Gaussian models that are typically used to described extra-axonal diffusion. Briefly, we have:
the ``Ball'' model (Behrens et al. 2013) models the totallity of all extra-axonal diffusion as a Tensor with isotropic diffusivity $\lambda_{\textrm{iso}}$ as
\begin{equation} E_{\textrm{iso}}(b,\lambda_{\textrm{iso}})=\exp(-b\lambda_{\textrm{iso}}). \end{equation}In current models, the Ball is usually only used to describe the CSF and/or grey matter compartment of the tissue, where the isotropic diffusion assumption is reasonably valid(Alexander et al. 2010, Jeurissen et al. 2014, Tariq et al. 2016).
from dmipy.signal_models import gaussian_models
from dmipy.core.acquisition_scheme import acquisition_scheme_from_bvalues
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
samples = 100
bvalues = np.linspace(0, 1e9, samples)
bvectors = np.tile([0, 0, 1], (samples, 1))
delta = 1e-2
Delta = 3e-2
scheme = acquisition_scheme_from_bvalues(bvalues, bvectors, delta, Delta)
ball = gaussian_models.G1Ball()
for lambda_iso in [1e-9, 2e-9, 3e-9]:
plt.plot(bvalues, ball(scheme, lambda_iso=lambda_iso),
label='lambda_iso=' + str(lambda_iso * 1e9) + 'e-9 m^2/s')
plt.legend()
plt.xlabel('b-value [s/m^2]', fontsize=13)
plt.ylabel('Signal Attenuation', fontsize=13)
plt.title('Signal Attenuation Ball', fontsize=15);
The higher the diffusivity the faster the signal attenuates.
Hindered extra-axonal diffusion, i.e. diffusion of particles in-between axons, is often modeled as an anisotropic, axially symmetric Gaussian, also known as a ``Zeppelin'' (Panagiotaki et al. 2012). Using DTI notation, a Zeppelin with $\lambda_\parallel=\lambda_1$, $\lambda_\perp=\lambda_2=\lambda_3$ and $\lambda_\parallel>\lambda_\perp$ is given as
\begin{equation} E_h(b,\textbf{n},\lambda_\parallel,\lambda_\perp)=\exp(-b\textbf{n}^T(\textbf{R}\textbf{D}^h_{\textrm{diag}}\textbf{R}^T)\textbf{n})\quad\textrm{with}\quad \textbf{D}^h_{\textrm{diag}}= \begin{pmatrix} \lambda_\parallel & 0 & 0 \\ 0 & \lambda_\perp & 0 \\ 0 & 0 & \lambda_\perp \end{pmatrix}. \end{equation}# We set the parallel diffusivity larger than the perpendicular diffusivity
zeppelin = gaussian_models.G2Zeppelin(lambda_par=1.7e-9, lambda_perp=0.8e-9)
E_zeppelin_par = zeppelin(scheme, mu=[0, 0])
E_zeppelin_perp = zeppelin(scheme, mu=[np.pi / 2, 0.])
plt.plot(bvalues, E_zeppelin_par, label='E_parallel')
plt.plot(bvalues, E_zeppelin_perp, label='E_perpendicular')
plt.legend()
plt.xlabel('b-value [s/m^2]', fontsize=13)
plt.ylabel('Signal Attenuation', fontsize=13)
plt.title('Signal Attenuation Zeppelin', fontsize=15);
In DTI, the signal attenuation decays like a Gaussian over q-value and like an expontial over diffusion time $\tau$. However, recent works argue that hindered diffusion is actually slower-than-exponential over $\tau$ due to how the external axon boundaries still restrict diffusing particles(Novikov et al. 2014). To account for this, (Burcaw et al. 2015) proposed a modification to the Zeppelin as
\begin{equation} \textbf{D}_{\textrm{diag}}^{\textrm{r}}= \begin{pmatrix} \lambda_\parallel & 0 & 0 \\ 0 & \lambda_\perp^{\textrm{r}} & 0 \\ 0 & 0 & \lambda_\perp^{\textrm{r}} \end{pmatrix}\quad\textrm{with}\quad\lambda_\perp^{\textrm{r}}=D_{\infty}+\frac{A\ln(\Delta/\delta)+3/2}{\Delta-\delta/3} \end{equation}where perpendicular diffusivity $\lambda_\perp^{\textrm{r}}$ is now time-dependent with $D_{\infty}$ the bulk diffusion constant and $A$ is a characteristic coefficient for extra-axonal hindrance. Notice that when $A=0$ then G3 simplifies to G2.
# we just sample the (restricted) perpendicular direction now
restricted_zeppelin = gaussian_models.G3TemporalZeppelin(
mu=[np.pi / 2, 0.], lambda_par=1.7e-9, lambda_inf = 1e-9)
for A in [0, 2e-12, 4e-12]:
plt.plot(bvalues, restricted_zeppelin(scheme, A=A), label='A={} $\mu m^2$'.format(A*1e12))
plt.legend()
plt.xlabel('b-value [s/m^2]', fontsize=13)
plt.ylabel('Signal Attenuation', fontsize=13)
plt.title('Signal Attenuation Restricted Zeppelin', fontsize=15);
Notice that for larger characteristic coefficients the signal attenuates faster.