import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
from matplotlib.pyplot import imread
import scipy
from PIL import Image
from scipy import ndimage
import skimage.transform
from dnn_app_utils import *
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
# Example of a picture
index = 10
plt.imshow(train_x_orig[index])
print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.")
y = 0. It's a non-cat picture.
# Explore your dataset
m_train = train_x_orig.shape[0]
num_px = train_x_orig.shape[1]
m_test = test_x_orig.shape[0]
print ("Number of training examples: " + str(m_train))
print ("Number of testing examples: " + str(m_test))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_x_orig shape: " + str(train_x_orig.shape))
print ("train_y shape: " + str(train_y.shape))
print ("test_x_orig shape: " + str(test_x_orig.shape))
print ("test_y shape: " + str(test_y.shape))
Number of training examples: 209 Number of testing examples: 50 Each image is of size: (64, 64, 3) train_x_orig shape: (209, 64, 64, 3) train_y shape: (1, 209) test_x_orig shape: (50, 64, 64, 3) test_y shape: (1, 50)
# Reshape the training and test examples
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
# Standardize data to have feature values between 0 and 1.
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.
print ("train_x's shape: " + str(train_x.shape))
print ("test_x's shape: " + str(test_x.shape))
train_x's shape: (12288, 209) test_x's shape: (12288, 50)
### CONSTANTS DEFINING THE MODEL ####
n_x = 12288 # num_px * num_px * 3
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
# GRADED FUNCTION: two_layer_model
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
"""
Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
Arguments:
X -- input data, of shape (n_x, number of examples)
Y -- true "label" vector (containing 1 if cat, 0 if non-cat), of shape (1, number of examples)
layers_dims -- dimensions of the layers (n_x, n_h, n_y)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- If set to True, this will print the cost every 100 iterations
Returns:
parameters -- a dictionary containing W1, W2, b1, and b2
"""
np.random.seed(1)
grads = {}
costs = [] # to keep track of the cost
m = X.shape[1] # number of examples
(n_x, n_h, n_y) = layers_dims
# Initialize parameters dictionary, by calling one of the functions you'd previously implemented
parameters = initialize_parameters(n_x, n_h, n_y)
# Get W1, b1, W2 and b2 from the dictionary parameters.
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2".
A1, cache1 = linear_activation_forward(X, W1, b1, activation="relu")
A2, cache2 = linear_activation_forward(A1, W2, b2, activation="sigmoid")
# Compute cost
cost = compute_cost(A2, Y)
# Initializing backward propagation
dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
# Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation="sigmoid")
dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation="relu")
# Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
grads['dW1'] = dW1
grads['db1'] = db1
grads['dW2'] = dW2
grads['db2'] = db2
# Update parameters.
parameters = update_parameters(parameters, grads, learning_rate)
# Retrieve W1, b1, W2, b2 from parameters
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
Cost after iteration 0: 0.693049735659989 Cost after iteration 100: 0.6464320953428849 Cost after iteration 200: 0.6325140647912677 Cost after iteration 300: 0.6015024920354664 Cost after iteration 400: 0.5601966311605748 Cost after iteration 500: 0.5158304772764729 Cost after iteration 600: 0.4754901313943325 Cost after iteration 700: 0.43391631512257495 Cost after iteration 800: 0.400797753620389 Cost after iteration 900: 0.3580705011323798 Cost after iteration 1000: 0.3394281538366412 Cost after iteration 1100: 0.3052753636196263 Cost after iteration 1200: 0.27491377282130186 Cost after iteration 1300: 0.24681768210614843 Cost after iteration 1400: 0.1985073503746609 Cost after iteration 1500: 0.17448318112556646 Cost after iteration 1600: 0.1708076297809607 Cost after iteration 1700: 0.11306524562164742 Cost after iteration 1800: 0.09629426845937158 Cost after iteration 1900: 0.08342617959726864 Cost after iteration 2000: 0.07439078704319083 Cost after iteration 2100: 0.0663074813226793 Cost after iteration 2200: 0.05919329501038169 Cost after iteration 2300: 0.05336140348560552 Cost after iteration 2400: 0.04855478562877015
predictions_train = predict(train_x, train_y, parameters)
Accuracy: 0.9999999999999998
predictions_test = predict(test_x, test_y, parameters)
Accuracy: 0.72
### CONSTANTS ###
layers_dims = [12288, 20, 7, 5, 1] # 4-layer model
# GRADED FUNCTION: L_layer_model
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
"""
Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
Arguments:
X -- data, numpy array of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
learning_rate -- learning rate of the gradient descent update rule
num_iterations -- number of iterations of the optimization loop
print_cost -- if True, it prints the cost every 100 steps
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
np.random.seed(1)
costs = [] # keep track of cost
# Parameters initialization. (≈ 1 line of code)
### START CODE HERE ###
parameters = initialize_parameters_deep(layers_dims)
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
AL, caches = L_model_forward(X, parameters)
# Compute cost.
cost = compute_cost(AL, Y)
# Backward propagation.
grads = L_model_backward(AL, Y, caches)
# Update parameters.
parameters = update_parameters(parameters, grads, learning_rate)
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 3000, print_cost = True)
Cost after iteration 0: 0.771749 Cost after iteration 100: 0.672053 Cost after iteration 200: 0.648263 Cost after iteration 300: 0.611507 Cost after iteration 400: 0.567047 Cost after iteration 500: 0.540138 Cost after iteration 600: 0.527930 Cost after iteration 700: 0.465477 Cost after iteration 800: 0.369126 Cost after iteration 900: 0.391747 Cost after iteration 1000: 0.315187 Cost after iteration 1100: 0.272700 Cost after iteration 1200: 0.237419 Cost after iteration 1300: 0.199601 Cost after iteration 1400: 0.189263 Cost after iteration 1500: 0.161189 Cost after iteration 1600: 0.148214 Cost after iteration 1700: 0.137775 Cost after iteration 1800: 0.129740 Cost after iteration 1900: 0.121225 Cost after iteration 2000: 0.113821 Cost after iteration 2100: 0.107839 Cost after iteration 2200: 0.102855 Cost after iteration 2300: 0.100897 Cost after iteration 2400: 0.092878 Cost after iteration 2500: 0.088413 Cost after iteration 2600: 0.085951 Cost after iteration 2700: 0.081681 Cost after iteration 2800: 0.078247 Cost after iteration 2900: 0.075444
pred_train = predict(train_x, train_y, parameters)
Accuracy: 0.9904306220095691
pred_test = predict(test_x, test_y, parameters)
Accuracy: 0.8200000000000001
print_mislabeled_images(classes, test_x, test_y, pred_test)
my_image = "my_image.jpg" # change this to the name of your image file
my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
fname = "images/" + my_image
image = np.array(imread(fname))
image = image/255.
my_image = skimage.transform.resize(image,(num_px,num_px)).reshape((1, num_px*num_px*3)).T
my_predicted_image = predict(my_image, my_label_y, parameters)
plt.imshow(image)
print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
Accuracy: 1.0 y = 1.0, your L-layer model predicts a "cat" picture.
import pickle
filename = 'parameters/data.pkl'
a_file = open(filename, "wb")
pickle.dump(parameters, a_file)
a_file.close()