_ pandas es una biblioteca de análisis de datos en Python que nos provee de las estructuras de datos y herramientas para realizar análisis de manera rápida. Se articula sobre la biblioteca NumPy y nos permite enfrentarnos a situaciones en las que tenemos que manejar datos reales que requieren seguir un proceso de carga, limpieza, filtrado, reduccióń y análisis. _
En esta clase veremos como cargar y guardar datos, las características de las pricipales estructuras de pandas y las aplicaremos a algunos problemas.
# Importamos pandas
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
Trabajaremos sobre un fichero de datos metereológicos de la Consejeria Agricultura Pesca y Desarrollo Rural Andalucía.
from IPython.display import HTML
HTML('<iframe src="http://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController?action=Static&url=coordenadas.jsp&c_provincia=4&c_estacion=4" width="700" height="400"></iframe>')
# Vemos qué pinta tiene el fichero
!head ../data/tabernas_meteo_data.txt
FECHA DIA Al04TMax Al04TMin Al04TMed Al04Precip -------- --- -------- -------- -------- ---------- 13-12-16 348 14.6 4.0 8.9 0.2 12-12-16 347 15.9 3.0 8.7 0.2 11-12-16 346 16.9 5.0 10.2 0.2 10-12-16 345 16.4 6.3 10.9 0.2 09-12-16 344 13.6 9.5 11.2 1.8 08-12-16 343 14.5 5.4 10.4 0.0 07-12-16 342 15.7 6.1 10.1 0.2 06-12-16 341 17.7 7.1 13.4 0.0
Vemos que los datos no están en formato CSV, aunque sí tienen algo de estructura. Si intentamos cargarlos con pandas no tendremos mucho éxito:
# Tratamos de cargarlo en pandas
pd.read_csv("../data/tabernas_meteo_data.txt").head(5)
FECHA DIA Al04TMax Al04TMin Al04TMed Al04Precip | |
---|---|
0 | -------- --- -------- -------- -------- ------... |
1 | 13-12-16 348 14.6 4.0 8.9 ... |
2 | 12-12-16 347 15.9 3.0 8.7 ... |
3 | 11-12-16 346 16.9 5.0 10.2 ... |
4 | 10-12-16 345 16.4 6.3 10.9 ... |
Tenemos que hacer los siguientes cambios:
data = pd.read_csv(
"../data/tabernas_meteo_data.txt",
delim_whitespace=True, # delimitado por espacios en blanco
usecols=(0, 2, 3, 4, 5), # columnas que queremos usar
skiprows=2, # saltar las dos primeras líneas
names=['DATE', 'TMAX', 'TMIN', 'TMED', 'PRECIP'],
parse_dates=['DATE'],
# date_parser=lambda x: pd.datetime.strptime(x, '%d-%m-%y'), # Parseo manual
dayfirst=True, # ¡Importante
index_col=["DATE"] # Si queremos indexar por fechas
)
# Ordenando de más antigua a más moderna
data.sort_index(inplace=True)
# Mostrando sólo las primeras o las últimas líneas
data.head()
TMAX | TMIN | TMED | PRECIP | |
---|---|---|---|---|
DATE | ||||
2004-01-01 | 18.0 | 2.5 | 11.1 | 0.0 |
2004-01-02 | 17.4 | 5.7 | 10.6 | 0.0 |
2004-01-03 | 15.1 | 0.8 | 7.9 | 0.0 |
2004-01-04 | 16.2 | -0.4 | 7.2 | 0.0 |
2004-01-05 | 16.4 | 0.6 | 7.1 | 0.0 |
# Comprobamos los tipos de datos de la columnas
data.dtypes
TMAX float64 TMIN float64 TMED float64 PRECIP float64 dtype: object
Las fechas también se pueden parsear de manera manual con el argumento:
date_parser=lambda x: pd.datetime.strptime(x, '%d-%m-%y'), # Parseo manual
# Pedomos información general del dataset
data.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 4732 entries, 2004-01-01 to 2016-12-13 Data columns (total 4 columns): TMAX 4713 non-null float64 TMIN 4713 non-null float64 TMED 4713 non-null float64 PRECIP 4713 non-null float64 dtypes: float64(4) memory usage: 184.8 KB
# Descripción estadística
data.describe()
TMAX | TMIN | TMED | PRECIP | |
---|---|---|---|---|
count | 4713.000000 | 4713.000000 | 4713.000000 | 4713.000000 |
mean | 23.224761 | 9.676872 | 16.276321 | 0.650583 |
std | 7.318656 | 6.263303 | 6.638529 | 3.273346 |
min | 0.000000 | -8.200000 | -14.900000 | 0.000000 |
25% | 17.300000 | 4.500000 | 10.600000 | 0.000000 |
50% | 22.900000 | 9.700000 | 16.000000 | 0.000000 |
75% | 29.200000 | 15.100000 | 22.100000 | 0.000000 |
max | 42.600000 | 23.800000 | 32.100000 | 66.200000 |
# Una vez convertido en un objeto fecha se pueden obtener cosas como:
data.index.dayofweek
array([3, 4, 5, ..., 6, 0, 1], dtype=int32)
Tenemos dos formas de acceder a las columnas: por nombre o por atributo (si no contienen espacios ni caracteres especiales).
# Accediendo como clave
data['TMAX'].head()
DATE 2004-01-01 18.0 2004-01-02 17.4 2004-01-03 15.1 2004-01-04 16.2 2004-01-05 16.4 Name: TMAX, dtype: float64
# Accediendo como atributo
data.TMIN.head()
DATE 2004-01-01 2.5 2004-01-02 5.7 2004-01-03 0.8 2004-01-04 -0.4 2004-01-05 0.6 Name: TMIN, dtype: float64
# Accediendo a varias columnas a la vez
data[['TMAX', 'TMIN']].head()
TMAX | TMIN | |
---|---|---|
DATE | ||
2004-01-01 | 18.0 | 2.5 |
2004-01-02 | 17.4 | 5.7 |
2004-01-03 | 15.1 | 0.8 |
2004-01-04 | 16.2 | -0.4 |
2004-01-05 | 16.4 | 0.6 |
# Modificando valores de columnas
data[['TMAX', 'TMIN']] / 10
TMAX | TMIN | |
---|---|---|
DATE | ||
2004-01-01 | 1.80 | 0.25 |
2004-01-02 | 1.74 | 0.57 |
2004-01-03 | 1.51 | 0.08 |
2004-01-04 | 1.62 | -0.04 |
2004-01-05 | 1.64 | 0.06 |
2004-01-06 | 1.65 | 0.04 |
2004-01-07 | 1.60 | 0.14 |
2004-01-08 | 1.99 | 0.61 |
2004-01-09 | 2.03 | 0.72 |
2004-01-10 | 2.04 | 0.58 |
2004-01-11 | 2.24 | 0.68 |
2004-01-12 | 2.10 | 0.47 |
2004-01-13 | 2.17 | 0.51 |
2004-01-14 | 1.99 | 0.36 |
2004-01-15 | 1.52 | 0.51 |
2004-01-16 | 1.72 | 0.35 |
2004-01-17 | 1.78 | 0.21 |
2004-01-18 | 1.13 | 0.31 |
2004-01-19 | 1.10 | -0.28 |
2004-01-20 | 1.26 | -0.12 |
2004-01-21 | 1.77 | 0.02 |
2004-01-22 | 1.84 | 0.16 |
2004-01-23 | 2.06 | -0.05 |
2004-01-24 | 2.07 | 0.71 |
2004-01-25 | 1.88 | 0.49 |
2004-01-26 | 2.20 | 0.84 |
2004-01-27 | 2.01 | 1.29 |
2004-01-28 | 1.68 | 0.63 |
2004-01-29 | 1.46 | 0.10 |
2004-01-30 | 1.38 | 0.28 |
... | ... | ... |
2016-11-14 | 1.90 | 0.41 |
2016-11-15 | 1.68 | 0.49 |
2016-11-16 | 1.95 | 0.42 |
2016-11-17 | 1.90 | 0.14 |
2016-11-18 | 2.01 | 0.32 |
2016-11-19 | 1.97 | 0.60 |
2016-11-20 | 1.98 | 0.37 |
2016-11-21 | 1.85 | 1.23 |
2016-11-22 | 1.36 | 0.78 |
2016-11-23 | 1.43 | 0.41 |
2016-11-24 | 1.18 | 0.20 |
2016-11-25 | 1.32 | 0.16 |
2016-11-26 | 1.32 | 0.75 |
2016-11-27 | 1.42 | 0.81 |
2016-11-28 | 1.39 | 0.55 |
2016-11-29 | 1.38 | 0.43 |
2016-11-30 | 1.40 | 1.07 |
2016-12-01 | 1.36 | 0.92 |
2016-12-02 | 1.72 | 0.55 |
2016-12-03 | 1.34 | 0.87 |
2016-12-04 | 1.18 | 1.01 |
2016-12-05 | 1.66 | 0.79 |
2016-12-06 | 1.77 | 0.71 |
2016-12-07 | 1.57 | 0.61 |
2016-12-08 | 1.45 | 0.54 |
2016-12-09 | 1.36 | 0.95 |
2016-12-10 | 1.64 | 0.63 |
2016-12-11 | 1.69 | 0.50 |
2016-12-12 | 1.59 | 0.30 |
2016-12-13 | 1.46 | 0.40 |
4732 rows × 2 columns
# Aplicando una función a una columna entera (ej. media numpy)
import numpy as np
np.mean(data.TMAX)
23.224761298535967
# Calculando la media con pandas
data.TMAX.mean()
23.224761298535967
Para acceder a las filas tenemos dos métodos: .loc
(basado en etiquetas), .iloc
(basado en posiciones enteras) y .ix
(que combina ambos).
# Accediendo a una fila por índice
data.iloc[1]
TMAX 17.4 TMIN 5.7 TMED 10.6 PRECIP 0.0 Name: 2004-01-02 00:00:00, dtype: float64
# Accediendo a una fila por etiqueta
data.loc["2016-09-02"]
TMAX 31.8 TMIN 16.3 TMED 23.2 PRECIP 0.0 Name: 2016-09-02 00:00:00, dtype: float64
Puedo incluso hacer secciones basadas en fechas:
data.loc["2016-12-01":]
TMAX | TMIN | TMED | PRECIP | |
---|---|---|---|---|
DATE | ||||
2016-12-01 | 13.6 | 9.2 | 11.1 | 3.2 |
2016-12-02 | 17.2 | 5.5 | 10.8 | 0.0 |
2016-12-03 | 13.4 | 8.7 | 11.1 | 1.0 |
2016-12-04 | 11.8 | 10.1 | 10.9 | 23.8 |
2016-12-05 | 16.6 | 7.9 | 11.7 | 0.0 |
2016-12-06 | 17.7 | 7.1 | 13.4 | 0.0 |
2016-12-07 | 15.7 | 6.1 | 10.1 | 0.2 |
2016-12-08 | 14.5 | 5.4 | 10.4 | 0.0 |
2016-12-09 | 13.6 | 9.5 | 11.2 | 1.8 |
2016-12-10 | 16.4 | 6.3 | 10.9 | 0.2 |
2016-12-11 | 16.9 | 5.0 | 10.2 | 0.2 |
2016-12-12 | 15.9 | 3.0 | 8.7 | 0.2 |
2016-12-13 | 14.6 | 4.0 | 8.9 | 0.2 |
También puedo indexar utilizando arrays de valores booleanos, por ejemplo procedentes de la comprobación de una condición:
# Búsqueda de valores nulos
data.loc[data.TMIN.isnull()]
TMAX | TMIN | TMED | PRECIP | |
---|---|---|---|---|
DATE | ||||
2005-08-21 | NaN | NaN | NaN | NaN |
2005-12-22 | NaN | NaN | NaN | NaN |
2006-01-28 | NaN | NaN | NaN | NaN |
2006-02-16 | NaN | NaN | NaN | NaN |
2006-05-11 | NaN | NaN | NaN | NaN |
2006-06-14 | NaN | NaN | NaN | NaN |
2007-04-19 | NaN | NaN | NaN | NaN |
2007-06-26 | NaN | NaN | NaN | NaN |
2007-12-20 | NaN | NaN | NaN | NaN |
2012-08-03 | NaN | NaN | NaN | NaN |
2012-08-04 | NaN | NaN | NaN | NaN |
2012-08-05 | NaN | NaN | NaN | NaN |
2012-08-06 | NaN | NaN | NaN | NaN |
2012-08-07 | NaN | NaN | NaN | NaN |
2012-08-08 | NaN | NaN | NaN | NaN |
2012-08-09 | NaN | NaN | NaN | NaN |
2012-08-10 | NaN | NaN | NaN | NaN |
2012-08-11 | NaN | NaN | NaN | NaN |
2015-12-31 | NaN | NaN | NaN | NaN |
Podemos agrupar nuestros datos utilizando groupby
:
# Agruparemos por año y día: creemos dos columnas nuevas
data['year'] = data.index.year
data['month'] = data.index.month
# Creamos la agrupación
monthly = data.groupby(by=['year', 'month'])
# Podemos ver los grupos que se han creado
monthly.groups.keys()
dict_keys([(2006, 3), (2015, 8), (2011, 1), (2007, 10), (2008, 6), (2006, 6), (2004, 1), (2010, 9), (2009, 7), (2006, 4), (2005, 4), (2009, 11), (2011, 4), (2010, 4), (2007, 1), (2006, 11), (2008, 11), (2011, 9), (2013, 4), (2015, 10), (2014, 6), (2009, 10), (2007, 7), (2010, 6), (2015, 7), (2010, 1), (2006, 12), (2011, 12), (2004, 11), (2007, 9), (2014, 11), (2013, 1), (2008, 3), (2005, 10), (2004, 6), (2015, 2), (2012, 10), (2009, 2), (2006, 1), (2005, 7), (2011, 3), (2016, 1), (2014, 12), (2008, 8), (2004, 3), (2015, 9), (2014, 3), (2009, 5), (2010, 10), (2005, 2), (2011, 6), (2010, 2), (2007, 3), (2006, 9), (2012, 1), (2011, 11), (2004, 8), (2007, 12), (2014, 4), (2009, 8), (2012, 12), (2015, 1), (2006, 2), (2009, 4), (2007, 11), (2014, 9), (2008, 5), (2005, 8), (2009, 9), (2015, 12), (2010, 8), (2013, 12), (2006, 7), (2005, 5), (2011, 5), (2010, 7), (2007, 6), (2006, 10), (2008, 10), (2015, 6), (2015, 11), (2014, 1), (2013, 7), (2015, 4), (2012, 9), (2016, 4), (2016, 3), (2012, 3), (2004, 10), (2016, 11), (2014, 10), (2013, 2), (2008, 2), (2005, 11), (2007, 4), (2015, 3), (2009, 3), (2012, 7), (2004, 5), (2007, 5), (2008, 7), (2016, 9), (2004, 2), (2009, 6), (2014, 2), (2013, 10), (2006, 5), (2005, 3), (2011, 7), (2010, 5), (2016, 5), (2006, 8), (2013, 9), (2011, 8), (2016, 8), (2014, 7), (2013, 5), (2016, 12), (2012, 4), (2008, 12), (2007, 8), (2014, 8), (2009, 12), (2012, 8), (2005, 9), (2004, 7), (2010, 11), (2009, 1), (2013, 6), (2005, 6), (2007, 2), (2011, 2), (2008, 4), (2016, 2), (2012, 5), (2004, 12), (2013, 11), (2012, 11), (2013, 8), (2016, 6), (2005, 1), (2015, 5), (2010, 3), (2016, 7), (2012, 6), (2012, 2), (2011, 10), (2004, 9), (2016, 10), (2014, 5), (2013, 3), (2008, 1), (2005, 12), (2004, 4), (2008, 9), (2010, 12)])
# Accedemos a un grupo
monthly.get_group((2016,3)).head()
TMAX | TMIN | TMED | PRECIP | year | month | |
---|---|---|---|---|---|---|
DATE | ||||||
2016-03-01 | 20.5 | 0.0 | 9.9 | 0.0 | 2016 | 3 |
2016-03-02 | 23.5 | 2.9 | 13.6 | 0.0 | 2016 | 3 |
2016-03-03 | 20.9 | 2.9 | 12.5 | 0.0 | 2016 | 3 |
2016-03-04 | 20.3 | 2.0 | 12.6 | 0.0 | 2016 | 3 |
2016-03-05 | 17.3 | 7.1 | 12.5 | 0.0 | 2016 | 3 |
# O hacemos una agregación de los datos:
monthly_mean = monthly.mean()
monthly_mean.head(24)
TMAX | TMIN | TMED | PRECIP | ||
---|---|---|---|---|---|
year | month | ||||
2004 | 1 | 17.567742 | 3.432258 | 9.900000 | 0.025806 |
2 | 16.017241 | 4.672414 | 9.803448 | 0.531034 | |
3 | 17.074194 | 6.187097 | 11.370968 | 2.619355 | |
4 | 19.016667 | 7.043333 | 13.190000 | 3.233333 | |
5 | 21.283871 | 10.519355 | 15.883871 | 1.019355 | |
6 | 30.756667 | 15.916667 | 23.323333 | 0.206667 | |
7 | 31.664516 | 17.912903 | 24.758065 | 0.006452 | |
8 | 33.483871 | 19.003226 | 26.241935 | 0.000000 | |
9 | 30.066667 | 16.323333 | 22.656667 | 0.020000 | |
10 | 26.022581 | 11.600000 | 18.451613 | 0.122581 | |
11 | 18.056667 | 4.766667 | 10.920000 | 0.366667 | |
12 | 14.500000 | 3.790323 | 8.800000 | 1.606452 | |
2005 | 1 | 14.587097 | -0.067742 | 6.425806 | 0.090323 |
2 | 12.728571 | 0.775000 | 6.746429 | 1.821429 | |
3 | 17.635484 | 5.574194 | 11.332258 | 0.858065 | |
4 | 21.910000 | 8.163333 | 15.043333 | 0.073333 | |
5 | 26.770968 | 12.035484 | 19.732258 | 0.109677 | |
6 | 30.710000 | 15.550000 | 23.743333 | 0.033333 | |
7 | 33.445161 | 17.996774 | 26.206452 | 0.000000 | |
8 | 32.193333 | 17.976667 | 24.706667 | 0.040000 | |
9 | 27.803333 | 14.303333 | 20.756667 | 0.553333 | |
10 | 23.900000 | 11.480645 | 17.235484 | 0.187097 | |
11 | 17.053333 | 5.550000 | 10.913333 | 0.793333 | |
12 | 14.856667 | 2.730000 | 8.610000 | 0.306667 |
Y podemos reorganizar los datos utilizando pivot tables:
# Dejar los años como índices y ver la media mensual en cada columna
monthly_mean.reset_index().pivot(index='year', columns='month')
TMAX | ... | PRECIP | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
year | |||||||||||||||||||||
2004 | 17.567742 | 16.017241 | 17.074194 | 19.016667 | 21.283871 | 30.756667 | 31.664516 | 33.483871 | 30.066667 | 26.022581 | ... | 2.619355 | 3.233333 | 1.019355 | 0.206667 | 0.006452 | 0.000000 | 0.020000 | 0.122581 | 0.366667 | 1.606452 |
2005 | 14.587097 | 12.728571 | 17.635484 | 21.910000 | 26.770968 | 30.710000 | 33.445161 | 32.193333 | 27.803333 | 23.900000 | ... | 0.858065 | 0.073333 | 0.109677 | 0.033333 | 0.000000 | 0.040000 | 0.553333 | 0.187097 | 0.793333 | 0.306667 |
2006 | 12.110000 | 14.322222 | 20.722581 | 22.333333 | 25.280000 | 28.386207 | 33.900000 | 31.990323 | 28.633333 | 25.483871 | ... | 0.070968 | 1.960000 | 2.026667 | 0.351724 | 0.000000 | 0.000000 | 1.720000 | 0.232258 | 1.333333 | 0.322581 |
2007 | 16.487097 | 18.100000 | 18.390323 | 17.993103 | 25.767742 | 29.579310 | 32.551613 | 31.764516 | 26.806667 | 21.919355 | ... | 0.625806 | 1.248276 | 0.251613 | 0.000000 | 0.000000 | 0.070968 | 2.133333 | 2.051613 | 0.380000 | 1.280000 |
2008 | 16.293548 | 15.262069 | 20.148387 | 21.960000 | 23.200000 | 28.720000 | 32.596774 | 32.380645 | 27.343333 | 21.548387 | ... | 0.464516 | 0.120000 | 1.503226 | 0.093333 | 0.283871 | 0.000000 | 2.146667 | 3.296774 | 0.646667 | 0.000000 |
2009 | 13.609677 | 14.625000 | 18.019355 | 20.546667 | 26.083871 | 32.066667 | 34.964516 | 32.367742 | 26.363333 | 25.945161 | ... | 1.425806 | 0.720000 | 0.103226 | 0.020000 | 0.000000 | 0.077419 | 1.306667 | 0.090323 | 0.233333 | 3.503226 |
2010 | 13.838710 | 23.364286 | 16.100000 | 20.033333 | 24.403226 | 28.783333 | 33.070968 | 33.067742 | 28.726667 | 23.980645 | ... | 2.548387 | 0.486667 | 0.367742 | 0.853333 | 0.000000 | 0.032258 | 0.146667 | 0.677419 | 1.546667 | 1.877419 |
2011 | 14.258065 | 17.007143 | 16.212903 | 22.090000 | 24.145161 | 29.216667 | 32.977419 | 33.687097 | 28.870000 | 24.216129 | ... | 1.012903 | 0.993333 | 1.606452 | 0.080000 | 0.000000 | 0.077419 | 0.573333 | 0.141935 | 1.293333 | 0.458065 |
2012 | 15.796774 | 14.134483 | 18.522581 | 21.576667 | 27.138710 | 32.576667 | 32.880645 | 35.754545 | 28.106667 | 23.506452 | ... | 0.025806 | 0.013333 | 0.000000 | 0.006667 | 0.000000 | 0.000000 | 2.233333 | 0.787097 | 2.173333 | 0.058065 |
2013 | 16.919355 | 15.725000 | 18.567742 | 21.280000 | 23.425806 | 27.976667 | 31.841935 | 31.716129 | 28.016667 | 26.603226 | ... | 1.141935 | 0.373333 | 0.574194 | 0.000000 | 0.000000 | 0.800000 | 0.673333 | 0.083871 | 0.673333 | 0.683871 |
2014 | 16.506452 | 17.542857 | 18.809677 | 24.886667 | 25.112903 | 29.033333 | 32.154839 | 32.645161 | 29.603333 | 25.287097 | ... | 0.122581 | 0.013333 | 0.051613 | 0.580000 | 0.000000 | 0.000000 | 1.240000 | 0.664516 | 0.633333 | 0.419355 |
2015 | 15.819355 | 14.014286 | 18.793548 | 20.103333 | 27.174194 | 29.250000 | 35.174194 | 32.203226 | 27.966667 | 23.664516 | ... | 1.374194 | 1.080000 | 0.103226 | 0.113333 | 0.012903 | 0.006452 | 1.160000 | 1.322581 | 0.633333 | 0.058065 |
2016 | 17.541935 | 17.251724 | 18.906452 | 21.500000 | 24.632258 | 30.540000 | 32.180645 | 30.929032 | 29.016667 | 24.567742 | ... | 0.167742 | 0.126667 | 0.425806 | 0.006667 | 0.000000 | 0.032258 | 0.313333 | 0.567742 | 1.680000 | 2.369231 |
13 rows × 48 columns
Por último, pandas proporciona métodos para calcular magnitudes como medias móviles usando el método rolling
:
# Calcular la media de la columna TMAX
monthly.TMAX.mean().head(15)
year month 2004 1 17.567742 2 16.017241 3 17.074194 4 19.016667 5 21.283871 6 30.756667 7 31.664516 8 33.483871 9 30.066667 10 26.022581 11 18.056667 12 14.500000 2005 1 14.587097 2 12.728571 3 17.635484 Name: TMAX, dtype: float64
# Media trimensual centrada
monthly_mean.TMAX.rolling(3, center=True).mean().head(15)
year month 2004 1 NaN 2 16.886392 3 17.369367 4 19.124910 5 23.685735 6 27.901685 7 31.968351 8 31.738351 9 29.857706 10 24.715305 11 19.526416 12 15.714588 2005 1 13.938556 2 14.983717 3 17.424685 Name: TMAX, dtype: float64
# Pintar la temperatura máx, min, med
data.plot(y=["TMAX", "TMIN", "TMED"])
plt.title('Temperaturas')
<matplotlib.text.Text at 0x7f23075221d0>
data.loc[:, 'TMAX':'PRECIP'].plot.box()
<matplotlib.axes._subplots.AxesSubplot at 0x7f2307352898>
Pintando la temperatura máxima de las máximas, mínima de las mínimas, media de las medias para cada día del año de los años disponnibles
group_daily = data.groupby(['month', data.index.day])
daily_agg = group_daily.agg({'TMED': 'mean', 'TMAX': 'max', 'TMIN': 'min', 'PRECIP': 'mean'})
daily_agg.head()
TMIN | PRECIP | TMED | TMAX | ||
---|---|---|---|---|---|
month | |||||
1 | 1 | -1.6 | 0.076923 | 8.992308 | 20.6 |
2 | -3.0 | 0.046154 | 9.000000 | 20.9 | |
3 | -1.6 | 0.661538 | 8.553846 | 21.0 | |
4 | -0.6 | 0.400000 | 8.815385 | 22.8 | |
5 | -1.0 | 0.369231 | 8.461538 | 21.7 |
daily_agg.plot(y=['TMED', 'TMAX', 'TMIN'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f2303e83748>
# scatter_matrix
from pandas.tools.plotting import scatter_matrix
axes = scatter_matrix(data.loc[:, "TMAX":"TMED"])
Las siguientes celdas contienen configuración del Notebook
Para visualizar y utlizar los enlaces a Twitter el notebook debe ejecutarse como seguro
File > Trusted Notebook
# Esta celda da el estilo al notebook
from IPython.core.display import HTML
css_file = '../styles/aeropython.css'
HTML(open(css_file, "r").read())