#!/usr/bin/env python # coding: utf-8 # # Logfile parsing # Here, we provide an example concerning how to benefit from QCoDeS logs by simple analysis and visualisation. # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') import os from zipfile import ZipFile import matplotlib.pyplot as plt from qcodes.logger import log_to_dataframe, time_difference # In[2]: # put the 30MB into a zip file filepath = os.path.join(os.getcwd(), "static", "pythonlog.zip") with ZipFile(filepath) as z: with z.open("pythonlog.log", "r") as f: my_log = [line.decode() for line in f] # In[3]: os.path.exists(filepath) # In[4]: logdata = log_to_dataframe( my_log, separator=" - ", columns=["time", "module", "function", "loglevel", "message"], ) # The `logdata` is, now, a nice and tidy `DataFrame` that one can further manipulate to extract more information, if needed. # In[5]: logdata # In[6]: data = logdata # ### Get the query time for the SR860 # # We know that the log file documents an experiment quering an SR860 for R and amplitude over and over. Let us analyse and visualise query response times. # In[7]: qstr_R = r"Querying instrument SR860_120: OUTP\? 2" # remember to escape queries_R = data[data.message.str.contains(qstr_R)] responses_R = data.loc[queries_R.index + 1] qstr_lvl = r"Querying instrument SR860_120: SLVL\?" # remember to escape queries_lvl = data[data.message.str.contains(qstr_lvl)][:-1] responses_lvl = data.loc[queries_lvl.index + 1] # ### Find the elapsed times # In[8]: elapsed_times_R = time_difference(queries_R.time, responses_R.time) elapsed_times_lvl = time_difference(queries_lvl.time, responses_lvl.time) # ## Visualise! # In[9]: from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() fig, ax = plt.subplots(1, 1) ax.plot( queries_R.time.str.replace(",", ".").astype("datetime64[ns]"), elapsed_times_R, ".", label="R", ) ax.plot( queries_lvl.time.str.replace(",", ".").astype("datetime64[ns]"), elapsed_times_lvl, ".", label="LVL", ) fig.autofmt_xdate() ax.set_ylabel("Response time (s)") plt.legend() # In[ ]: