This notebook demonstrates basic usage of the firefly_client API.
Note that it may be necessary to wait for some cells (like those displaying an image) to complete before executing later cells.
Imports for firefly_client:
from firefly_client import FireflyClient
The firefly_client needs to connect to a firefly server. In this example, we use the IRSA Viewer application for the server:
url = 'https://irsa.ipac.caltech.edu/irsaviewer'
Instantiate FireflyClient
using the URL above:
fc = FireflyClient.make_client(url)
For the following example, we download a sample image and table by using astropy (it's used only for convenience, firefly_client itself does not depend on astropy):
import astropy.utils.data
Download a cutout of a WISE band as 1 FITS image:
image_url = ('http://irsa.ipac.caltech.edu/ibe/data/wise/allsky/4band_p1bm_frm/6a/02206a' +
'/149/02206a149-w1-int-1b.fits?center=70,20&size=200pix')
filename = astropy.utils.data.download_file(image_url, cache=True, timeout=120)
Download a 2MASS catalog using an IRSA VO Table Access Protocol (TAP) search:
table_url = ("http://irsa.ipac.caltech.edu/TAP/sync?FORMAT=IPAC_TABLE&" +
"QUERY=SELECT+*+FROM+fp_psc+WHERE+CONTAINS(POINT('J2000',ra,dec)," +
"CIRCLE('J2000',70.0,20.0,0.1))=1")
tablename = astropy.utils.data.download_file(table_url, timeout=120, cache=True)
Instantiating FireflyClient should open a browser to the firefly server in a new tab. You can also achieve this using the following method. The browser open only works when running the notebook locally, otherwise a link is displayed.
# localbrowser, browser_url = fc.launch_browser()
If it does not open automatically, try using the following command to display a web browser link to click on:
fc.display_url()
Alternatively, uncomment the lines below (while commenting out the 2 lines above) to display the browser application in the notebook:
# from IPython.display import IFrame
# print('url: %s' % fc.get_firefly_url())
# IFrame(fc.get_firefly_url(), 1100, 1000)
The current example involves 2 images in FITS format to be viewed through the chosen browser, both in different ways. For the 1st method, upload a local file to the server and then display it:
imval = fc.upload_file(filename)
status = fc.show_fits(file_on_server=imval, plot_id="wise-cutout", title='WISE Cutout')
For the 2nd method, pull an image directly from a URL:
status = fc.show_fits(file_on_server=None, plot_id="wise-fullimage",
URL='http://irsa.ipac.caltech.edu/ibe/data/wise/allsky/4band_p1bm_frm/6a/02206a' +
'/149/02206a149-w1-int-1b.fits')
Upload a catalog table (with coordinates) to the server so it will overlay the image with markers by default. Note that markers can be visible on both "wise-cutout" and "wise-fullimage" since they would include the same field of view:
file= fc.upload_file(tablename)
status = fc.show_table(file, tbl_id='tablemass', title='My 2MASS Catalog', page_size=50)
Add an xy plot using the uploaded table data:
status = fc.show_xyplot(tbl_id='tablemass', xCol='j_m', yCol='h_m-k_m')
Alternatively, more generic method show_chart() can be used to create the same plot
# trace0 = {'tbl_id': 'tablemass', 'x': "tables::j_m", 'y': "tables::h_m-k_m",
# 'type' : 'scatter', 'mode': 'markers'}
# status = fc.show_chart(data=[trace0])
Zoom into the full image by a factor of 2 (note the plot_id
parameter we used earlier)
status = fc.set_zoom('wise-fullimage', 2)
Pan the full image to center on a given celestial coordinate:
status = fc.set_pan('wise-fullimage', x=70, y=20, coord='J2000')
Set the stretch for the full image based on IRAF zscale interval with a linear algorithm:
status = fc.set_stretch('wise-fullimage', stype='zscale', algorithm='linear')
Change color of the image:
status = fc.set_color('wise-fullimage', colormap_id=6, bias=0.6, contrast=1.5)
Add region data to the cutout image (2 areas to begin with):
my_regions= ['image;polygon 125 25 160 195 150 150 #color=cyan',
'icrs;circle 69.95d 20d 30i # color=orange text={region 5/7}']
status = fc.add_region_data(region_data=my_regions, region_layer_id='layer1',
plot_id='wise-cutout')
Remove the second region whlie keeping the first one visible:
fc.remove_region_data(region_data=my_regions[1], region_layer_id='layer1')