partial_k K \right] + \frac{1}{3} \alpha K^{2} + \alpha \bar{A}_{i j} \bar{A}^{i j} - e^{-4 \phi} \left (\bar{D}_{i} \bar{D}^{i} \alpha + 2 \bar{D}^{i} \alpha \bar{D}_{i} \phi \right ) \; , \\ # \partial_t \bar{\Lambda}^{i} {} = {} & \left[\beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k \right] + \bar{\gamma}^{j k} \hat{D}_{j} \hat{D}_{k} \beta^{i} + \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j} + \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j} \nonumber \\ # & - 2 \bar{A}^{i j} \left (\partial_{j} \alpha - 6 \partial_{j} \phi \right ) + 2 \alpha \bar{A}^{j k} \Delta_{j k}^{i} -\frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K # \end{align} # # where the Lie derivative terms (often seen on the left-hand side of these equations) are enclosed in square braces. # # Notice that the shift advection operator $\beta^k \partial_k \left\{\bar{\gamma}_{i j},\bar{A}_{i j},\phi, K, \bar{\Lambda}^{i}\right\}$ appears on the right-hand side of *every* expression. As the shift determines how the spatial coordinates $x^i$ move on the next 3D slice of our 4D manifold, we find that representing $\partial_k$ in these shift advection terms via an *upwinded* finite difference stencil results in far lower numerical errors. This trick is implemented below in all shift advection terms. Upwinded derivatives are indicated in NRPy+ by the `_dupD` variable suffix. # # # As discussed in the [NRPy+ tutorial notebook on BSSN quantities](Tutorial-BSSN_quantities.ipynb), tensorial expressions can diverge at coordinate singularities, so each tensor in the set of BSSN variables # # $$\left\{\bar{\gamma}_{i j},\bar{A}_{i j},\phi, K, \bar{\Lambda}^{i}, \alpha, \beta^i, B^i\right\},$$ # # is written in terms of the corresponding rescaled quantity in the set # # $$\left\{h_{i j},a_{i j},\text{cf}, K, \lambda^{i}, \alpha, \mathcal{V}^i, \mathcal{B}^i\right\},$$ # # respectively, as defined in the [BSSN quantities tutorial](Tutorial-BSSN_quantities.ipynb). # # # # Step 1: Initialize core Python/NRPy+ modules \[Back to [top](#toc)\] # $$\label{initializenrpy}$$ # # Let's start by importing all the needed modules from NRPy+: # In[1]: # Step 1.a: import all needed modules from Python/NRPy+: import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import NRPy_param_funcs as par # NRPy+: Parameter interface import grid as gri # NRPy+: Functions having to do with numerical grids import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support import reference_metric as rfm # NRPy+: Reference metric support import sys # Standard Python modules for multiplatform OS-level functions import BSSN.BSSN_quantities as Bq # NRPy+: Basic BSSN quantities # Step 1.b: Set the coordinate system for the numerical grid par.set_parval_from_str("reference_metric::CoordSystem","Spherical") # Step 1.c: Given the chosen coordinate system, set up # corresponding reference metric and needed # reference metric quantities # The following function call sets up the reference metric # and related quantities, including rescaling matrices ReDD, # ReU, and hatted quantities. rfm.reference_metric() # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is # a 3+1-dimensional decomposition of the general # relativistic field equations) DIM = 3 # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors Bq.BSSN_basic_tensors() gammabarDD = Bq.gammabarDD AbarDD = Bq.AbarDD LambdabarU = Bq.LambdabarU trK = Bq.trK alpha = Bq.alpha betaU = Bq.betaU # Step 1.f: Import all needed rescaled BSSN tensors: cf = Bq.cf lambdaU = Bq.lambdaU # # # # Step 2: Right-hand side of $\partial_t \bar{\gamma}_{ij}$ \[Back to [top](#toc)\] # $$\label{gammabar}$$ # # Let's start with # # $$ # \partial_t \bar{\gamma}_{i j} = # {\underbrace {\textstyle \left[\beta^k \partial_k \bar{\gamma}_{ij} + \partial_i \beta^k \bar{\gamma}_{kj} + \partial_j \beta^k \bar{\gamma}_{ik} \right]}_{\text{Term 1}}} + # {\underbrace {\textstyle \frac{2}{3} \bar{\gamma}_{i j} \left (\alpha \bar{A}_{k}^{k} - \bar{D}_{k} \beta^{k}\right )}_{\text{Term 2}}} # {\underbrace {\textstyle -2 \alpha \bar{A}_{i j}}_{\text{Term 3}}}. # $$ # # # First, note that the term containing $\bar{A}_{k}^{k}$ is there to drive $\bar{A}_{k}^{k}$ to zero. It was implemented in this form in T. Baumgarte's BSSN-in-spherical-coordinates code, against which NRPy+ and SENR were originally validated. You will find this term in [Brown](https://arxiv.org/abs/0902.3652)'s covariant formulation of the BSSN time-evolution equations (see third term in Eq 21a). # # # ## Step 2.a: Term 1 of $\partial_t \bar{\gamma}_{i j}$ \[Back to [top](#toc)\] # $$\label{term1_partial_gamma}$$ # # Term 1 of $\partial_t \bar{\gamma}_{i j} =$ `gammabar_rhsDD[i][j]`: $\beta^k \bar{\gamma}_{ij,k} + \beta^k_{,i} \bar{\gamma}_{kj} + \beta^k_{,j} \bar{\gamma}_{ik}$ # # # First we import derivative expressions for betaU defined in the [NRPy+ BSSN quantities tutorial notebook](Tutorial-BSSN_quantities.ipynb) # In[2]: # Step 2.a.i: Import derivative expressions for betaU defined in the BSSN.BSSN_quantities module: Bq.betaU_derivs() betaU_dD = Bq.betaU_dD betaU_dupD = Bq.betaU_dupD betaU_dDD = Bq.betaU_dDD # Step 2.a.ii: Import derivative expression for gammabarDD Bq.gammabar__inverse_and_derivs() gammabarDD_dupD = Bq.gammabarDD_dupD # Step 2.a.iii: First term of \partial_t \bar{\gamma}_{i j} right-hand side: # \beta^k \bar{\gamma}_{ij,k} + \beta^k_{,i} \bar{\gamma}_{kj} + \beta^k_{,j} \bar{\gamma}_{ik} gammabar_rhsDD = ixp.zerorank2() for i in range(DIM): for j in range(DIM): for k in range(DIM): gammabar_rhsDD[i][j] += betaU[k]*gammabarDD_dupD[i][j][k] + betaU_dD[k][i]*gammabarDD[k][j] \ + betaU_dD[k][j]*gammabarDD[i][k] # # # ## Step 2.b: Term 2 of $\partial_t \bar{\gamma}_{i j}$ \[Back to [top](#toc)\] # $$\label{term2_partial_gamma}$$ # # Term 2 of $\partial_t \bar{\gamma}_{i j} =$ `gammabar_rhsDD[i][j]`: $\frac{2}{3} \bar{\gamma}_{i j} \left (\alpha \bar{A}_{k}^{k} - \bar{D}_{k} \beta^{k}\right )$ # # Let's first convert this expression to be in terms of the evolved variables $a_{ij}$ and $\mathcal{B}^i$, starting with $\bar{A}_{ij} = a_{ij} \text{ReDD[i][j]}$. Then $\bar{A}^k_{k} = \bar{\gamma}^{ij} \bar{A}_{ij}$, and we have already defined $\bar{\gamma}^{ij}$ in terms of the evolved quantity $h_{ij}$. # # Next, we wish to compute # # $$\bar{D}_{k} \beta^{k} = \beta^k_{,k} + \frac{\beta^k \bar{\gamma}_{,k}}{2 \bar{\gamma}},$$ # # where $\bar{\gamma}$ is the determinant of the conformal metric $\bar{\gamma}_{ij}$. ***Exercise to student: Prove the above relation.*** # [Solution.](https://physics.stackexchange.com/questions/81453/general-relativity-christoffel-symbol-identity) # # Usually (i.e., so long as we make the parameter choice `detgbarOverdetghat_equals_one = False` ) we will choose $\bar{\gamma}=\hat{\gamma}$, so $\bar{\gamma}$ will in general possess coordinate singularities. Thus we would prefer to rewrite derivatives of $\bar{\gamma}$ in terms of derivatives of $\bar{\gamma}/\hat{\gamma} = 1$. # In[3]: # Step 2.b.i: First import \bar{A}_{ij} = AbarDD[i][j], and its contraction trAbar = \bar{A}^k_k # from BSSN.BSSN_quantities Bq.AbarUU_AbarUD_trAbar_AbarDD_dD() trAbar = Bq.trAbar # Step 2.b.ii: Import detgammabar quantities from BSSN.BSSN_quantities: Bq.detgammabar_and_derivs() detgammabar = Bq.detgammabar detgammabar_dD = Bq.detgammabar_dD # Step 2.b.ii: Compute the contraction \bar{D}_k \beta^k = \beta^k_{,k} + \frac{\beta^k \bar{\gamma}_{,k}}{2 \bar{\gamma}} Dbarbetacontraction = sp.sympify(0) for k in range(DIM): Dbarbetacontraction += betaU_dD[k][k] + betaU[k]*detgammabar_dD[k]/(2*detgammabar) # Step 2.b.iii: Second term of \partial_t \bar{\gamma}_{i j} right-hand side: # \frac{2}{3} \bar{\gamma}_{i j} \left (\alpha \bar{A}_{k}^{k} - \bar{D}_{k} \beta^{k}\right ) for i in range(DIM): for j in range(DIM): gammabar_rhsDD[i][j] += sp.Rational(2,3)*gammabarDD[i][j]*(alpha*trAbar - Dbarbetacontraction) # # # ## Step 2.c: Term 3 of $\partial_t \bar{\gamma}_{i j}$ \[Back to [top](#toc)\] # $$\label{term3_partial_gamma}$$ # # Term 3 of $\partial_t \bar{\gamma}_{i j}$ = `gammabar_rhsDD[i][j]`: $-2 \alpha \bar{A}_{ij}$ # # In[4]: # Step 2.c: Third term of \partial_t \bar{\gamma}_{i j} right-hand side: # -2 \alpha \bar{A}_{ij} for i in range(DIM): for j in range(DIM): gammabar_rhsDD[i][j] += -2*alpha*AbarDD[i][j] # # # # Step 3: Right-hand side of $\partial_t \bar{A}_{ij}$ \[Back to [top](#toc)\] # $$\label{abar}$$ # # $$\partial_t \bar{A}_{i j} = # {\underbrace {\textstyle \left[\beta^k \partial_k \bar{A}_{ij} + \partial_i \beta^k \bar{A}_{kj} + \partial_j \beta^k \bar{A}_{ik} \right]}_{\text{Term 1}}} # {\underbrace {\textstyle - \frac{2}{3} \bar{A}_{i j} \bar{D}_{k} \beta^{k} - 2 \alpha \bar{A}_{i k} {\bar{A}^{k}}_{j} + \alpha \bar{A}_{i j} K}_{\text{Term 2}}} + # {\underbrace {\textstyle e^{-4 \phi} \left \{-2 \alpha \bar{D}_{i} \bar{D}_{j} \phi + 4 \alpha \bar{D}_{i} \phi \bar{D}_{j} \phi + 4 \bar{D}_{(i} \alpha \bar{D}_{j)} \phi - \bar{D}_{i} \bar{D}_{j} \alpha + \alpha \bar{R}_{i j} \right \}^{\text{TF}}}_{\text{Term 3}}}$$ # # # ## Step 3.a: Term 1 of $\partial_t \bar{A}_{i j}$ \[Back to [top](#toc)\] # $$\label{term1_partial_upper_a}$$ # # Term 1 of $\partial_t \bar{A}_{i j}$ = `Abar_rhsDD[i][j]`: $\left[\beta^k \partial_k \bar{A}_{ij} + \partial_i \beta^k \bar{A}_{kj} + \partial_j \beta^k \bar{A}_{ik} \right]$ # # # Notice the first subexpression has a $\beta^k \partial_k A_{ij}$ advection term, which will be upwinded. # In[5]: # Step 3.a: First term of \partial_t \bar{A}_{i j}: # \beta^k \partial_k \bar{A}_{ij} + \partial_i \beta^k \bar{A}_{kj} + \partial_j \beta^k \bar{A}_{ik} AbarDD_dupD = Bq.AbarDD_dupD # From Bq.AbarUU_AbarUD_trAbar_AbarDD_dD() Abar_rhsDD = ixp.zerorank2() for i in range(DIM): for j in range(DIM): for k in range(DIM): Abar_rhsDD[i][j] += betaU[k]*AbarDD_dupD[i][j][k] + betaU_dD[k][i]*AbarDD[k][j] \ + betaU_dD[k][j]*AbarDD[i][k] # # # ## Step 3.b: Term 2 of $\partial_t \bar{A}_{i j}$ \[Back to [top](#toc)\] # $$\label{term2_partial_upper_a}$$ # # Term 2 of $\partial_t \bar{A}_{i j}$ = `Abar_rhsDD[i][j]`: $- \frac{2}{3} \bar{A}_{i j} \bar{D}_{k} \beta^{k} - 2 \alpha \bar{A}_{i k} \bar{A}^{k}_{j} + \alpha \bar{A}_{i j} K$ # # # Note that $\bar{D}_{k} \beta^{k}$ was already defined as `Dbarbetacontraction`. # In[6]: # Step 3.b: Second term of \partial_t \bar{A}_{i j}: # - (2/3) \bar{A}_{i j} \bar{D}_{k} \beta^{k} - 2 \alpha \bar{A}_{i k} {\bar{A}^{k}}_{j} + \alpha \bar{A}_{i j} K gammabarUU = Bq.gammabarUU # From Bq.gammabar__inverse_and_derivs() AbarUD = Bq.AbarUD # From Bq.AbarUU_AbarUD_trAbar() for i in range(DIM): for j in range(DIM): Abar_rhsDD[i][j] += -sp.Rational(2,3)*AbarDD[i][j]*Dbarbetacontraction + alpha*AbarDD[i][j]*trK for k in range(DIM): Abar_rhsDD[i][j] += -2*alpha * AbarDD[i][k]*AbarUD[k][j] # # # ## Step 3.c: Term 3 of $\partial_t \bar{A}_{i j}$ \[Back to [top](#toc)\] # $$\label{term3_partial_upper_a}$$ # # # Term 3 of $\partial_t \bar{A}_{i j}$ = `Abar_rhsDD[i][j]`: $e^{-4 \phi} \left \{-2 \alpha \bar{D}_{i} \bar{D}_{j} \phi + 4 \alpha \bar{D}_{i} \phi \bar{D}_{j} \phi + 4 \bar{D}_{(i} \alpha \bar{D}_{j)} \phi - \bar{D}_{i} \bar{D}_{j} \alpha + \alpha \bar{R}_{i j} \right \}^{\text{TF}}$ # The first covariant derivatives of $\phi$ and $\alpha$ are simply partial derivatives. However, $\phi$ is not a gridfunction; `cf` is. cf = $W$ (default value) denotes that the evolved variable is $W=e^{-2 \phi}$, which results in smoother spacetime fields around puncture black holes (desirable). # In[7]: # Step 3.c.i: Define partial derivatives of \phi in terms of evolved quantity "cf": Bq.phi_and_derivs() phi_dD = Bq.phi_dD phi_dupD = Bq.phi_dupD exp_m4phi = Bq.exp_m4phi phi_dBarD = Bq.phi_dBarD # phi_dBarD = Dbar_i phi = phi_dD (since phi is a scalar) phi_dBarDD = Bq.phi_dBarDD # phi_dBarDD = Dbar_i Dbar_j phi (covariant derivative) # Step 3.c.ii: Define RbarDD Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU() RbarDD = Bq.RbarDD # Step 3.c.iii: Define first and second derivatives of \alpha, as well as # \bar{D}_i \bar{D}_j \alpha, which is defined just like phi alpha_dD = ixp.declarerank1("alpha_dD") alpha_dDD = ixp.declarerank2("alpha_dDD","sym01") alpha_dBarD = alpha_dD alpha_dBarDD = ixp.zerorank2() GammabarUDD = Bq.GammabarUDD # Defined in Bq.gammabar__inverse_and_derivs() for i in range(DIM): for j in range(DIM): alpha_dBarDD[i][j] = alpha_dDD[i][j] for k in range(DIM): alpha_dBarDD[i][j] += - GammabarUDD[k][i][j]*alpha_dD[k] # Step 3.c.iv: Define the terms in curly braces: curlybrackettermsDD = ixp.zerorank2() for i in range(DIM): for j in range(DIM): curlybrackettermsDD[i][j] = -2*alpha*phi_dBarDD[i][j] + 4*alpha*phi_dBarD[i]*phi_dBarD[j] \ +2*alpha_dBarD[i]*phi_dBarD[j] \ +2*alpha_dBarD[j]*phi_dBarD[i] \ -alpha_dBarDD[i][j] + alpha*RbarDD[i][j] # Step 3.c.v: Compute the trace: curlybracketterms_trace = sp.sympify(0) for i in range(DIM): for j in range(DIM): curlybracketterms_trace += gammabarUU[i][j]*curlybrackettermsDD[i][j] # Step 3.c.vi: Third and final term of Abar_rhsDD[i][j]: for i in range(DIM): for j in range(DIM): Abar_rhsDD[i][j] += exp_m4phi*(curlybrackettermsDD[i][j] - \ sp.Rational(1,3)*gammabarDD[i][j]*curlybracketterms_trace) # # # # Step 4: Right-hand side of $\partial_t \phi \to \partial_t (\text{cf})$ \[Back to [top](#toc)\] # $$\label{cf}$$ # # $$\partial_t \phi = # {\underbrace {\textstyle \left[\beta^k \partial_k \phi \right]}_{\text{Term 1}}} + # {\underbrace {\textstyle \frac{1}{6} \left (\bar{D}_{k} \beta^{k} - \alpha K \right)}_{\text{Term 2}}}$$ # # The right-hand side of $\partial_t \phi$ is trivial except for the fact that the actual evolved variable is `cf` (short for conformal factor), which could represent # * cf = $\phi$ # * cf = $W = e^{-2 \phi}$ (default) # * cf = $\chi = e^{-4 \phi}$ # # Thus we are actually computing the right-hand side of the equation $\partial_t $cf, which is related to $\partial_t \phi$ via simple relations: # * cf = $\phi$: $\partial_t $cf$ = \partial_t \phi$ (unchanged) # * cf = $W$: $\partial_t $cf$ = \partial_t (e^{-2 \phi}) = -2 e^{-2\phi}\partial_t \phi = -2 W \partial_t \phi$. Thus we need to multiply the right-hand side by $-2 W = -2$cf when cf = $W$. # * cf = $\chi$: Same argument as for $W$, except the right-hand side must be multiplied by $-4 \chi=-4$cf. # In[8]: # Step 4: Right-hand side of conformal factor variable "cf". Supported # options include: cf=phi, cf=W=e^(-2*phi) (default), and cf=chi=e^(-4*phi) # \partial_t phi = \left[\beta^k \partial_k \phi \right] <- TERM 1 # + \frac{1}{6} \left (\bar{D}_{k} \beta^{k} - \alpha K \right ) <- TERM 2 cf_rhs = sp.Rational(1,6) * (Dbarbetacontraction - alpha*trK) # Term 2 for k in range(DIM): cf_rhs += betaU[k]*phi_dupD[k] # Term 1 # Next multiply to convert phi_rhs to cf_rhs. if par.parval_from_str("BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "phi": pass # do nothing; cf_rhs = phi_rhs elif par.parval_from_str("BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "W": cf_rhs *= -2*cf # cf_rhs = -2*cf*phi_rhs elif par.parval_from_str("BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "chi": cf_rhs *= -4*cf # cf_rhs = -4*cf*phi_rhs else: print("Error: EvolvedConformalFactor_cf == "+ par.parval_from_str("BSSN.BSSN_quantities::EvolvedConformalFactor_cf")+" unsupported!") sys.exit(1) # # # # Step 5: Right-hand side of $\partial_t K$ \[Back to [top](#toc)\] # $$\label{trk}$$ # # $$ # \partial_{t} K = # {\underbrace {\textstyle \left[\beta^i \partial_i K \right]}_{\text{Term 1}}} + # {\underbrace {\textstyle \frac{1}{3} \alpha K^{2}}_{\text{Term 2}}} + # {\underbrace {\textstyle \alpha \bar{A}_{i j} \bar{A}^{i j}}_{\text{Term 3}}} # {\underbrace {\textstyle - e^{-4 \phi} \left (\bar{D}_{i} \bar{D}^{i} \alpha + 2 \bar{D}^{i} \alpha \bar{D}_{i} \phi \right )}_{\text{Term 4}}} # $$ # In[9]: # Step 5: right-hand side of trK (trace of extrinsic curvature): # \partial_t K = \beta^k \partial_k K <- TERM 1 # + \frac{1}{3} \alpha K^{2} <- TERM 2 # + \alpha \bar{A}_{i j} \bar{A}^{i j} <- TERM 3 # - - e^{-4 \phi} (\bar{D}_{i} \bar{D}^{i} \alpha + 2 \bar{D}^{i} \alpha \bar{D}_{i} \phi ) <- TERM 4 # TERM 2: trK_rhs = sp.Rational(1,3)*alpha*trK*trK trK_dupD = ixp.declarerank1("trK_dupD") for i in range(DIM): # TERM 1: trK_rhs += betaU[i]*trK_dupD[i] for i in range(DIM): for j in range(DIM): # TERM 4: trK_rhs += -exp_m4phi*gammabarUU[i][j]*(alpha_dBarDD[i][j] + 2*alpha_dBarD[j]*phi_dBarD[i]) AbarUU = Bq.AbarUU # From Bq.AbarUU_AbarUD_trAbar() for i in range(DIM): for j in range(DIM): # TERM 3: trK_rhs += alpha*AbarDD[i][j]*AbarUU[i][j] # # # # Step 6: Right-hand side of $\partial_t \bar{\Lambda}^{i}$ \[Back to [top](#toc)\] # $$\label{lambdabar}$$ # # \begin{align} # \partial_t \bar{\Lambda}^{i} &= # {\underbrace {\textstyle \left[\beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k \right]}_{\text{Term 1}}} + # {\underbrace {\textstyle \bar{\gamma}^{j k} \hat{D}_{j} \hat{D}_{k} \beta^{i}}_{\text{Term 2}}} + # {\underbrace {\textstyle \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j}}_{\text{Term 3}}} + # {\underbrace {\textstyle \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j}}_{\text{Term 4}}} \nonumber \\ # & # {\underbrace {\textstyle - 2 \bar{A}^{i j} \left (\partial_{j} \alpha - 6 \alpha \partial_{j} \phi \right )}_{\text{Term 5}}} + # {\underbrace {\textstyle 2 \alpha \bar{A}^{j k} \Delta_{j k}^{i}}_{\text{Term 6}}} # {\underbrace {\textstyle -\frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K}_{\text{Term 7}}} # \end{align} # # # ## Step 6.a: Term 1 of $\partial_t \bar{\Lambda}^{i}$ \[Back to [top](#toc)\] # $$\label{term1_partial_lambda}$$ # # Term 1 of $\partial_t \bar{\Lambda}^{i}$: $\beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k$ # # Computing this term requires that we define $\bar{\Lambda}^i$ and $\bar{\Lambda}^i_{,j}$ in terms of the rescaled (i.e., actual evolved) variable $\lambda^i$ and derivatives: # \begin{align} # \bar{\Lambda}^i &= \lambda^i \text{ReU[i]} \\ # \bar{\Lambda}^i_{,\ j} &= \lambda^i_{,\ j} \text{ReU[i]} + \lambda^i \text{ReUdD[i][j]} # \end{align} # In[10]: # Step 6: right-hand side of \partial_t \bar{\Lambda}^i: # \partial_t \bar{\Lambda}^i = \beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k <- TERM 1 # + \bar{\gamma}^{j k} \hat{D}_{j} \hat{D}_{k} \beta^{i} <- TERM 2 # + \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j} <- TERM 3 # + \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j} <- TERM 4 # - 2 \bar{A}^{i j} (\partial_{j} \alpha - 6 \partial_{j} \phi) <- TERM 5 # + 2 \alpha \bar{A}^{j k} \Delta_{j k}^{i} <- TERM 6 # - \frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K <- TERM 7 # Step 6.a: Term 1 of \partial_t \bar{\Lambda}^i: \beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k # First we declare \bar{\Lambda}^i and \bar{\Lambda}^i_{,j} in terms of \lambda^i and \lambda^i_{,j} LambdabarU_dupD = ixp.zerorank2() lambdaU_dupD = ixp.declarerank2("lambdaU_dupD","nosym") for i in range(DIM): for j in range(DIM): LambdabarU_dupD[i][j] = lambdaU_dupD[i][j]*rfm.ReU[i] + lambdaU[i]*rfm.ReUdD[i][j] Lambdabar_rhsU = ixp.zerorank1() for i in range(DIM): for k in range(DIM): Lambdabar_rhsU[i] += betaU[k]*LambdabarU_dupD[i][k] - betaU_dD[i][k]*LambdabarU[k] # Term 1 # # # ## Step 6.b: Term 2 of $\partial_t \bar{\Lambda}^{i}$ \[Back to [top](#toc)\] # $$\label{term2_partial_lambda}$$ # # Term 2 of $\partial_t \bar{\Lambda}^{i}$: $\bar{\gamma}^{j k} \hat{D}_{j} \hat{D}_{k} \beta^{i}$ # # This is a relatively difficult term to compute, as it requires we evaluate the second covariant derivative of the shift vector, with respect to the hatted (i.e., reference) metric. # # Based on the definition of the covariant derivative, we have # $$ # \hat{D}_{k} \beta^{i} = \beta^i_{,k} + \hat{\Gamma}^i_{mk} \beta^m # $$ # # Since $\hat{D}_{k} \beta^{i}$ is a tensor, the covariant derivative of this will have the same indexing as a tensor $T_k^i$: # # $$ # \hat{D}_{j} T^i_k = T^i_{k,j} + \hat{\Gamma}^i_{dj} T^d_k - \hat{\Gamma}^d_{kj} T^i_d. # $$ # # Therefore, # \begin{align} # \hat{D}_{j} \left(\hat{D}_{k} \beta^{i}\right) &= \left(\beta^i_{,k} + \hat{\Gamma}^i_{mk} \beta^m\right)_{,j} + \hat{\Gamma}^i_{dj} \left(\beta^d_{,k} + \hat{\Gamma}^d_{mk} \beta^m\right) - \hat{\Gamma}^d_{kj} \left(\beta^i_{,d} + \hat{\Gamma}^i_{md} \beta^m\right) \\ # &= \beta^i_{,kj} + \hat{\Gamma}^i_{mk,j} \beta^m + \hat{\Gamma}^i_{mk} \beta^m_{,j} + \hat{\Gamma}^i_{dj}\beta^d_{,k} + \hat{\Gamma}^i_{dj}\hat{\Gamma}^d_{mk} \beta^m - \hat{\Gamma}^d_{kj} \beta^i_{,d} - \hat{\Gamma}^d_{kj} \hat{\Gamma}^i_{md} \beta^m \\ # &= {\underbrace {\textstyle \beta^i_{,kj}}_{\text{Term 2a}}} + # {\underbrace {\textstyle \hat{\Gamma}^i_{mk,j} \beta^m + \hat{\Gamma}^i_{mk} \beta^m_{,j} + \hat{\Gamma}^i_{dj}\beta^d_{,k} - \hat{\Gamma}^d_{kj} \beta^i_{,d}}_{\text{Term 2b}}} + # {\underbrace {\textstyle \hat{\Gamma}^i_{dj}\hat{\Gamma}^d_{mk} \beta^m - \hat{\Gamma}^d_{kj} \hat{\Gamma}^i_{md} \beta^m}_{\text{Term 2c}}}, # \end{align} # # where # $$ # \text{Term 2} = \bar{\gamma}^{jk} \left(\text{Term 2a} + \text{Term 2b} + \text{Term 2c}\right) # $$ # In[11]: # Step 6.b: Term 2 of \partial_t \bar{\Lambda}^i = \bar{\gamma}^{jk} (Term 2a + Term 2b + Term 2c) # Term 2a: \bar{\gamma}^{jk} \beta^i_{,kj} Term2aUDD = ixp.zerorank3() for i in range(DIM): for j in range(DIM): for k in range(DIM): Term2aUDD[i][j][k] += betaU_dDD[i][k][j] # Term 2b: \hat{\Gamma}^i_{mk,j} \beta^m + \hat{\Gamma}^i_{mk} \beta^m_{,j} # + \hat{\Gamma}^i_{dj}\beta^d_{,k} - \hat{\Gamma}^d_{kj} \beta^i_{,d} Term2bUDD = ixp.zerorank3() for i in range(DIM): for j in range(DIM): for k in range(DIM): for m in range(DIM): Term2bUDD[i][j][k] += rfm.GammahatUDDdD[i][m][k][j]*betaU[m] \ + rfm.GammahatUDD[i][m][k]*betaU_dD[m][j] \ + rfm.GammahatUDD[i][m][j]*betaU_dD[m][k] \ - rfm.GammahatUDD[m][k][j]*betaU_dD[i][m] # Term 2c: \hat{\Gamma}^i_{dj}\hat{\Gamma}^d_{mk} \beta^m - \hat{\Gamma}^d_{kj} \hat{\Gamma}^i_{md} \beta^m Term2cUDD = ixp.zerorank3() for i in range(DIM): for j in range(DIM): for k in range(DIM): for m in range(DIM): for d in range(DIM): Term2cUDD[i][j][k] += ( rfm.GammahatUDD[i][d][j]*rfm.GammahatUDD[d][m][k] \ -rfm.GammahatUDD[d][k][j]*rfm.GammahatUDD[i][m][d])*betaU[m] Lambdabar_rhsUpieceU = ixp.zerorank1() # Put it all together to get Term 2: for i in range(DIM): for j in range(DIM): for k in range(DIM): Lambdabar_rhsU[i] += gammabarUU[j][k] * (Term2aUDD[i][j][k] + Term2bUDD[i][j][k] + Term2cUDD[i][j][k]) Lambdabar_rhsUpieceU[i] += gammabarUU[j][k] * (Term2aUDD[i][j][k] + Term2bUDD[i][j][k] + Term2cUDD[i][j][k]) # # # ## Step 6.c: Term 3 of $\partial_t \bar{\Lambda}^{i}$: $\frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j}$ \[Back to [top](#toc)\] # $$\label{term3_partial_lambda}$$ # # Term 3 of $\partial_t \bar{\Lambda}^{i}$: $\frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j}$ # # This term is the simplest to implement, as $\bar{D}_{j} \beta^{j}$ and $\Delta^i$ have already been defined, as `Dbarbetacontraction` and `DGammaU[i]`, respectively: # In[12]: # Step 6.c: Term 3 of \partial_t \bar{\Lambda}^i: # \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j} DGammaU = Bq.DGammaU # From Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU() for i in range(DIM): Lambdabar_rhsU[i] += sp.Rational(2,3)*DGammaU[i]*Dbarbetacontraction # Term 3 # # # ## Step 6.d: Term 4 of $\partial_t \bar{\Lambda}^{i}$ \[Back to [top](#toc)\] # $$\label{term4_partial_lambda}$$ # # $\partial_t \bar{\Lambda}^{i}$: $\frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j}$ # # Recall first that # # $$\bar{D}_{k} \beta^{k} = \beta^k_{,\ k} + \frac{\beta^k \bar{\gamma}_{,k}}{2 \bar{\gamma}},$$ # which is a scalar, so # # \begin{align} # \bar{D}_m \bar{D}_{j} \beta^{j} &= \left(\beta^k_{,\ k} + \frac{\beta^k \bar{\gamma}_{,k}}{2 \bar{\gamma}}\right)_{,m} \\ # &= \beta^k_{\ ,km} + \frac{\beta^k_{\ ,m} \bar{\gamma}_{,k} + \beta^k \bar{\gamma}_{\ ,km}}{2 \bar{\gamma}} - \frac{\beta^k \bar{\gamma}_{,k} \bar{\gamma}_{,m}}{2 \bar{\gamma}^2} # \end{align} # # Thus, # \begin{align} # \bar{D}^i \bar{D}_{j} \beta^{j} # &= \bar{\gamma}^{im} \bar{D}_m \bar{D}_{j} \beta^{j} \\ # &= \bar{\gamma}^{im} \left(\beta^k_{\ ,km} + \frac{\beta^k_{\ ,m} \bar{\gamma}_{,k} + \beta^k \bar{\gamma}_{\ ,km}}{2 \bar{\gamma}} - \frac{\beta^k \bar{\gamma}_{,k} \bar{\gamma}_{,m}}{2 \bar{\gamma}^2} \right) # \end{align} # In[13]: # Step 6.d: Term 4 of \partial_t \bar{\Lambda}^i: # \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j} detgammabar_dDD = Bq.detgammabar_dDD # From Bq.detgammabar_and_derivs() Dbarbetacontraction_dBarD = ixp.zerorank1() for k in range(DIM): for m in range(DIM): Dbarbetacontraction_dBarD[m] += betaU_dDD[k][k][m] + \ (betaU_dD[k][m]*detgammabar_dD[k] + betaU[k]*detgammabar_dDD[k][m])/(2*detgammabar) \ -betaU[k]*detgammabar_dD[k]*detgammabar_dD[m]/(2*detgammabar*detgammabar) for i in range(DIM): for m in range(DIM): Lambdabar_rhsU[i] += sp.Rational(1,3)*gammabarUU[i][m]*Dbarbetacontraction_dBarD[m] # # # ## Step 6.e: Term 5 of $\partial_t \bar{\Lambda}^{i}$ \[Back to [top](#toc)\] # $$\label{term5_partial_lambda}$$ # # Term 5 of $\partial_t \bar{\Lambda}^{i}$: $- 2 \bar{A}^{i j} \left (\partial_{j} \alpha - 6\alpha \partial_{j} \phi\right)$ # In[14]: # Step 6.e: Term 5 of \partial_t \bar{\Lambda}^i: # - 2 \bar{A}^{i j} (\partial_{j} \alpha - 6 \alpha \partial_{j} \phi) for i in range(DIM): for j in range(DIM): Lambdabar_rhsU[i] += -2*AbarUU[i][j]*(alpha_dD[j] - 6*alpha*phi_dD[j]) # # # ## Step 6.f: Term 6 of $\partial_t \bar{\Lambda}^{i}$ \[Back to [top](#toc)\] # $$\label{term6_partial_lambda}$$ # # Term 6 of $\partial_t \bar{\Lambda}^{i}$: $2\alpha \bar{A}^{j k} \Delta_{j k}^{i}$ # In[15]: # Step 6.f: Term 6 of \partial_t \bar{\Lambda}^i: # 2 \alpha \bar{A}^{j k} \Delta^{i}_{j k} DGammaUDD = Bq.DGammaUDD # From RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU() for i in range(DIM): for j in range(DIM): for k in range(DIM): Lambdabar_rhsU[i] += 2*alpha*AbarUU[j][k]*DGammaUDD[i][j][k] # # # ## Step 6.g: Term 7 of $\partial_t \bar{\Lambda}^{i}$ \[Back to [top](#toc)\] # $$\label{term7_partial_lambda}$$ # # $\partial_t \bar{\Lambda}^{i}$: $-\frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K$ # In[16]: # Step 6.g: Term 7 of \partial_t \bar{\Lambda}^i: # -\frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K trK_dD = ixp.declarerank1("trK_dD") for i in range(DIM): for j in range(DIM): Lambdabar_rhsU[i] += -sp.Rational(4,3)*alpha*gammabarUU[i][j]*trK_dD[j] # # # # Step 7: Rescaling the BSSN right-hand sides; rewriting them in terms of the rescaled quantities $\left\{h_{i j},a_{i j},\text{cf}, K, \lambda^{i}, \alpha, \mathcal{V}^i, \mathcal{B}^i\right\}$ \[Back to [top](#toc)\] # $$\label{rescalingrhss}$$ # # Next we rescale the right-hand sides of the BSSN equations so that the evolved variables are $\left\{h_{i j},a_{i j},\text{cf}, K, \lambda^{i}\right\}$ # In[17]: # Step 7: Rescale the RHS quantities so that the evolved # variables are smooth across coord singularities h_rhsDD = ixp.zerorank2() a_rhsDD = ixp.zerorank2() lambda_rhsU = ixp.zerorank1() for i in range(DIM): lambda_rhsU[i] = Lambdabar_rhsU[i] / rfm.ReU[i] for j in range(DIM): h_rhsDD[i][j] = gammabar_rhsDD[i][j] / rfm.ReDD[i][j] a_rhsDD[i][j] = Abar_rhsDD[i][j] / rfm.ReDD[i][j] #print(str(Abar_rhsDD[2][2]).replace("**","^").replace("_","").replace("xx","x").replace("sin(x2)","Sin[x2]").replace("sin(2*x2)","Sin[2*x2]").replace("cos(x2)","Cos[x2]").replace("detgbaroverdetghat","detg")) #print(str(Dbarbetacontraction).replace("**","^").replace("_","").replace("xx","x").replace("sin(x2)","Sin[x2]").replace("detgbaroverdetghat","detg")) #print(betaU_dD) #print(str(trK_rhs).replace("xx2","xx3").replace("xx1","xx2").replace("xx0","xx1").replace("**","^").replace("_","").replace("sin(xx2)","Sinx2").replace("xx","x").replace("sin(2*x2)","Sin2x2").replace("cos(x2)","Cosx2").replace("detgbaroverdetghat","detg")) #print(str(bet_rhsU[0]).replace("xx2","xx3").replace("xx1","xx2").replace("xx0","xx1").replace("**","^").replace("_","").replace("sin(xx2)","Sinx2").replace("xx","x").replace("sin(2*x2)","Sin2x2").replace("cos(x2)","Cosx2").replace("detgbaroverdetghat","detg")) # # # # Step 8: Code Validation against `BSSN.BSSN_RHSs` NRPy+ module \[Back to [top](#toc)\] # $$\label{code_validation}$$ # # Here, as a code validation check, we verify agreement in the SymPy expressions for the RHSs of the BSSN equations between # 1. this tutorial and # 2. the NRPy+ [BSSN.BSSN_RHSs](../edit/BSSN/BSSN_RHSs.py) module. # # By default, we analyze the RHSs in Spherical coordinates, though other coordinate systems may be chosen. # In[18]: # Step 8: We already have SymPy expressions for BSSN RHS expressions # in terms of other SymPy variables. Even if we reset the # list of NRPy+ gridfunctions, these *SymPy* expressions for # BSSN RHS variables *will remain unaffected*. # # Here, we will use the above-defined BSSN RHS expressions # to validate against the same expressions in the # BSSN/BSSN_RHSs.py file, to ensure consistency between # this tutorial and the module itself. # # Reset the list of gridfunctions, as registering a gridfunction # twice will spawn an error. gri.glb_gridfcs_list = [] # Step 9.a: Call the BSSN_RHSs() function from within the # BSSN/BSSN_RHSs.py module, # which should do exactly the same as in Steps 1-16 above. import BSSN.BSSN_RHSs as bssnrhs bssnrhs.BSSN_RHSs() print("Consistency check between BSSN_RHSs tutorial and NRPy+ module: ALL SHOULD BE ZERO.") print("trK_rhs - bssnrhs.trK_rhs = " + str(trK_rhs - bssnrhs.trK_rhs)) print("cf_rhs - bssnrhs.cf_rhs = " + str(cf_rhs - bssnrhs.cf_rhs)) for i in range(DIM): print("lambda_rhsU["+str(i)+"] - bssnrhs.lambda_rhsU["+str(i)+"] = " + str(lambda_rhsU[i] - bssnrhs.lambda_rhsU[i])) for j in range(DIM): print("h_rhsDD["+str(i)+"]["+str(j)+"] - bssnrhs.h_rhsDD["+str(i)+"]["+str(j)+"] = " + str(h_rhsDD[i][j] - bssnrhs.h_rhsDD[i][j])) print("a_rhsDD["+str(i)+"]["+str(j)+"] - bssnrhs.a_rhsDD["+str(i)+"]["+str(j)+"] = " + str(a_rhsDD[i][j] - bssnrhs.a_rhsDD[i][j])) # # # # Step 9: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](#toc)\] # $$\label{latex_pdf_output}$$ # # The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename # [Tutorial-BSSN_time_evolution-BSSN_RHSs.pdf](Tutorial-BSSN_time_evolution-BSSN_RHSs.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) # In[19]: import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-BSSN_time_evolution-BSSN_RHSs")