Work with NODD GFS data on GCP (theoretically works with AWS as well)
%load_ext autoreload
%autoreload 2
import logging
import importlib
importlib.reload(logging)
logging.basicConfig(
format="%(asctime)s.%(msecs)03dZ %(processName)s %(threadName)s %(levelname)s:%(name)s:%(message)s",
datefmt="%Y-%m-%dT%H:%M:%S",
level=logging.WARNING,
)
logger = logging.getLogger("juypter")
import datetime
import copy
import xarray as xr
import numpy as np
import pandas as pd
import fsspec
import kerchunk
from kerchunk.grib2 import (
grib_tree, scan_grib, extract_datatree_chunk_index, strip_datavar_chunks,
reinflate_grib_store, AggregationType, read_store, write_store, parse_grib_idx,
build_idx_grib_mapping, map_from_index
)
import gcsfs
pd.set_option('display.max_columns', None)
Pick a file, any file... Must be on GCS so that coords use the same file store as the data vars
%%time
# Pick two files to build a grib_tree with the correct dimensions
gfs_files = [
"gs://global-forecast-system/gfs.20230928/00/atmos/gfs.t00z.pgrb2.0p25.f000",
"gs://global-forecast-system/gfs.20230928/00/atmos/gfs.t00z.pgrb2.0p25.f001"
]
# This operation reads two of the large Grib2 files from GCS
# scan_grib extracts the zarr kerchunk metadata for each individual grib message
# grib_tree builds a zarr/xarray compatible hierarchical view of the dataset
gfs_grib_tree_store = grib_tree([group for f in gfs_files for group in scan_grib(f)])
# it is slow even in parallel because it requires a huge amount of IO
2024-10-29T11:25:07.681Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 1 of 3. Reason: timed out 2024-10-29T11:25:11.720Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 2 of 3. Reason: timed out 2024-10-29T11:25:16.684Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 3 of 3. Reason: timed out 2024-10-29T11:25:16.687Z MainProcess MainThread WARNING:google.auth._default:Authentication failed using Compute Engine authentication due to unavailable metadata server. 2024-10-29T11:25:17.303Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 1 of 5. Reason: HTTPConnectionPool(host='metadata.google.internal', port=80): Max retries exceeded with url: /computeMetadata/v1/instance/service-accounts/default/?recursive=true (Caused by NameResolutionError("<urllib3.connection.HTTPConnection object at 0x7f37f4eb9760>: Failed to resolve 'metadata.google.internal' ([Errno -2] Name or service not known)")) 2024-10-29T11:25:18.327Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 2 of 5. Reason: HTTPConnectionPool(host='metadata.google.internal', port=80): Max retries exceeded with url: /computeMetadata/v1/instance/service-accounts/default/?recursive=true (Caused by NameResolutionError("<urllib3.connection.HTTPConnection object at 0x7f37ed8ce3f0>: Failed to resolve 'metadata.google.internal' ([Errno -2] Name or service not known)")) 2024-10-29T11:25:20.385Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 3 of 5. Reason: HTTPConnectionPool(host='metadata.google.internal', port=80): Max retries exceeded with url: /computeMetadata/v1/instance/service-accounts/default/?recursive=true (Caused by NameResolutionError("<urllib3.connection.HTTPConnection object at 0x7f37ed8ce780>: Failed to resolve 'metadata.google.internal' ([Errno -2] Name or service not known)")) 2024-10-29T11:25:24.757Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 4 of 5. Reason: HTTPConnectionPool(host='metadata.google.internal', port=80): Max retries exceeded with url: /computeMetadata/v1/instance/service-accounts/default/?recursive=true (Caused by NameResolutionError("<urllib3.connection.HTTPConnection object at 0x7f37ed8cddc0>: Failed to resolve 'metadata.google.internal' ([Errno -2] Name or service not known)")) 2024-10-29T11:25:33.084Z MainProcess MainThread WARNING:google.auth.compute_engine._metadata:Compute Engine Metadata server unavailable on attempt 5 of 5. Reason: HTTPConnectionPool(host='metadata.google.internal', port=80): Max retries exceeded with url: /computeMetadata/v1/instance/service-accounts/default/?recursive=true (Caused by NameResolutionError("<urllib3.connection.HTTPConnection object at 0x7f37ed8ce210>: Failed to resolve 'metadata.google.internal' ([Errno -2] Name or service not known)")) 2024-10-29T11:29:09.097Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 586. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. 2024-10-29T11:29:09.112Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 665. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. 2024-10-29T11:29:09.180Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 1274. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. 2024-10-29T11:29:09.181Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 1285. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. 2024-10-29T11:29:09.197Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 1407. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. /home/rsignell/repos/kerchunk/kerchunk/combine.py:376: UserWarning: Concatenated coordinate 'time' contains less than expectednumber of values across the datasets: [1695859200] warnings.warn( /home/rsignell/repos/kerchunk/kerchunk/combine.py:376: UserWarning: Concatenated coordinate 'step' contains less than expectednumber of values across the datasets: [1] warnings.warn(
CPU times: user 34.6 s, sys: 2.85 s, total: 37.5 s Wall time: 4min 15s
%%time
# The grib_tree can be opened directly using either zarr or xarray datatree
# But this is too slow to build big aggregations
gfs_dt = xr.open_datatree(fsspec.filesystem("reference", fo=gfs_grib_tree_store).get_mapper(""), engine="zarr", consolidated=False)
gfs_dt
CPU times: user 10.2 s, sys: 1.61 s, total: 11.8 s Wall time: 11.9 s
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty*
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Sunshine Duration
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: SUNSD (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Ventilation Rate
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 ... 359.5 359.8 planetaryBoundaryLayer float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: VRATE (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: planetaryBoundaryLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Absolute vorticity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 133MB Dimensions: (time: 1, step: 2, isobaricInPa: 8, latitude: 721, longitude: 1440) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: absv (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (time: 1, step: 2, isobaricInhPa: 33, latitude: 721, longitude: 1440) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: absv (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Convective precipitation (water)
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: accum
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: acpcp (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Forecast albedo
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: al (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Apparent temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: aptmp (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Time-mean pressure
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: highCloudBottom float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: highCloudBottom
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: highCloudTop float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: highCloudTop
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 lowCloudBottom float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: lowCloudBottom
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 lowCloudTop float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: lowCloudTop
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 middleCloudBottom float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: middleCloudBottom
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 middleCloudTop float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: middleCloudTop
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Time-mean temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: highCloudTop float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_t (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: highCloudTop
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 lowCloudTop float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_t (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: lowCloudTop
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 middleCloudTop float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: avg_t (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: middleCloudTop
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Convective available potential energy
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cape (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cape (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Categorical freezing rain
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: cfrzr (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cfrzr (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Categorical ice pellets
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: cicep (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cicep (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Convective inhibition
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cin (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cin (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Cloud mixing ratio
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: hybrid float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: clwmr (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: hybrid
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 365MB Dimensions: (time: 1, step: 2, isobaricInhPa: 22, latitude: 721, longitude: 1440) Coordinates: * isobaricInhPa (isobaricInhPa) float64 176B 50.0 100.0 150.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 352B ... Data variables: clwmr (time, step, isobaricInhPa, latitude, longitude) float64 365MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[44 values with dtype=datetime64[ns]]
[45682560 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Plant canopy surface water
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cnwat (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Percent frozen precipitation
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cpofp (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Convective precipitation rate
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: cpr (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: cpr (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Categorical rain
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: crain (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: crain (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Categorical snow
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: csnow (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: csnow (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Cloud water
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: atmosphereSingleLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: cwat (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: atmosphereSingleLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Cloud work function
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: atmosphereSingleLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: cwork (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: atmosphereSingleLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 2 metre dewpoint temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: d2m (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Field Capacity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: fldcp (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Frictional velocity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: fricv (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Forecast surface roughness
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: fsr (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Ground heat flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: gflux (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Geopotential height
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: cloudCeiling float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: gh (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: cloudCeiling
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: highestTroposphericFreezing float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -90.0 * longitude (longitude) float64 12kB 0.0 0.25 ... 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: gh (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: highestTroposphericFreezing
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 133MB Dimensions: (time: 1, step: 2, isobaricInPa: 8, latitude: 721, longitude: 1440) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: gh (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (time: 1, step: 2, isobaricInhPa: 33, latitude: 721, longitude: 1440) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: gh (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: isothermZero float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: gh (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: isothermZero
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 maxWind float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: gh (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: maxWind
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 33MB Dimensions: (time: 1, step: 2, potentialVorticity: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * potentialVorticity (potentialVorticity) float64 16B 2e+03 2.147e+09 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, potentialVorticity) datetime64[ns] 32B ... Data variables: gh (time, step, potentialVorticity, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: potentialVorticity
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([2.000000e+03, 2.147486e+09])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 tropopause float64 8B ... valid_time (time, step) datetime64[ns] 16B ... Data variables: gh (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: tropopause
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=float64]
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Graupel (snow pellets)
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: hybrid float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: grle (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: hybrid
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 365MB Dimensions: (time: 1, step: 2, isobaricInhPa: 22, latitude: 721, longitude: 1440) Coordinates: * isobaricInhPa (isobaricInhPa) float64 176B 50.0 100.0 150.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 352B ... Data variables: grle (time, step, isobaricInhPa, latitude, longitude) float64 365MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[44 values with dtype=datetime64[ns]]
[45682560 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Wind speed (gust)
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: gust (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: High cloud cover
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: highCloudLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: hcc (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: highCloudLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: highCloudLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: hcc (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: highCloudLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Haines Index
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: hindex (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Storm relative helicity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: hlcy (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: ICAO Standard Atmosphere reference height
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 maxWind float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: icaht (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: maxWind
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 tropopause float64 8B ... valid_time (time, step) datetime64[ns] 16B ... Data variables: icaht (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: tropopause
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=float64]
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Ice water mixing ratio
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (time: 1, step: 2, latitude: 721, longitude: 1440) Coordinates: hybrid float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: icmr (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: hybrid
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 365MB Dimensions: (time: 1, step: 2, isobaricInhPa: 22, latitude: 721, longitude: 1440) Coordinates: * isobaricInhPa (isobaricInhPa) float64 176B 50.0 100.0 150.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 352B ... Data variables: icmr (time, step, isobaricInhPa, latitude, longitude) float64 365MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[44 values with dtype=datetime64[ns]]
[45682560 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Instantaneous eastward gravity wave surface stress
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: iegwss (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Instantaneous northward gravity wave surface stress
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (time: 1, step: 1, latitude: 721, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: ingwss (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Low cloud cover
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, time: 1, step: 1, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 lowCloudLayer float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: lcc (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: lowCloudLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, time: 1, step: 2, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 lowCloudLayer float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: lcc (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: lowCloudLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Surface lifted index
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, time: 1, step: 2, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: lftx (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Best (4-layer) lifted index
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, time: 1, step: 2, longitude: 1440) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: lftx4 (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Land-sea mask
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: lsm (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Medium cloud cover
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 middleCloudLayer float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: mcc (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: middleCloudLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 middleCloudLayer float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: mcc (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: middleCloudLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: MSLP (Eta model reduction)
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 meanSea float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: mslet (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: meanSea
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Mean surface latent heat flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: mslhf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Mean surface sensible heat flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: msshf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Ozone mixing ratio
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: o3mr (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: o3mr (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Orography
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: orog (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Pressure of level from which parcel was lifted
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: plpl (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Precipitation rate
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: prate (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: prate (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Pressure
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: convectiveCloudBottom float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: convectiveCloudBottom
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: convectiveCloudTop float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: pres (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: convectiveCloudTop
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: pres (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 maxWind float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: pres (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: maxWind
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 33MB Dimensions: (latitude: 721, longitude: 1440, potentialVorticity: 2, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * potentialVorticity (potentialVorticity) float64 16B 2e+03 2.147e+09 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, potentialVorticity) datetime64[ns] 32B ... Data variables: pres (time, step, potentialVorticity, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: potentialVorticity
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([2.000000e+03, 2.147486e+09])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Pressure reduced to MSL
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 meanSea float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: prmsl (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: meanSea
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Potential temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 sigma float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: pt (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: sigma
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Precipitable water
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: atmosphereSingleLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: pwat (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: atmosphereSingleLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Specific humidity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: q (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: q (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: q (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: q (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Relative humidity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: atmosphereSingleLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: r (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: atmosphereSingleLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: highestTroposphericFreezing float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -90.0 * longitude (longitude) float64 12kB 0.0 0.25 ... 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: r (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: highestTroposphericFreezing
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: r (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: r (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: isothermZero float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: r (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: isothermZero
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: r (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 sigma float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: r (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: sigma
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: r (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: sigmaLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 2 metre relative humidity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: r2 (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Maximum/Composite radar reflectivity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: atmosphere float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: refc (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: atmosphere
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Derived radar reflectivity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 33MB Dimensions: (heightAboveGround: 2, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * heightAboveGround (heightAboveGround) float64 16B 1e+03 4e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, heightAboveGround) datetime64[ns] 32B ... Data variables: refd (time, step, heightAboveGround, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: heightAboveGround
array([1000., 4000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 33MB Dimensions: (hybrid: 2, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * hybrid (hybrid) float64 16B 1.0 2.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, hybrid) datetime64[ns] 32B ... Data variables: refd (time, step, hybrid, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: hybrid
array([1., 2.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Rain mixing ratio
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: hybrid float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: rwmr (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: hybrid
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 365MB Dimensions: (isobaricInhPa: 22, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInhPa (isobaricInhPa) float64 176B 50.0 100.0 150.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 352B ... Data variables: rwmr (time, step, isobaricInhPa, latitude, longitude) float64 365MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[44 values with dtype=datetime64[ns]]
[45682560 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Snow depth
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: sde (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Surface downward long-wave radiation flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: sdlwrf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Surface downward short-wave radiation flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: sdswrf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Water equivalent of accumulated snow depth (deprecated)
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: sdwe (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 2 metre specific humidity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: sh2 (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Sea ice area fraction
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: siconc (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Sea ice temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: sit (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Sea ice thickness
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: sithick (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Soil type
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: slt (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Snow mixing ratio
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: hybrid float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: snmr (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: hybrid
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 365MB Dimensions: (isobaricInhPa: 22, latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * isobaricInhPa (isobaricInhPa) float64 176B 50.0 100.0 150.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 352B ... Data variables: snmr (time, step, isobaricInhPa, latitude, longitude) float64 365MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[44 values with dtype=datetime64[ns]]
[45682560 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Liquid volumetric soil moisture (non-frozen)
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: soill (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: depthBelowLandLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Volumetric soil moisture content
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: soilw (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: depthBelowLandLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Surface pressure
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: sp (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Soil temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, time: 1, step: 2) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: st (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: depthBelowLandLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Surface upward long-wave radiation flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 nominalTop float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: sulwrf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: nominalTop
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: sulwrf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Surface upward short-wave radiation flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 nominalTop float64 8B ... * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: suswrf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: nominalTop
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: suswrf (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 33MB Dimensions: (heightAboveGround: 2, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * heightAboveGround (heightAboveGround) float64 16B 80.0 100.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, heightAboveGround) datetime64[ns] 32B ... Data variables: t (time, step, heightAboveGround, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: heightAboveGround
array([ 80., 100.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 50MB Dimensions: (heightAboveSea: 3, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * heightAboveSea (heightAboveSea) float64 24B 1.829e+03 2.743e+03 3.658e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, heightAboveSea) datetime64[ns] 48B ... Data variables: t (time, step, heightAboveSea, latitude, longitude) float64 50MB ... Attributes: typeOfLevel: heightAboveSea
array([1829., 2743., 3658.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[6 values with dtype=datetime64[ns]]
[6229440 values with dtype=float64]
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: t (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: t (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 maxWind float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: t (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: maxWind
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 33MB Dimensions: (latitude: 721, longitude: 1440, potentialVorticity: 2, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * potentialVorticity (potentialVorticity) float64 16B 2e+03 2.147e+09 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, potentialVorticity) datetime64[ns] 32B ... Data variables: t (time, step, potentialVorticity, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: potentialVorticity
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([2.000000e+03, 2.147486e+09])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: t (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 sigma float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: t (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: sigma
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: t (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 tropopause float64 8B ... valid_time (time, step) datetime64[ns] 16B ... Data variables: t (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: tropopause
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=float64]
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 2 metre temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: t2m (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Total Cloud Cover
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: atmosphere float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: tcc (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: atmosphere
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: boundaryLayerCloudLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 ... 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: tcc (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: boundaryLayerCloudLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: atmosphere float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: tcc (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: atmosphere
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: convectiveCloudLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: tcc (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: convectiveCloudLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 365MB Dimensions: (isobaricInhPa: 22, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInhPa (isobaricInhPa) float64 176B 50.0 100.0 150.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 352B ... Data variables: tcc (time, step, isobaricInhPa, latitude, longitude) float64 365MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[44 values with dtype=datetime64[ns]]
[45682560 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Maximum temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: max
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: tmax (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Minimum temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: min
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: tmin (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Total ozone
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: atmosphereSingleLayer float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: tozne (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: atmosphereSingleLayer
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Total Precipitation
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: accum
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: tp (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Tropopause pressure
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 tropopause float64 8B ... valid_time (time, step) datetime64[ns] 16B ... Data variables: trpp (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: tropopause
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=float64]
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: U component of wind
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 83MB Dimensions: (heightAboveGround: 5, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * heightAboveGround (heightAboveGround) float64 40B 20.0 30.0 40.0 50.0 80.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, heightAboveGround) datetime64[ns] 80B ... Data variables: u (time, step, heightAboveGround, latitude, longitude) float64 83MB ... Attributes: typeOfLevel: heightAboveGround
array([20., 30., 40., 50., 80.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[10 values with dtype=datetime64[ns]]
[10382400 values with dtype=float64]
<xarray.DatasetView> Size: 50MB Dimensions: (heightAboveSea: 3, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * heightAboveSea (heightAboveSea) float64 24B 1.829e+03 2.743e+03 3.658e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, heightAboveSea) datetime64[ns] 48B ... Data variables: u (time, step, heightAboveSea, latitude, longitude) float64 50MB ... Attributes: typeOfLevel: heightAboveSea
array([1829., 2743., 3658.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[6 values with dtype=datetime64[ns]]
[6229440 values with dtype=float64]
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: u (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: u (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 maxWind float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: u (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: maxWind
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 ... 359.5 359.8 planetaryBoundaryLayer float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: u (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: planetaryBoundaryLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 33MB Dimensions: (latitude: 721, longitude: 1440, potentialVorticity: 2, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * potentialVorticity (potentialVorticity) float64 16B 2e+03 2.147e+09 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, potentialVorticity) datetime64[ns] 32B ... Data variables: u (time, step, potentialVorticity, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: potentialVorticity
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([2.000000e+03, 2.147486e+09])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: u (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 sigma float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: u (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: sigma
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 tropopause float64 8B ... valid_time (time, step) datetime64[ns] 16B ... Data variables: u (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: tropopause
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=float64]
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 10 metre U wind component
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: u10 (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 100 metre U wind component
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: u100 (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: U-component storm motion
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: ustm (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: U-component of atmospheric surface momentum flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: utaua (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: V component of wind
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 83MB Dimensions: (heightAboveGround: 5, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * heightAboveGround (heightAboveGround) float64 40B 20.0 30.0 40.0 50.0 80.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, heightAboveGround) datetime64[ns] 80B ... Data variables: v (time, step, heightAboveGround, latitude, longitude) float64 83MB ... Attributes: typeOfLevel: heightAboveGround
array([20., 30., 40., 50., 80.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[10 values with dtype=datetime64[ns]]
[10382400 values with dtype=float64]
<xarray.DatasetView> Size: 50MB Dimensions: (heightAboveSea: 3, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * heightAboveSea (heightAboveSea) float64 24B 1.829e+03 2.743e+03 3.658e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, heightAboveSea) datetime64[ns] 48B ... Data variables: v (time, step, heightAboveSea, latitude, longitude) float64 50MB ... Attributes: typeOfLevel: heightAboveSea
array([1829., 2743., 3658.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[6 values with dtype=datetime64[ns]]
[6229440 values with dtype=float64]
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: v (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: v (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 maxWind float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: v (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: maxWind
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 ... 359.5 359.8 planetaryBoundaryLayer float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: v (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: planetaryBoundaryLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 33MB Dimensions: (latitude: 721, longitude: 1440, potentialVorticity: 2, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * potentialVorticity (potentialVorticity) float64 16B 2e+03 2.147e+09 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, potentialVorticity) datetime64[ns] 32B ... Data variables: v (time, step, potentialVorticity, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: potentialVorticity
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([2.000000e+03, 2.147486e+09])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: v (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: pressureFromGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 sigma float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: v (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: sigma
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 tropopause float64 8B ... valid_time (time, step) datetime64[ns] 16B ... Data variables: v (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: tropopause
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=float64]
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 10 metre V wind component
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: v10 (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 100 metre V wind component
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: v100 (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Vegetation
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: veg (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Visibility
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: vis (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: V-component storm motion
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: vstm (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: heightAboveGroundLayer
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: V-component of atmospheric surface momentum flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: vtaua (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Vertical speed shear
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 33MB Dimensions: (latitude: 721, longitude: 1440, potentialVorticity: 2, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * potentialVorticity (potentialVorticity) float64 16B 2e+03 2.147e+09 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, potentialVorticity) datetime64[ns] 32B ... Data variables: vwsh (time, step, potentialVorticity, latitude, longitude) float64 33MB ... Attributes: typeOfLevel: potentialVorticity
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([2.000000e+03, 2.147486e+09])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[4 values with dtype=datetime64[ns]]
[4152960 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 tropopause float64 8B ... valid_time (time, step) datetime64[ns] 16B ... Data variables: vwsh (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: tropopause
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=float64]
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Vertical velocity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: w (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: w (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 sigma float64 8B ... * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: w (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: sigma
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[1 values with dtype=float64]
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Water runoff
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: accum
<xarray.DatasetView> Size: 8MB Dimensions: (latitude: 721, longitude: 1440, step: 1, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 8B 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 8B ... Data variables: watr (time, step, latitude, longitude) float64 8MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[1 values with dtype=datetime64[ns]]
[1038240 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Wilting Point
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 17MB Dimensions: (latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 surface float64 8B ... * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step) datetime64[ns] 16B ... Data variables: wilt (time, step, latitude, longitude) float64 17MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
[1 values with dtype=float64]
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[2 values with dtype=datetime64[ns]]
[2076480 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Geometric vertical velocity
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 133MB Dimensions: (isobaricInPa: 8, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInPa (isobaricInPa) float64 64B 1.0 2.0 4.0 7.0 10.0 20.0 40.0 70.0 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInPa) datetime64[ns] 128B ... Data variables: wz (time, step, isobaricInPa, latitude, longitude) float64 133MB ... Attributes: typeOfLevel: isobaricInPa
array([ 1., 2., 4., 7., 10., 20., 40., 70.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[16 values with dtype=datetime64[ns]]
[16611840 values with dtype=float64]
<xarray.DatasetView> Size: 548MB Dimensions: (isobaricInhPa: 33, latitude: 721, longitude: 1440, step: 2, time: 1) Coordinates: * isobaricInhPa (isobaricInhPa) float64 264B 1.0 2.0 3.0 ... 975.0 1e+03 * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.2 359.5 359.8 * step (step) timedelta64[ns] 16B 00:00:00 01:00:00 * time (time) datetime64[ns] 8B 2023-09-28 valid_time (time, step, isobaricInhPa) datetime64[ns] 528B ... Data variables: wz (time, step, isobaricInhPa, latitude, longitude) float64 548MB ... Attributes: typeOfLevel: isobaricInhPa
array([ 1., 2., 3., 5., 7., 10., 15., 20., 30., 40., 50., 70., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 925., 950., 975., 1000.])
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
array([ 0, 3600000000000], dtype='timedelta64[ns]')
array(['2023-09-28T00:00:00.000000000'], dtype='datetime64[ns]')
[66 values with dtype=datetime64[ns]]
[68523840 values with dtype=float64]
# The key metadata associated with each grib message can be extracted into a table
gfs_kind = extract_datatree_chunk_index(gfs_dt, gfs_grib_tree_store, grib=True)
gfs_kind
varname | typeOfLevel | stepType | name | step | level | time | valid_time | uri | offset | length | inline_value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | SUNSD | surface | instant | Sunshine Duration | 0 days 00:00:00 | 0.0 | 2023-09-28 | 2023-09-28 00:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 416447304 | 383061 | None |
1 | SUNSD | surface | instant | Sunshine Duration | 0 days 01:00:00 | 0.0 | 2023-09-28 | 2023-09-28 01:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 429168740 | 221940 | None |
2 | VRATE | planetaryBoundaryLayer | instant | Ventilation Rate | 0 days 00:00:00 | 0.0 | 2023-09-28 | 2023-09-28 00:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 6054405 | 591959 | None |
3 | VRATE | planetaryBoundaryLayer | instant | Ventilation Rate | 0 days 01:00:00 | 0.0 | 2023-09-28 | 2023-09-28 01:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 6045934 | 592711 | None |
4 | absv | isobaricInPa | instant | Absolute vorticity | 0 days 00:00:00 | 1.0 | 2023-09-28 | 2023-09-28 00:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 13061277 | 580090 | None |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1395 | wz | isobaricInhPa | instant | Geometric vertical velocity | 0 days 01:00:00 | 900.0 | 2023-09-28 | 2023-09-28 01:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 349016299 | 1153904 | None |
1396 | wz | isobaricInhPa | instant | Geometric vertical velocity | 0 days 01:00:00 | 925.0 | 2023-09-28 | 2023-09-28 01:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 361143359 | 1137808 | None |
1397 | wz | isobaricInhPa | instant | Geometric vertical velocity | 0 days 01:00:00 | 950.0 | 2023-09-28 | 2023-09-28 01:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 373027803 | 1105352 | None |
1398 | wz | isobaricInhPa | instant | Geometric vertical velocity | 0 days 01:00:00 | 975.0 | 2023-09-28 | 2023-09-28 01:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 384543278 | 1033901 | None |
1399 | wz | isobaricInhPa | instant | Geometric vertical velocity | 0 days 01:00:00 | 1000.0 | 2023-09-28 | 2023-09-28 01:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 394297534 | 905395 | None |
1400 rows × 12 columns
# While the static zarr metadata associated with the dataset can be seperated - created once.
deflated_gfs_grib_tree_store = copy.deepcopy(gfs_grib_tree_store)
strip_datavar_chunks(deflated_gfs_grib_tree_store)
write_store("./", deflated_gfs_grib_tree_store)
print("Original references: ", len(gfs_grib_tree_store["refs"]))
print("Stripped references: ", len(deflated_gfs_grib_tree_store["refs"]))
Original references: 7011 Stripped references: 3677
Okay that was fun - I promise you can recombine these pieces but it still takes the same amount of time to run scan_grib.
The k(erchunk) index data looks a lot like the idx files that are present for every grib file in NODD's GCS archive though...
1:0:d=2023092800:PRMSL:mean sea level:1 hour fcst:
2:990253:d=2023092800:CLWMR:1 hybrid level:1 hour fcst:
3:1079774:d=2023092800:ICMR:1 hybrid level:1 hour fcst:
4:1332540:d=2023092800:RWMR:1 hybrid level:1 hour fcst:
5:1558027:d=2023092800:SNMR:1 hybrid level:1 hour fcst:
6:1638489:d=2023092800:GRLE:1 hybrid level:1 hour fcst:
7:1673516:d=2023092800:REFD:1 hybrid level:1 hour fcst:
8:2471710:d=2023092800:REFD:2 hybrid level:1 hour fcst:
9:3270627:d=2023092800:REFC:entire atmosphere:1 hour fcst:
10:4144435:d=2023092800:VIS:surface:1 hour fcst:
But the metadata isn't quiet the same... they have mangled the attributes in the : seperated attributes.
# We can pull this out into a dataframe, that starts to look a bit like what we got above extracted from the actual grib files
# But this method runs in under a second reading a file that is less than 100k
idxdf = parse_grib_idx(
basename="gs://global-forecast-system/gfs.20230901/00/atmos/gfs.t00z.pgrb2.0p25.f006"
)
idxdf
offset | date | attrs | length | idx_uri | grib_uri | |
---|---|---|---|---|---|---|
idx | ||||||
1 | 0 | d=2023090100 | PRMSL:mean sea level:6 hour fcst: | 877361 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
2 | 877361 | d=2023090100 | CLWMR:1 hybrid level:6 hour fcst: | 90753 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
3 | 968114 | d=2023090100 | ICMR:1 hybrid level:6 hour fcst: | 228036 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
4 | 1196150 | d=2023090100 | RWMR:1 hybrid level:6 hour fcst: | 266763 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
5 | 1462913 | d=2023090100 | SNMR:1 hybrid level:6 hour fcst: | 81052 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
... | ... | ... | ... | ... | ... | ... |
739 | 524888345 | d=2023090100 | VGRD:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 660877 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
740 | 525549222 | d=2023090100 | TMP:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 656857 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
741 | 526206079 | d=2023090100 | HGT:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 1185841 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
742 | 527391920 | d=2023090100 | PRES:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 1149141 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
743 | 528541061 | d=2023090100 | VWSH:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 505888 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
743 rows × 6 columns
# Unfortunately, some accumulation variables have duplicate attributes making them
# indesinguishable from the IDX file
idxdf.loc[idxdf['attrs'].duplicated(keep=False), :]
offset | date | attrs | length | idx_uri | grib_uri | |
---|---|---|---|---|---|---|
idx | ||||||
596 | 422992587 | d=2023090100 | APCP:surface:0-6 hour acc fcst: | 368264 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
597 | 423360851 | d=2023090100 | APCP:surface:0-6 hour acc fcst: | 368264 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
598 | 423729115 | d=2023090100 | ACPCP:surface:0-6 hour acc fcst: | 282099 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
599 | 424011214 | d=2023090100 | ACPCP:surface:0-6 hour acc fcst: | 282099 | gs://global-forecast-system/gfs.20230901/00/at... | gs://global-forecast-system/gfs.20230901/00/at... |
%%time
# What we need is a mapping from our grib/zarr metadata to the attributes in the idx files
# They are unique for each time horizon e.g. you need to build a unique mapping for the 1 hour
# forecast, the 2 hour forecast... the 48 hour forecast.
# let's make one for the 6 hour horizon. This requires reading both the grib and the idx file,
# mapping the data for each grib message in order
mapping = build_idx_grib_mapping(
basename="gs://global-forecast-system/gfs.20230928/00/atmos/gfs.t00z.pgrb2.0p25.f006",
)
mapping
2024-10-29T11:31:05.156Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 0. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. 2024-10-29T11:31:05.342Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 0. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. 2024-10-29T11:31:08.248Z MainProcess MainThread WARNING:grib2-to-zarr:Dropping unknown variable in msg# 0. Compare with the grib idx file to help identify it and build an ecCodes local grib definitions file to fix it. 2024-10-29T11:31:09.714Z MainProcess MainThread WARNING:grib-indexing:The idx attribute mapping for gs://global-forecast-system/gfs.20230928/00/atmos/gfs.t00z.pgrb2.0p25.f006 is not unique for 4 variables: ['tp', 'tp', 'acpcp', 'acpcp'] 2024-10-29T11:31:09.720Z MainProcess MainThread WARNING:grib-indexing:The grib hierarchy in gs://global-forecast-system/gfs.20230928/00/atmos/gfs.t00z.pgrb2.0p25.f006 is not unique for 29 variables: ['st', 'soilw', 'soill', 'st', 'soilw', 'soill', 'st', 'soilw', 'soill', 'st', 'soilw', 'soill', nan, nan, 'tp', 'tp', 'acpcp', 'acpcp', 'cape', 'cin', nan, 'r', 'r', 'r', 'r', 'cape', 'cin', 'cape', 'cin']
CPU times: user 24.6 s, sys: 2.34 s, total: 26.9 s Wall time: 1min 35s
offset_idx | date | attrs | length_idx | idx_uri | grib_uri | varname | typeOfLevel | stepType | name | level | step | time | valid_time | uri | offset_grib | length_grib | inline_value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
idx | ||||||||||||||||||
1 | 0 | d=2023092800 | PRMSL:mean sea level:6 hour fcst: | 984804 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | prmsl | meanSea | instant | Pressure reduced to MSL | 0.000000e+00 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 0.0 | 984804.0 | None |
2 | 984804 | d=2023092800 | CLWMR:1 hybrid level:6 hour fcst: | 85627 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | clwmr | hybrid | instant | Cloud mixing ratio | 1.000000e+00 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 984804.0 | 85627.0 | None |
3 | 1070431 | d=2023092800 | ICMR:1 hybrid level:6 hour fcst: | 244445 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | icmr | hybrid | instant | Ice water mixing ratio | 1.000000e+00 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 1070431.0 | 244445.0 | None |
4 | 1314876 | d=2023092800 | RWMR:1 hybrid level:6 hour fcst: | 236628 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | rwmr | hybrid | instant | Rain mixing ratio | 1.000000e+00 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 1314876.0 | 236628.0 | None |
5 | 1551504 | d=2023092800 | SNMR:1 hybrid level:6 hour fcst: | 78043 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | snmr | hybrid | instant | Snow mixing ratio | 1.000000e+00 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 1551504.0 | 78043.0 | None |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
739 | 535590536 | d=2023092800 | VGRD:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 646273 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | v | potentialVorticity | instant | V component of wind | 2.147486e+09 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 535590536.0 | 646273.0 | None |
740 | 536236809 | d=2023092800 | TMP:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 650363 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | t | potentialVorticity | instant | Temperature | 2.147486e+09 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 536236809.0 | 650363.0 | None |
741 | 536887172 | d=2023092800 | HGT:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 1174640 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | gh | potentialVorticity | instant | Geopotential height | 2.147486e+09 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 536887172.0 | 1174640.0 | None |
742 | 538061812 | d=2023092800 | PRES:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 1135133 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | pres | potentialVorticity | instant | Pressure | 2.147486e+09 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 538061812.0 | 1135133.0 | None |
743 | 539196945 | d=2023092800 | VWSH:PV=-2e-06 (Km^2/kg/s) surface:6 hour fcst: | 499482 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | vwsh | potentialVorticity | instant | Vertical speed shear | 2.147486e+09 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 539196945.0 | 499482.0 | None |
743 rows × 18 columns
# Now if we parse the RunTime from the idx file name `gfs.20230901/00/`
# We can build a fully compatible k_index
mapped_index = map_from_index(
pd.Timestamp("2023-09-01T00"),
mapping.loc[~mapping["attrs"].duplicated(keep="first"), :],
idxdf.loc[~idxdf["attrs"].duplicated(keep="first"), :]
)
mapped_index
varname | typeOfLevel | stepType | name | step | level | time | valid_time | uri | offset | length | inline_value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | prmsl | meanSea | instant | Pressure reduced to MSL | 0 days 06:00:00 | 0.000000e+00 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 0 | 877361 | None |
1 | clwmr | hybrid | instant | Cloud mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 877361 | 90753 | None |
2 | icmr | hybrid | instant | Ice water mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 968114 | 228036 | None |
3 | rwmr | hybrid | instant | Rain mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 1196150 | 266763 | None |
4 | snmr | hybrid | instant | Snow mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 1462913 | 81052 | None |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
733 | v | potentialVorticity | instant | V component of wind | 0 days 06:00:00 | 2.147486e+09 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 524888345 | 660877 | None |
734 | t | potentialVorticity | instant | Temperature | 0 days 06:00:00 | 2.147486e+09 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 525549222 | 656857 | None |
735 | gh | potentialVorticity | instant | Geopotential height | 0 days 06:00:00 | 2.147486e+09 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 526206079 | 1185841 | None |
736 | pres | potentialVorticity | instant | Pressure | 0 days 06:00:00 | 2.147486e+09 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 527391920 | 1149141 | None |
737 | vwsh | potentialVorticity | instant | Vertical speed shear | 0 days 06:00:00 | 2.147486e+09 | 2023-09-01 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 528541061 | 505888 | None |
738 rows × 12 columns
mapping.loc[mapping.varname == "sdswrf"]
offset_idx | date | attrs | length_idx | idx_uri | grib_uri | varname | typeOfLevel | stepType | name | level | step | time | valid_time | uri | offset_grib | length_grib | inline_value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
idx | ||||||||||||||||||
653 | 461523878 | d=2023092800 | DSWRF:surface:0-6 hour ave fcst: | 956316 | gs://global-forecast-system/gfs.20230928/00/at... | gs://global-forecast-system/gfs.20230928/00/at... | sdswrf | surface | avg | Surface downward short-wave radiation flux | 0.0 | 0 days 06:00:00 | 2023-09-28 | 2023-09-28 06:00:00 | gs://global-forecast-system/gfs.20230928/00/at... | 461523878.0 | 956316.0 | None |
%%time
mapped_index_list = []
deduped_mapping = mapping.loc[~mapping["attrs"].duplicated(keep="first"), :]
for date in pd.date_range("2023-09-01", "2023-09-30"):
for runtime in range(0,24,6):
horizon=6
fname=f"gs://global-forecast-system/gfs.{date.strftime('%Y%m%d')}/{runtime:02}/atmos/gfs.t{runtime:02}z.pgrb2.0p25.f{horizon:03}"
idxdf = parse_grib_idx(
basename=fname
)
mapped_index = map_from_index(
pd.Timestamp( date + datetime.timedelta(hours=runtime)),
deduped_mapping,
idxdf.loc[~idxdf["attrs"].duplicated(keep="first"), :],
)
mapped_index_list.append(mapped_index)
gfs_kind = pd.concat(mapped_index_list)
gfs_kind
CPU times: user 2.97 s, sys: 110 ms, total: 3.08 s Wall time: 1min 26s
varname | typeOfLevel | stepType | name | step | level | time | valid_time | uri | offset | length | inline_value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | prmsl | meanSea | instant | Pressure reduced to MSL | 0 days 06:00:00 | 0.000000e+00 | 2023-09-01 00:00:00 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 0 | 877361 | None |
1 | clwmr | hybrid | instant | Cloud mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 00:00:00 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 877361 | 90753 | None |
2 | icmr | hybrid | instant | Ice water mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 00:00:00 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 968114 | 228036 | None |
3 | rwmr | hybrid | instant | Rain mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 00:00:00 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 1196150 | 266763 | None |
4 | snmr | hybrid | instant | Snow mixing ratio | 0 days 06:00:00 | 1.000000e+00 | 2023-09-01 00:00:00 | 2023-09-01 06:00:00 | gs://global-forecast-system/gfs.20230901/00/at... | 1462913 | 81052 | None |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
733 | v | potentialVorticity | instant | V component of wind | 0 days 06:00:00 | 2.147486e+09 | 2023-09-30 18:00:00 | 2023-10-01 00:00:00 | gs://global-forecast-system/gfs.20230930/18/at... | 535413574 | 651311 | None |
734 | t | potentialVorticity | instant | Temperature | 0 days 06:00:00 | 2.147486e+09 | 2023-09-30 18:00:00 | 2023-10-01 00:00:00 | gs://global-forecast-system/gfs.20230930/18/at... | 536064885 | 651260 | None |
735 | gh | potentialVorticity | instant | Geopotential height | 0 days 06:00:00 | 2.147486e+09 | 2023-09-30 18:00:00 | 2023-10-01 00:00:00 | gs://global-forecast-system/gfs.20230930/18/at... | 536716145 | 1175436 | None |
736 | pres | potentialVorticity | instant | Pressure | 0 days 06:00:00 | 2.147486e+09 | 2023-09-30 18:00:00 | 2023-10-01 00:00:00 | gs://global-forecast-system/gfs.20230930/18/at... | 537891581 | 1135959 | None |
737 | vwsh | potentialVorticity | instant | Vertical speed shear | 0 days 06:00:00 | 2.147486e+09 | 2023-09-30 18:00:00 | 2023-10-01 00:00:00 | gs://global-forecast-system/gfs.20230930/18/at... | 539027540 | 498795 | None |
88560 rows × 12 columns
Lets build it back into a data tree!
The reinflate_grib_store interface is pretty opaque but allows building any slice of an FMRC. A good area for future improvement, but for now, since we have just a single 6 hour horizon slice let's build that...
axes = [
pd.Index(
[
pd.timedelta_range(start="0 hours", end="6 hours", freq="6h", closed="right", name="6 hour"),
],
name="step"
),
pd.date_range("2023-09-01T06:00", "2023-10T00:00", freq="360min", name="valid_time")
]
axes
[Index([[0 days 06:00:00]], dtype='object', name='step'), DatetimeIndex(['2023-09-01 06:00:00', '2023-09-01 12:00:00', '2023-09-01 18:00:00', '2023-09-02 00:00:00', '2023-09-02 06:00:00', '2023-09-02 12:00:00', '2023-09-02 18:00:00', '2023-09-03 00:00:00', '2023-09-03 06:00:00', '2023-09-03 12:00:00', ... '2023-09-28 18:00:00', '2023-09-29 00:00:00', '2023-09-29 06:00:00', '2023-09-29 12:00:00', '2023-09-29 18:00:00', '2023-09-30 00:00:00', '2023-09-30 06:00:00', '2023-09-30 12:00:00', '2023-09-30 18:00:00', '2023-10-01 00:00:00'], dtype='datetime64[ns]', name='valid_time', length=120, freq='360min')]
# It is fast to rebuild the datatree - but lets pull out two varables to look at...
# If you skipped building the deflated store, read it here.
#deflated_gfs_grib_tree_store = read_store("./")
gfs_store = reinflate_grib_store(
axes=axes,
aggregation_type=AggregationType.HORIZON,
chunk_index=gfs_kind.loc[gfs_kind.varname.isin(["sdswrf", "t2m"])],
zarr_ref_store=deflated_gfs_grib_tree_store
)
/home/rsignell/repos/kerchunk/kerchunk/_grib_idx.py:347: PerformanceWarning: indexing past lexsort depth may impact performance. if lookup not in unique_groups:
gfs_dt = xr.open_datatree(fsspec.filesystem("reference", fo=gfs_store).get_mapper(""), engine="zarr", consolidated=False)
gfs_dt
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty*
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: Surface downward short-wave radiation flux
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: avg
<xarray.DatasetView> Size: 997MB Dimensions: (latitude: 721, longitude: 1440, model_horizons: 1, valid_times: 120) Coordinates: * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.5 -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 0.75 ... 359.2 359.5 359.8 step (model_horizons, valid_times) timedelta64[ns] 960B ... surface float64 8B ... time (model_horizons, valid_times) datetime64[ns] 960B ... valid_time (model_horizons, valid_times) datetime64[ns] 960B ... Dimensions without coordinates: model_horizons, valid_times Data variables: sdswrf (model_horizons, valid_times, latitude, longitude) float64 997MB ... Attributes: typeOfLevel: surface
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[120 values with dtype=timedelta64[ns]]
[1 values with dtype=float64]
[120 values with dtype=datetime64[ns]]
[120 values with dtype=datetime64[ns]]
[124588800 values with dtype=float64]
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: name: 2 metre temperature
<xarray.DatasetView> Size: 0B Dimensions: () Data variables: *empty* Attributes: stepType: instant
<xarray.DatasetView> Size: 997MB Dimensions: (latitude: 721, longitude: 1440, model_horizons: 1, valid_times: 120) Coordinates: heightAboveGround float64 8B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 step (model_horizons, valid_times) timedelta64[ns] 960B ... time (model_horizons, valid_times) datetime64[ns] 960B ... valid_time (model_horizons, valid_times) datetime64[ns] 960B ... Dimensions without coordinates: model_horizons, valid_times Data variables: t2m (model_horizons, valid_times, latitude, longitude) float64 997MB ... Attributes: typeOfLevel: heightAboveGround
[1 values with dtype=float64]
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
[120 values with dtype=timedelta64[ns]]
[120 values with dtype=datetime64[ns]]
[120 values with dtype=datetime64[ns]]
[124588800 values with dtype=float64]
%%time
# Reading the data - especially extracting point time series isn't any faster once you have
# the xarray datatree. This is just a much faster way of building the aggregations than
# directly running scan_grib over all the data first.
gfs_dt.sdswrf.avg.surface.sdswrf[0,0:10,300,400].compute()
CPU times: user 260 ms, sys: 59.5 ms, total: 320 ms Wall time: 1.66 s
<xarray.DataArray 'sdswrf' (valid_times: 10)> Size: 80B array([6.52080e+02, 4.14576e+02, 0.00000e+00, 4.48000e-01, 3.99360e+02, 2.66720e+02, 0.00000e+00, 7.21600e+00, 6.91776e+02, 2.64752e+02]) Coordinates: latitude float64 8B 15.0 longitude float64 8B 100.0 step (valid_times) timedelta64[ns] 80B 06:00:00 06:00:00 ... 06:00:00 surface float64 8B 0.0 time (valid_times) datetime64[ns] 80B 2023-09-01 ... 2023-09-03T06... valid_time (valid_times) datetime64[ns] 80B 2023-09-01T06:00:00 ... 2023... Dimensions without coordinates: valid_times Attributes: (12/30) GRIB_NV: 0 GRIB_Nx: 1440 GRIB_Ny: 721 GRIB_cfName: unknown GRIB_cfVarName: sdswrf GRIB_dataType: fc ... ... GRIB_typeOfLevel: surface GRIB_units: W m**-2 GRIB_uvRelativeToGrid: 0 long_name: Surface downward short-wave rad... standard_name: unknown units: W m**-2
array([6.52080e+02, 4.14576e+02, 0.00000e+00, 4.48000e-01, 3.99360e+02, 2.66720e+02, 0.00000e+00, 7.21600e+00, 6.91776e+02, 2.64752e+02])
array(15.)
array(100.)
array([21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000], dtype='timedelta64[ns]')
array(0.)
array(['2023-09-01T00:00:00.000000000', '2023-09-01T06:00:00.000000000', '2023-09-01T12:00:00.000000000', '2023-09-01T18:00:00.000000000', '2023-09-02T00:00:00.000000000', '2023-09-02T06:00:00.000000000', '2023-09-02T12:00:00.000000000', '2023-09-02T18:00:00.000000000', '2023-09-03T00:00:00.000000000', '2023-09-03T06:00:00.000000000'], dtype='datetime64[ns]')
array(['2023-09-01T06:00:00.000000000', '2023-09-01T12:00:00.000000000', '2023-09-01T18:00:00.000000000', '2023-09-02T00:00:00.000000000', '2023-09-02T06:00:00.000000000', '2023-09-02T12:00:00.000000000', '2023-09-02T18:00:00.000000000', '2023-09-03T00:00:00.000000000', '2023-09-03T06:00:00.000000000', '2023-09-03T12:00:00.000000000'], dtype='datetime64[ns]')
%%time
gfs_dt.t2m.instant.heightAboveGround.t2m[0,0:10,300,400].compute()
CPU times: user 169 ms, sys: 10.8 ms, total: 180 ms Wall time: 1.02 s
<xarray.DataArray 't2m' (valid_times: 10)> Size: 80B array([307.02449951, 302.71383057, 299.50128174, 299.0484375 , 305.6 , 302.29508057, 298.19541016, 298.92486572, 307.08206787, 303.17237549]) Coordinates: heightAboveGround float64 8B 0.0 latitude float64 8B 15.0 longitude float64 8B 100.0 step (valid_times) timedelta64[ns] 80B 06:00:00 ... 06:00:00 time (valid_times) datetime64[ns] 80B 2023-09-01 ... 2023-0... valid_time (valid_times) datetime64[ns] 80B 2023-09-01T06:00:00 .... Dimensions without coordinates: valid_times Attributes: (12/30) GRIB_NV: 0 GRIB_Nx: 1440 GRIB_Ny: 721 GRIB_cfName: air_temperature GRIB_cfVarName: t2m GRIB_dataType: fc ... ... GRIB_typeOfLevel: heightAboveGround GRIB_units: K GRIB_uvRelativeToGrid: 0 long_name: 2 metre temperature standard_name: air_temperature units: K
array([307.02449951, 302.71383057, 299.50128174, 299.0484375 , 305.6 , 302.29508057, 298.19541016, 298.92486572, 307.08206787, 303.17237549])
array(0.)
array(15.)
array(100.)
array([21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000, 21600000000000], dtype='timedelta64[ns]')
array(['2023-09-01T00:00:00.000000000', '2023-09-01T06:00:00.000000000', '2023-09-01T12:00:00.000000000', '2023-09-01T18:00:00.000000000', '2023-09-02T00:00:00.000000000', '2023-09-02T06:00:00.000000000', '2023-09-02T12:00:00.000000000', '2023-09-02T18:00:00.000000000', '2023-09-03T00:00:00.000000000', '2023-09-03T06:00:00.000000000'], dtype='datetime64[ns]')
array(['2023-09-01T06:00:00.000000000', '2023-09-01T12:00:00.000000000', '2023-09-01T18:00:00.000000000', '2023-09-02T00:00:00.000000000', '2023-09-02T06:00:00.000000000', '2023-09-02T12:00:00.000000000', '2023-09-02T18:00:00.000000000', '2023-09-03T00:00:00.000000000', '2023-09-03T06:00:00.000000000', '2023-09-03T12:00:00.000000000'], dtype='datetime64[ns]')
gfs_dt.sdswrf.avg.surface.sdswrf[0,1,:,:].plot(figsize=(12,8))
<matplotlib.collections.QuadMesh at 0x7f37d77d1700>
gfs_dt.sdswrf.avg.surface.sdswrf[0,2,:,:].plot(figsize=(12,8))
<matplotlib.collections.QuadMesh at 0x7f37dd4d38f0>
gfs_dt.sdswrf.avg.surface.sdswrf[0,3,:,:].plot(figsize=(12,8))
<matplotlib.collections.QuadMesh at 0x7f37d70a2120>
# from joblib import parallel_config
# with parallel_config(n_jobs=8):
#res = gfs_dt.dswrf.avg.surface.dswrf.interp(longitude=[320.5, 300.2], latitude=[20.6, 45.7], method="linear")
%%time
res = gfs_dt.sdswrf.avg.surface.sdswrf.interp(longitude=[320.5], latitude=[20.6], method="linear")
res.plot()
CPU times: user 3.28 s, sys: 407 ms, total: 3.68 s Wall time: 6.33 s
[<matplotlib.lines.Line2D at 0x7f37cdf61850>]