A function $f:\R^n \rightarrow \R$ is quasiconvex if $\dom f$ is convex and the sublevel sets
$$ S_t = \left\{ x \in \dom f \mid f(x) \le t \right\} $$are convex for all $t$.
A function $f$ is quasiconvex if and only if $\dom f$ is convex and for any $x,y\in\dom f$ with $0\le \theta \le 1$,
$$ f\left(\theta x + (1-\theta)y\right) \le \max\left\{f(x), f(y) \right\} $$Compare with the convexity contition, $f\left(\theta x + (1-\theta)y\right) \le \theta f(x) + (1-\theta) f(y)$.
A continuous function $f:\R\rightarrow \R$ is quasiconvex if and only if at least one of the following conditions holds:
Recall that a quasiconvex optimization problem has the standard form
$$ \begin{aligned} \underset{x}{\minimize} \quad & f_0(x) \\ \text{subject to} \quad & f_i(x) \le 0, &i=1,\dots,m \\ & Ax = b \end{aligned} $$where $f_1,\dots,f_m$ are convex and the objective $f_0$ is quasiconvex. Let $\phi_t : \R^n \rightarrow \R$ with $t\in\R$, be a family of convex functions that satisfy
$$ f_0(t) \le t \quad \Longleftrightarrow \quad \phi_t (x) \le 0 $$and also, for each $x$, $\phi_t(x)$ is a nonincreasing function of $t$, i.e., $\phi_s(x) \le \phi_t(x)$ whenever $s\ge t$.
Now let $p^*$ denote the optimal value of the quasiconvex optimization problem. If the feasibility problem
\begin{equation} \begin{aligned} \text{find} \quad & x \\ \text{subject to} \quad & \phi_t(x) \le 0, \\ & f_i(x) \le 0, &i=1,\dots,m \\ & Ax = b \end{aligned} \end{equation}is feasible, then we have $p^*\le t$. Conversely, if the problem is infeasible, then we can conclude $p^*\ge t$. This observation can be used as the basis of a simple algorithm for solving the quasiconvex optimization problem using bisection.
given:
repeat:
Set $t:=(l+u)/2$
Solve the convex feasibility problem
if feasible, set $u:=t$, else set $l:=t$
until: