In this notebook we will conduct some preliminary analysis and forecasting on the Coronavirus time seires data. For this analysis we will look at forecasting using the data scraper.
Warning this is a basic analysis/machine learning model. The goal of this notebook is to gage the utility of data augmentation/transfer learning for virus forecasting. NOT provide actionable insights. It would additional rounds of training/validation + verification by epidemiologists and public health experts before I would be confident relying on using it for any actionable insights
#!git clone https://github.com/CoronaWhy/task-geo.git
#!os.chdir('task-geo')
import pandas as pd
!wget -O coronavirus_timeseries.csv https://coronadatascraper.com/timeseries.csv
!pip install wandb
!wandb login
import wandb
from tensorflow import keras
from wandb.keras import WandbCallback
--2020-05-04 01:42:51-- https://coronadatascraper.com/timeseries.csv Resolving coronadatascraper.com (coronadatascraper.com)... 185.199.110.153, 185.199.108.153, 185.199.111.153 Connecting to coronadatascraper.com (coronadatascraper.com)|185.199.110.153|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 41874411 (40M) [text/csv] Saving to: ‘coronavirus_timeseries.csv’ coronavirus_timeser 100%[===================>] 39.93M 73.4MB/s in 0.5s 2020-05-04 01:42:52 (73.4 MB/s) - ‘coronavirus_timeseries.csv’ saved [41874411/41874411] Collecting wandb Downloading https://files.pythonhosted.org/packages/2d/c9/ebbcefa6ef2ba14a7c62a4ee4415a5fecef8fac5e4d1b4e22af26fd9fe22/wandb-0.8.35-py2.py3-none-any.whl (1.4MB) |████████████████████████████████| 1.4MB 4.9MB/s Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from wandb) (2.8.1) Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from wandb) (2.23.0) Collecting gql==0.2.0 Downloading https://files.pythonhosted.org/packages/c4/6f/cf9a3056045518f06184e804bae89390eb706168349daa9dff8ac609962a/gql-0.2.0.tar.gz Collecting shortuuid>=0.5.0 Downloading https://files.pythonhosted.org/packages/25/a6/2ecc1daa6a304e7f1b216f0896b26156b78e7c38e1211e9b798b4716c53d/shortuuid-1.0.1-py3-none-any.whl Collecting configparser>=3.8.1 Downloading https://files.pythonhosted.org/packages/4b/6b/01baa293090240cf0562cc5eccb69c6f5006282127f2b846fad011305c79/configparser-5.0.0-py3-none-any.whl Collecting watchdog>=0.8.3 Downloading https://files.pythonhosted.org/packages/73/c3/ed6d992006837e011baca89476a4bbffb0a91602432f73bd4473816c76e2/watchdog-0.10.2.tar.gz (95kB) |████████████████████████████████| 102kB 10.5MB/s Collecting docker-pycreds>=0.4.0 Downloading https://files.pythonhosted.org/packages/f5/e8/f6bd1eee09314e7e6dee49cbe2c5e22314ccdb38db16c9fc72d2fa80d054/docker_pycreds-0.4.0-py2.py3-none-any.whl Collecting GitPython>=1.0.0 Downloading https://files.pythonhosted.org/packages/19/1a/0df85d2bddbca33665d2148173d3281b290ac054b5f50163ea735740ac7b/GitPython-3.1.1-py3-none-any.whl (450kB) |████████████████████████████████| 460kB 27.6MB/s Requirement already satisfied: Click>=7.0 in /usr/local/lib/python3.6/dist-packages (from wandb) (7.1.2) Requirement already satisfied: nvidia-ml-py3>=7.352.0 in /usr/local/lib/python3.6/dist-packages (from wandb) (7.352.0) Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.6/dist-packages (from wandb) (3.13) Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.6/dist-packages (from wandb) (5.4.8) Collecting sentry-sdk>=0.4.0 Downloading https://files.pythonhosted.org/packages/20/7e/19545324e83db4522b885808cd913c3b93ecc0c88b03e037b78c6a417fa8/sentry_sdk-0.14.3-py2.py3-none-any.whl (103kB) |████████████████████████████████| 112kB 40.3MB/s Collecting subprocess32>=3.5.3 Downloading https://files.pythonhosted.org/packages/32/c8/564be4d12629b912ea431f1a50eb8b3b9d00f1a0b1ceff17f266be190007/subprocess32-3.5.4.tar.gz (97kB) |████████████████████████████████| 102kB 12.1MB/s Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from wandb) (1.12.0) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests>=2.0.0->wandb) (2.9) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests>=2.0.0->wandb) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests>=2.0.0->wandb) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests>=2.0.0->wandb) (2020.4.5.1) Collecting graphql-core<2,>=0.5.0 Downloading https://files.pythonhosted.org/packages/b0/89/00ad5e07524d8c523b14d70c685e0299a8b0de6d0727e368c41b89b7ed0b/graphql-core-1.1.tar.gz (70kB) |████████████████████████████████| 71kB 8.9MB/s Requirement already satisfied: promise<3,>=2.0 in /usr/local/lib/python3.6/dist-packages (from gql==0.2.0->wandb) (2.3) Collecting pathtools>=0.1.1 Downloading https://files.pythonhosted.org/packages/e7/7f/470d6fcdf23f9f3518f6b0b76be9df16dcc8630ad409947f8be2eb0ed13a/pathtools-0.1.2.tar.gz Collecting gitdb<5,>=4.0.1 Downloading https://files.pythonhosted.org/packages/74/52/ca35448b56c53a079d3ffe18b1978c6e424f6d4df02404877094c89f5bfb/gitdb-4.0.4-py3-none-any.whl (63kB) |████████████████████████████████| 71kB 9.1MB/s Collecting smmap<4,>=3.0.1 Downloading https://files.pythonhosted.org/packages/27/b1/e379cfb7c07bbf8faee29c4a1a2469dbea525f047c2b454c4afdefa20a30/smmap-3.0.2-py2.py3-none-any.whl Building wheels for collected packages: gql, watchdog, subprocess32, graphql-core, pathtools Building wheel for gql (setup.py) ... done Created wheel for gql: filename=gql-0.2.0-cp36-none-any.whl size=7630 sha256=78b8c25cb64e51b2f7716c489dd89b343318e43cb94e34c7ca3d9e430286901c Stored in directory: /root/.cache/pip/wheels/ce/0e/7b/58a8a5268655b3ad74feef5aa97946f0addafb3cbb6bd2da23 Building wheel for watchdog (setup.py) ... done Created wheel for watchdog: filename=watchdog-0.10.2-cp36-none-any.whl size=73605 sha256=ba4bb5dacf91b7b48c111a26d4c42ac96e7fbb31a5c0ab5d6f05d1d1491e16b8 Stored in directory: /root/.cache/pip/wheels/bc/ed/6c/028dea90d31b359cd2a7c8b0da4db80e41d24a59614154072e Building wheel for subprocess32 (setup.py) ... done Created wheel for subprocess32: filename=subprocess32-3.5.4-cp36-none-any.whl size=6489 sha256=ac15431ebcba218c446fb317b8090e545e424d836ff7d1c3451dc2128759a9c7 Stored in directory: /root/.cache/pip/wheels/68/39/1a/5e402bdfdf004af1786c8b853fd92f8c4a04f22aad179654d1 Building wheel for graphql-core (setup.py) ... done Created wheel for graphql-core: filename=graphql_core-1.1-cp36-none-any.whl size=104650 sha256=1e43d09eb938e0a725303f391b1e7d282d76c67fc2871935e447146a5d40b717 Stored in directory: /root/.cache/pip/wheels/45/99/d7/c424029bb0fe910c63b68dbf2aa20d3283d023042521bcd7d5 Building wheel for pathtools (setup.py) ... done Created wheel for pathtools: filename=pathtools-0.1.2-cp36-none-any.whl size=8784 sha256=da849bba746bfd1680d0712bc005e3b05941ea2f02bf243560dbceafb7f3d4c3 Stored in directory: /root/.cache/pip/wheels/0b/04/79/c3b0c3a0266a3cb4376da31e5bfe8bba0c489246968a68e843 Successfully built gql watchdog subprocess32 graphql-core pathtools Installing collected packages: graphql-core, gql, shortuuid, configparser, pathtools, watchdog, docker-pycreds, smmap, gitdb, GitPython, sentry-sdk, subprocess32, wandb Successfully installed GitPython-3.1.1 configparser-5.0.0 docker-pycreds-0.4.0 gitdb-4.0.4 gql-0.2.0 graphql-core-1.1 pathtools-0.1.2 sentry-sdk-0.14.3 shortuuid-1.0.1 smmap-3.0.2 subprocess32-3.5.4 wandb-0.8.35 watchdog-0.10.2 wandb: You can find your API key in your browser here: https://app.wandb.ai/authorize wandb: Paste an API key from your profile and hit enter: 936f243deff8f026e476a495792f87a7942c65bf wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc Successfully logged in to Weights & Biases!
from google.colab import auth
from datetime import datetime
auth.authenticate_user()
df = pd.read_csv("coronavirus_timeseries.csv")
!gsutil cp coronavirus_timeseries.csv gs://coronaviruspublicdata/coronavirus_timeseries.csv
df['month'] = pd.to_datetime(df['date']).map(lambda x: x.month)
df['weekday'] = pd.to_datetime(df['date']).map(lambda x: x.weekday())
/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (2) have mixed types.Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)
Copying file://coronavirus_timeseries.csv [Content-Type=text/csv]... - Operation completed over 1 objects/39.9 MiB.
unqiue_counties = df['county'].unique()
print(len(unqiue_counties))
2035
We will now construct a list of suitable data at the county level.
def loop_through_geo_codes(df, column='full_county'):
df_county_list = []
df['full_county'] = df['state'] + "_" + df['county']
for code in df['full_county'].unique():
mask = df['full_county'] == code
df_code = df[mask]
ts_count = len(df_code)
if ts_count > 60:
df_county_list.append(df_code)
return df_county_list
county_info = loop_through_geo_codes(df)
print(len(county_info))
56
county_info[0]
name | level | city | county | state | country | population | lat | long | url | aggregate | tz | cases | deaths | recovered | active | tested | hospitalized | discharged | growthFactor | date | month | weekday | full_county | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 4.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2020-01-22 | 1 | 2 | Flanders_Antwerp |
1 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 4.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2020-01-23 | 1 | 3 | Flanders_Antwerp |
2 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 4.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2020-01-24 | 1 | 4 | Flanders_Antwerp |
3 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 4.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2020-01-25 | 1 | 5 | Flanders_Antwerp |
4 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 4.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2020-01-26 | 1 | 6 | Flanders_Antwerp |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
95 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 5815.0 | NaN | NaN | NaN | NaN | 2181.0 | 1869.0 | NaN | 2020-04-26 | 4 | 6 | Flanders_Antwerp |
96 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 5960.0 | NaN | NaN | NaN | NaN | 2202.0 | 1884.0 | NaN | 2020-04-27 | 4 | 0 | Flanders_Antwerp |
97 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 6001.0 | NaN | NaN | NaN | NaN | 2238.0 | 1938.0 | NaN | 2020-04-28 | 4 | 1 | Flanders_Antwerp |
98 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 6002.0 | NaN | NaN | NaN | NaN | 2256.0 | 1985.0 | NaN | 2020-04-29 | 4 | 2 | Flanders_Antwerp |
99 | Antwerp, Flanders, Belgium | county | NaN | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | NaN | Europe/Brussels | 6002.0 | NaN | NaN | NaN | NaN | 2256.0 | 1985.0 | NaN | 2020-04-30 | 4 | 3 | Flanders_Antwerp |
100 rows × 24 columns
county_info[8]['full_county'].values
We will now piece together some simple tutorial code for forecasting new cases in Antwerp.
antwerp_df = df[df['county']=='Antwerp'].fillna(0)
antwerp_relevant = antwerp_df[['cases', 'deaths', 'recovered', 'population', 'lat', 'long']].values
antwerp_df['new_cases'] = antwerp_df.cases.diff()
print(len(antwerp_df))
100
We will now explore using the tsaug library for forecasting.
!pip install tsaug
Collecting tsaug Downloading https://files.pythonhosted.org/packages/e8/6e/8b1be145a32bba360c14322c3b87ad93d6227c46528d482c84eefe54094b/tsaug-0.2.1-py3-none-any.whl Requirement already satisfied: numpy>=1.14 in /usr/local/lib/python3.6/dist-packages (from tsaug) (1.18.3) Requirement already satisfied: scipy>=1.1 in /usr/local/lib/python3.6/dist-packages (from tsaug) (1.4.1) Installing collected packages: tsaug Successfully installed tsaug-0.2.1
from tsaug.visualization import plot
from tsaug import TimeWarp, Crop, Quantize, Drift, Reverse
my_augmenter = (TimeWarp() * 5, # random time warping 5 times in parallel
Crop(size=300), # random crop subsequences with length 300
Quantize(n_levels=[10, 20, 30]), # random quantize to 10-, 20-, or 30- level sets
Drift(max_drift=(0.1, 0.5)), # with 80% probability, random drift the signal up to 10% - 50%
Reverse()) #0.5 # with 50% probability, reverse the sequence)
#X_aug = my_augmenter[0].augment(antwerp_relevant)
print(antwerp_relevant.shape)
X_aug = TimeWarp(antwerp[:70])
We will now define some simple models in Keras for forecasting.
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import RobustScaler
def create_dataset(X, y, time_steps=1):
Xs, ys = [], []
for i in range(len(X) - time_steps):
v = X.iloc[i:(i + time_steps)].values
Xs.append(v)
ys.append(y.iloc[i + time_steps])
return np.array(Xs), np.array(ys)
sweep_config = {
"name": "Default sweep",
"method": "grid",
"parameters": {
"batch_size": {
"values": [2, 3, 4, 5]
},
"learn":{
"values":[0.001, 0.002, 0.004, 0.01]
},
"seq_len":{
"values":[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
}
}
}
#sweep_id = wandb.sweep(sweep_config, project="covid-forecast")
import matplotlib.pyplot as plt
def train(x_train_full, y_train_full, test, test_first, scaler, config_default):
run = wandb.init(project="covid-forecast", config=config_default, magic=True)
config = wandb.config
X_train, Y_train = create_dataset(x_train_full, y_train_full, config["seq_len"])
X_test, y_test = create_dataset(test, test, config["seq_len"])
opt = keras.optimizers.Adam(learning_rate=config["learn"], beta_1=config["beta"], beta_2=0.999, amsgrad=False)
model = keras.Sequential()
model.add(
keras.layers.Bidirectional(
keras.layers.LSTM(
units=128,
input_shape=(X_train.shape[1], X_train.shape[2])
)
)
)
model.add(keras.layers.Dropout(rate=0.2))
model.add(keras.layers.Dense(units=2))
model.compile(loss=config["loss"], optimizer=opt)
history = model.fit(
X_train, Y_train,
epochs=config["epochs"],
batch_size=config["batch_size"],
validation_split=config["validation_split"],
callbacks=[WandbCallback()],
shuffle=False
)
evaluate_single(model, X_test, y_test, scaler)
evaluate_plot_multi(model, test_first, config, X_test, scaler)
return model
def evaluate_single(model, x_test, y_test, scaler):
y_preds = model.predict(x_test)
y_preds = scaler.inverse_transform(y_preds)
y_test = scaler.inverse_transform(y_test)
complete_mse = tf.keras.losses.MSE( y_preds[:, 1], y_test[:, 1])
wandb.run.summary["test_mse"] = complete_mse
return complete_mse
def evaluate_plot_multi(model, test_orig, config, x_test, scaler, predictor="new_cases"):
arr = predict_multi(model, len(test_orig)-config["seq_len"], x_test[0, :, :], config)
test_orig['predicted_cases'] = 0
test_orig['predicted_cases'][config["seq_len"]:] = scaler.inverse_transform(arr.squeeze(0))[:, 1]
plt.plot(test_orig['predicted_cases'], label='predicted_cases')
plt.plot(test_orig[predictor], label='actual_cases')
plt.axvline(x=config['seq_len'], label='Predictions start'.format(config["seq_len"]))
plt.legend();
wandb.log({"test":plt})
plt.plot(test_orig['predicted_cases'], label='predicted_cases')
plt.plot(test_orig[predictor], label='actual_cases')
plt.legend();
wandb.Image(plt, caption="Plot")
large_mse = tf.keras.losses.MSE(
scaler.inverse_transform(arr.squeeze(0))[:, 1], test_orig[predictor][config["seq_len"]:].values
)
wandb.run.summary["test_mse_full"] = large_mse
return large_mse
def predict_multi(model, time_steps, start_rows, config, trg=None, known_colums_indices=None):
"""
start_rows:np.array of dimension ()
"""
start_rows=np.expand_dims(start_rows, axis=0)
trg = np.expand_dims(trg, axis=0)
print(start_rows)
print(start_rows.shape)
for i in range(0, time_steps):
out = model.predict(start_rows[:, i:, :])
out = out[np.newaxis, ...]
if trg and known_colums_indices:
for target in known_colums_indices:
out[:, :, target] = trg[:, i, target]
targ[:, i, :]
start_rows = np.concatenate((start_rows, out), axis=1)
return start_rows[:, config["seq_len"]:, :]
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format='retina'
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend();
Now that we have loooked at Antwerp specifically we will design a general function to work on all geographic counties.
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import RobustScaler
def run_geo_sweeps(county_info, start_idx=0, end_idx=1, test_columns=[]):
for s in range(start_idx, end_idx):
county = county_info[s].fillna(0)
county_name = county['full_county'].values[0]
config_default = {"epochs":30, "validation_split":0.1,
"loss":"mean_squared_error", "optimizer":'adam',
"geo_segment":county_name, "seq_len":7, "train_steps":60,
"test_steps":27, "scaler":"RobustScaler", "new_cases":True,
"beta":0.899, "additional_features":["none"]}
county['new_cases'] = county.cases.diff()
r = RobustScaler()
x_train_full = county[['deaths', 'new_cases']][1:config_default["train_steps"]]
x_train_full = pd.DataFrame(r.fit_transform(x_train_full))
y_train_full = x_train_full
r_test = RobustScaler()
test_orig = county[['deaths', 'new_cases']][60:]
test = pd.DataFrame(r_test.fit_transform(test_orig), columns=["deaths", "new_cases"])
sweep_id = wandb.sweep(sweep_config, project="covid-forecast")
wandb.agent(sweep_id, lambda:train(x_train_full, y_train_full, test, test_orig, r_test, config_default))
run_geo_sweeps(county_info, 8, 28)
We will now predict both one step ahead and 20 steps ahead.
res = model.predict(X_test)
res = r_test.inverse_transform(res)
res
array([[-2.1279370e-02, 2.0092883e+03], [-1.8879963e-02, 2.2472920e+03], [-1.6375745e-02, 2.5275439e+03], [-1.3892809e-02, 2.8506108e+03], [-1.1596879e-02, 3.1829221e+03], [-9.0861954e-03, 3.5029392e+03], [-6.4477865e-03, 3.7825161e+03], [-3.6051013e-03, 4.0421055e+03], [-1.2287628e-03, 4.2927124e+03], [ 3.3153594e-04, 4.5448154e+03], [ 1.1798348e-03, 4.7915127e+03], [ 2.0689592e-03, 5.0360225e+03], [ 3.3188127e-03, 5.2662153e+03], [ 5.0343592e-03, 5.5053794e+03], [ 6.5031778e-03, 5.7533242e+03], [ 7.2021466e-03, 5.9751943e+03], [ 7.6369299e-03, 6.1531494e+03]], dtype=float32)
y_true = r_test.inverse_transform(y_test)
y_true
array([[ 0., 3521.], [ 0., 3822.], [ 0., 4086.], [ 0., 4179.], [ 0., 4265.], [ 0., 4330.], [ 0., 4470.], [ 0., 4645.], [ 0., 4855.], [ 0., 4965.], [ 0., 5028.], [ 0., 5079.], [ 0., 5241.], [ 0., 5415.], [ 0., 5449.], [ 0., 5449.], [ 0., 5449.]])
Use flow-forecast library
import os
!gcloud source repos clone github_aistream-peelout_flow-forecast --project=gmap-997
os.chdir('/content/github_aistream-peelout_flow-forecast')
!git checkout -t origin/branch_fixes
!python setup.py develop
!pip install -r requirements.txt
!mkdir data
from flood_forecast.trainer import train_function
def make_config_file(file_path, df_len):
run = wandb.init(project="covid-forecast")
wandb_config = wandb.config
train_number = df_len * .7
validation_number = df_len *.9
config_default={
"model_name": "MultiAttnHeadSimple",
"model_type": "PyTorch",
"model_params": {
"number_time_series":3,
"seq_len":wandb_config["forecast_history"],
"output_seq_len":wandb_config["out_seq_length"],
"forecast_length":wandb_config["out_seq_length"]
},
"dataset_params":
{ "class": "default",
"training_path": file_path,
"validation_path": file_path,
"test_path": file_path,
"batch_size":wandb_config["batch_size"],
"forecast_history":wandb_config["forecast_history"],
"forecast_length":wandb_config["out_seq_length"],
"train_end": int(train_number),
"valid_start":int(train_number+1),
"valid_end": int(validation_number),
"target_col": ["new_cases"],
"relevant_cols": ["new_cases", "month", "weekday"],
"scaler": "StandardScaler",
"interpolate": False
},
"training_params":
{
"criterion":"MSE",
"optimizer": "Adam",
"optim_params":
{
},
"lr": wandb_config["lr"],
"epochs": 10,
"batch_size":wandb_config["batch_size"]
},
"GCS": False,
"wandb": {
"name": "multihead_pytorch_antwerp",
"tags": ["covid_run", "circleci"],
"project": "covid-forecast"
},
"forward_params":{},
"metrics":["MSE"],
"inference_params":
{
"datetime_start":"2020-04-21",
"hours_to_forecast":10,
"test_csv_path":file_path,
"decoder_params":{
"decoder_function": "simple_decode",
"unsqueeze_dim": 1
},
"dataset_params":{
"file_path": file_path,
"forecast_history":wandb_config["forecast_history"],
"forecast_length":wandb_config["out_seq_length"],
"relevant_cols": ["new_cases", "month", "weekday"],
"target_col": ["new_cases"],
"scaling": "StandardScaler",
"interpolate_param": False
}
}
}
print(config_default)
wandb.config = config_default
return config_default
county_info[0]['datetime'] = county_info[0]['date']
county_info[0]['precip'] = 0
county_info[0]['temp'] = 0
county_info[0] = county_info[0].fillna(0)
county_info[0]['new_cases'] = county_info[0]['cases'].diff()
county_info[0].iloc[0]['new_cases'] = 0
county_info[0] = county_info[0].fillna(0)
county_info[0].to_csv("antwerp.csv")
sweep_config = {
"name": "Default sweep",
"method": "grid",
"parameters": {
"batch_size": {
"values": [2, 3, 4, 5]
},
"lr":{
"values":[0.001, 0.002, 0.004, 0.01]
},
"forecast_history":{
"values":[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
},
"out_seq_length":{
"values":[1, 2, 3]
}
}
}
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:81: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
We will now combine Wandb parameter sweeps with flood forecast
len_csv = len(county_info[0])
sweep_id = wandb.sweep(sweep_config, project="covid-forecast")
wandb.agent(sweep_id, lambda:train_function("PyTorch", make_config_file("antwerp.csv", len_csv)))
Create sweep with ID: yw9zbqtn Sweep URL: https://app.wandb.ai/igodfried/covid-forecast/sweeps/yw9zbqtn wandb: Agent Starting Run: favq6tdk with config: batch_size: 2 forecast_history: 1 lr: 0.001 out_seq_length: 1 wandb: Agent Started Run: favq6tdk
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 11.736990986595629 The number of items in train is: 34 The loss for epoch 0 0.3452056172528126 The running loss is: 24.813077855855227 The number of items in train is: 34 The loss for epoch 1 0.7297964075251537 The running loss is: 28.300584806129336 The number of items in train is: 34 The loss for epoch 2 0.8323701413567451 The running loss is: 10.4155727809557 The number of items in train is: 34 The loss for epoch 3 0.30634037591046176 The running loss is: 11.473218071194424 The number of items in train is: 34 The loss for epoch 4 0.33744759032924776 The running loss is: 8.870212249457836 The number of items in train is: 34 The loss for epoch 5 0.2608885955722893 The running loss is: 8.28752523707226 The number of items in train is: 34 The loss for epoch 6 0.24375074226683116 The running loss is: 7.280146740449709 The number of items in train is: 34 The loss for epoch 7 0.2141219629544032 The running loss is: 12.525580656249076 The number of items in train is: 34 The loss for epoch 8 0.3683994310661493 The running loss is: 19.792637944687158 The number of items in train is: 34 The loss for epoch 9 0.5821364101378576 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 102.806030 91 91 Antwerp, Flanders, Belgium ... 91 71.026802 92 92 Antwerp, Flanders, Belgium ... 92 56.383720 93 93 Antwerp, Flanders, Belgium ... 93 51.088078 94 94 Antwerp, Flanders, Belgium ... 94 50.891293 95 95 Antwerp, Flanders, Belgium ... 95 53.475834 96 96 Antwerp, Flanders, Belgium ... 96 57.577534 97 97 Antwerp, Flanders, Belgium ... 97 43.663624 98 98 Antwerp, Flanders, Belgium ... 98 38.765736 99 99 Antwerp, Flanders, Belgium ... 99 38.785915 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: favq6tdk wandb: Agent Starting Run: qej41xa6 with config: batch_size: 2 forecast_history: 1 lr: 0.001 out_seq_length: 2 wandb: Agent Started Run: qej41xa6
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 20.978312958031893 The number of items in train is: 34 The loss for epoch 0 0.6170092046479968 The running loss is: 39.80216880142689 The number of items in train is: 34 The loss for epoch 1 1.170652023571379 The running loss is: 24.19058443978429 The number of items in train is: 34 The loss for epoch 2 0.7114877776407144 The running loss is: 20.301503472030163 The number of items in train is: 34 The loss for epoch 3 0.5971030432950047 The running loss is: 18.146781336516142 The number of items in train is: 34 The loss for epoch 4 0.53372886283871 The running loss is: 20.873035572469234 The number of items in train is: 34 The loss for epoch 5 0.6139128109549775 The running loss is: 17.74494293704629 The number of items in train is: 34 The loss for epoch 6 0.5219100863837144 The running loss is: 18.19329888187349 The number of items in train is: 34 The loss for epoch 7 0.5350970259374556 The running loss is: 14.98734188452363 The number of items in train is: 34 The loss for epoch 8 0.4408041730742244 The running loss is: 17.561892744153738 The number of items in train is: 34 The loss for epoch 9 0.5165262571809923 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 57.193180 91 91 Antwerp, Flanders, Belgium ... 91 23.370998 92 92 Antwerp, Flanders, Belgium ... 92 14.213340 93 93 Antwerp, Flanders, Belgium ... 93 13.168525 94 94 Antwerp, Flanders, Belgium ... 94 14.792251 95 95 Antwerp, Flanders, Belgium ... 95 17.293728 96 96 Antwerp, Flanders, Belgium ... 96 20.083920 97 97 Antwerp, Flanders, Belgium ... 97 9.197349 98 98 Antwerp, Flanders, Belgium ... 98 7.583842 99 99 Antwerp, Flanders, Belgium ... 99 9.020511 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qej41xa6 wandb: Agent Starting Run: 4lsu567z with config: batch_size: 2 forecast_history: 1 lr: 0.001 out_seq_length: 3 wandb: Agent Started Run: 4lsu567z
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.944805666804314 The number of items in train is: 33 The loss for epoch 0 0.6649941111152823 The running loss is: 39.04568848013878 The number of items in train is: 33 The loss for epoch 1 1.1832026812163265 The running loss is: 22.351303592324257 The number of items in train is: 33 The loss for epoch 2 0.6773122300704321 The running loss is: 24.924195021390915 The number of items in train is: 33 The loss for epoch 3 0.7552786370118459 The running loss is: 17.094573065638542 The number of items in train is: 33 The loss for epoch 4 0.5180173656254103 The running loss is: 22.243711099028587 The number of items in train is: 33 The loss for epoch 5 0.6740518514857148 The running loss is: 14.625111401081085 The number of items in train is: 33 The loss for epoch 6 0.4431851939721541 The running loss is: 18.527046501636505 The number of items in train is: 33 The loss for epoch 7 0.5614256515647426 The running loss is: 13.53986869752407 The number of items in train is: 33 The loss for epoch 8 0.41029905144012335 The running loss is: 13.372476078569889 The number of items in train is: 33 The loss for epoch 9 0.4052265478354512 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 155.923538 91 91 Antwerp, Flanders, Belgium ... 91 151.458740 92 92 Antwerp, Flanders, Belgium ... 92 150.204483 93 93 Antwerp, Flanders, Belgium ... 93 150.787048 94 94 Antwerp, Flanders, Belgium ... 94 152.420502 95 95 Antwerp, Flanders, Belgium ... 95 154.655197 96 96 Antwerp, Flanders, Belgium ... 96 157.233871 97 97 Antwerp, Flanders, Belgium ... 97 150.908249 98 98 Antwerp, Flanders, Belgium ... 98 148.589386 99 99 Antwerp, Flanders, Belgium ... 99 148.562866 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4lsu567z wandb: Agent Starting Run: gga943m2 with config: batch_size: 2 forecast_history: 1 lr: 0.002 out_seq_length: 1 wandb: Agent Started Run: gga943m2
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 11.736990986595629 The number of items in train is: 34 The loss for epoch 0 0.3452056172528126 The running loss is: 24.813077855855227 The number of items in train is: 34 The loss for epoch 1 0.7297964075251537 The running loss is: 28.300584806129336 The number of items in train is: 34 The loss for epoch 2 0.8323701413567451 The running loss is: 10.4155727809557 The number of items in train is: 34 The loss for epoch 3 0.30634037591046176 The running loss is: 11.473218071194424 The number of items in train is: 34 The loss for epoch 4 0.33744759032924776 The running loss is: 8.870212249457836 The number of items in train is: 34 The loss for epoch 5 0.2608885955722893 The running loss is: 8.28752523707226 The number of items in train is: 34 The loss for epoch 6 0.24375074226683116 The running loss is: 7.280146740449709 The number of items in train is: 34 The loss for epoch 7 0.2141219629544032 The running loss is: 12.525580656249076 The number of items in train is: 34 The loss for epoch 8 0.3683994310661493 The running loss is: 19.792637944687158 The number of items in train is: 34 The loss for epoch 9 0.5821364101378576 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 102.806030 91 91 Antwerp, Flanders, Belgium ... 91 71.026802 92 92 Antwerp, Flanders, Belgium ... 92 56.383720 93 93 Antwerp, Flanders, Belgium ... 93 51.088078 94 94 Antwerp, Flanders, Belgium ... 94 50.891293 95 95 Antwerp, Flanders, Belgium ... 95 53.475834 96 96 Antwerp, Flanders, Belgium ... 96 57.577534 97 97 Antwerp, Flanders, Belgium ... 97 43.663624 98 98 Antwerp, Flanders, Belgium ... 98 38.765736 99 99 Antwerp, Flanders, Belgium ... 99 38.785915 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gga943m2 wandb: Agent Starting Run: 8blainoj with config: batch_size: 2 forecast_history: 1 lr: 0.002 out_seq_length: 2 wandb: Agent Started Run: 8blainoj
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 20.978312958031893 The number of items in train is: 34 The loss for epoch 0 0.6170092046479968 The running loss is: 39.80216880142689 The number of items in train is: 34 The loss for epoch 1 1.170652023571379 The running loss is: 24.19058443978429 The number of items in train is: 34 The loss for epoch 2 0.7114877776407144 The running loss is: 20.301503472030163 The number of items in train is: 34 The loss for epoch 3 0.5971030432950047 The running loss is: 18.146781336516142 The number of items in train is: 34 The loss for epoch 4 0.53372886283871 The running loss is: 20.873035572469234 The number of items in train is: 34 The loss for epoch 5 0.6139128109549775 The running loss is: 17.74494293704629 The number of items in train is: 34 The loss for epoch 6 0.5219100863837144 The running loss is: 18.19329888187349 The number of items in train is: 34 The loss for epoch 7 0.5350970259374556 The running loss is: 14.98734188452363 The number of items in train is: 34 The loss for epoch 8 0.4408041730742244 The running loss is: 17.561892744153738 The number of items in train is: 34 The loss for epoch 9 0.5165262571809923 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 57.193180 91 91 Antwerp, Flanders, Belgium ... 91 23.370998 92 92 Antwerp, Flanders, Belgium ... 92 14.213340 93 93 Antwerp, Flanders, Belgium ... 93 13.168525 94 94 Antwerp, Flanders, Belgium ... 94 14.792251 95 95 Antwerp, Flanders, Belgium ... 95 17.293728 96 96 Antwerp, Flanders, Belgium ... 96 20.083920 97 97 Antwerp, Flanders, Belgium ... 97 9.197349 98 98 Antwerp, Flanders, Belgium ... 98 7.583842 99 99 Antwerp, Flanders, Belgium ... 99 9.020511 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8blainoj wandb: Agent Starting Run: aomxdwio with config: batch_size: 2 forecast_history: 1 lr: 0.002 out_seq_length: 3 wandb: Agent Started Run: aomxdwio
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.944805666804314 The number of items in train is: 33 The loss for epoch 0 0.6649941111152823 The running loss is: 39.04568848013878 The number of items in train is: 33 The loss for epoch 1 1.1832026812163265 The running loss is: 22.351303592324257 The number of items in train is: 33 The loss for epoch 2 0.6773122300704321 The running loss is: 24.924195021390915 The number of items in train is: 33 The loss for epoch 3 0.7552786370118459 The running loss is: 17.094573065638542 The number of items in train is: 33 The loss for epoch 4 0.5180173656254103 The running loss is: 22.243711099028587 The number of items in train is: 33 The loss for epoch 5 0.6740518514857148 The running loss is: 14.625111401081085 The number of items in train is: 33 The loss for epoch 6 0.4431851939721541 The running loss is: 18.527046501636505 The number of items in train is: 33 The loss for epoch 7 0.5614256515647426 The running loss is: 13.53986869752407 The number of items in train is: 33 The loss for epoch 8 0.41029905144012335 The running loss is: 13.372476078569889 The number of items in train is: 33 The loss for epoch 9 0.4052265478354512 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 155.923538 91 91 Antwerp, Flanders, Belgium ... 91 151.458740 92 92 Antwerp, Flanders, Belgium ... 92 150.204483 93 93 Antwerp, Flanders, Belgium ... 93 150.787048 94 94 Antwerp, Flanders, Belgium ... 94 152.420502 95 95 Antwerp, Flanders, Belgium ... 95 154.655197 96 96 Antwerp, Flanders, Belgium ... 96 157.233871 97 97 Antwerp, Flanders, Belgium ... 97 150.908249 98 98 Antwerp, Flanders, Belgium ... 98 148.589386 99 99 Antwerp, Flanders, Belgium ... 99 148.562866 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: aomxdwio wandb: Agent Starting Run: 30hdvsam with config: batch_size: 2 forecast_history: 1 lr: 0.004 out_seq_length: 1 wandb: Agent Started Run: 30hdvsam
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 11.736990986595629 The number of items in train is: 34 The loss for epoch 0 0.3452056172528126 The running loss is: 24.813077855855227 The number of items in train is: 34 The loss for epoch 1 0.7297964075251537 The running loss is: 28.300584806129336 The number of items in train is: 34 The loss for epoch 2 0.8323701413567451 The running loss is: 10.4155727809557 The number of items in train is: 34 The loss for epoch 3 0.30634037591046176 The running loss is: 11.473218071194424 The number of items in train is: 34 The loss for epoch 4 0.33744759032924776 The running loss is: 8.870212249457836 The number of items in train is: 34 The loss for epoch 5 0.2608885955722893 The running loss is: 8.28752523707226 The number of items in train is: 34 The loss for epoch 6 0.24375074226683116 The running loss is: 7.280146740449709 The number of items in train is: 34 The loss for epoch 7 0.2141219629544032 The running loss is: 12.525580656249076 The number of items in train is: 34 The loss for epoch 8 0.3683994310661493 The running loss is: 19.792637944687158 The number of items in train is: 34 The loss for epoch 9 0.5821364101378576 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 102.806030 91 91 Antwerp, Flanders, Belgium ... 91 71.026802 92 92 Antwerp, Flanders, Belgium ... 92 56.383720 93 93 Antwerp, Flanders, Belgium ... 93 51.088078 94 94 Antwerp, Flanders, Belgium ... 94 50.891293 95 95 Antwerp, Flanders, Belgium ... 95 53.475834 96 96 Antwerp, Flanders, Belgium ... 96 57.577534 97 97 Antwerp, Flanders, Belgium ... 97 43.663624 98 98 Antwerp, Flanders, Belgium ... 98 38.765736 99 99 Antwerp, Flanders, Belgium ... 99 38.785915 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 30hdvsam wandb: Agent Starting Run: t62et1z8 with config: batch_size: 2 forecast_history: 1 lr: 0.004 out_seq_length: 2 wandb: Agent Started Run: t62et1z8
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 20.978312958031893 The number of items in train is: 34 The loss for epoch 0 0.6170092046479968 The running loss is: 39.80216880142689 The number of items in train is: 34 The loss for epoch 1 1.170652023571379 The running loss is: 24.19058443978429 The number of items in train is: 34 The loss for epoch 2 0.7114877776407144 The running loss is: 20.301503472030163 The number of items in train is: 34 The loss for epoch 3 0.5971030432950047 The running loss is: 18.146781336516142 The number of items in train is: 34 The loss for epoch 4 0.53372886283871 The running loss is: 20.873035572469234 The number of items in train is: 34 The loss for epoch 5 0.6139128109549775 The running loss is: 17.74494293704629 The number of items in train is: 34 The loss for epoch 6 0.5219100863837144 The running loss is: 18.19329888187349 The number of items in train is: 34 The loss for epoch 7 0.5350970259374556 The running loss is: 14.98734188452363 The number of items in train is: 34 The loss for epoch 8 0.4408041730742244 The running loss is: 17.561892744153738 The number of items in train is: 34 The loss for epoch 9 0.5165262571809923 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 57.193180 91 91 Antwerp, Flanders, Belgium ... 91 23.370998 92 92 Antwerp, Flanders, Belgium ... 92 14.213340 93 93 Antwerp, Flanders, Belgium ... 93 13.168525 94 94 Antwerp, Flanders, Belgium ... 94 14.792251 95 95 Antwerp, Flanders, Belgium ... 95 17.293728 96 96 Antwerp, Flanders, Belgium ... 96 20.083920 97 97 Antwerp, Flanders, Belgium ... 97 9.197349 98 98 Antwerp, Flanders, Belgium ... 98 7.583842 99 99 Antwerp, Flanders, Belgium ... 99 9.020511 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: t62et1z8 wandb: Agent Starting Run: 4b3oei6w with config: batch_size: 2 forecast_history: 1 lr: 0.004 out_seq_length: 3 wandb: Agent Started Run: 4b3oei6w
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.944805666804314 The number of items in train is: 33 The loss for epoch 0 0.6649941111152823 The running loss is: 39.04568848013878 The number of items in train is: 33 The loss for epoch 1 1.1832026812163265 The running loss is: 22.351303592324257 The number of items in train is: 33 The loss for epoch 2 0.6773122300704321 The running loss is: 24.924195021390915 The number of items in train is: 33 The loss for epoch 3 0.7552786370118459 The running loss is: 17.094573065638542 The number of items in train is: 33 The loss for epoch 4 0.5180173656254103 The running loss is: 22.243711099028587 The number of items in train is: 33 The loss for epoch 5 0.6740518514857148 The running loss is: 14.625111401081085 The number of items in train is: 33 The loss for epoch 6 0.4431851939721541 The running loss is: 18.527046501636505 The number of items in train is: 33 The loss for epoch 7 0.5614256515647426 The running loss is: 13.53986869752407 The number of items in train is: 33 The loss for epoch 8 0.41029905144012335 The running loss is: 13.372476078569889 The number of items in train is: 33 The loss for epoch 9 0.4052265478354512 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 155.923538 91 91 Antwerp, Flanders, Belgium ... 91 151.458740 92 92 Antwerp, Flanders, Belgium ... 92 150.204483 93 93 Antwerp, Flanders, Belgium ... 93 150.787048 94 94 Antwerp, Flanders, Belgium ... 94 152.420502 95 95 Antwerp, Flanders, Belgium ... 95 154.655197 96 96 Antwerp, Flanders, Belgium ... 96 157.233871 97 97 Antwerp, Flanders, Belgium ... 97 150.908249 98 98 Antwerp, Flanders, Belgium ... 98 148.589386 99 99 Antwerp, Flanders, Belgium ... 99 148.562866 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4b3oei6w wandb: Agent Starting Run: 5vlib7vq with config: batch_size: 2 forecast_history: 1 lr: 0.01 out_seq_length: 1 wandb: Agent Started Run: 5vlib7vq
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 11.736990986595629 The number of items in train is: 34 The loss for epoch 0 0.3452056172528126 The running loss is: 24.813077855855227 The number of items in train is: 34 The loss for epoch 1 0.7297964075251537 The running loss is: 28.300584806129336 The number of items in train is: 34 The loss for epoch 2 0.8323701413567451 The running loss is: 10.4155727809557 The number of items in train is: 34 The loss for epoch 3 0.30634037591046176 The running loss is: 11.473218071194424 The number of items in train is: 34 The loss for epoch 4 0.33744759032924776 The running loss is: 8.870212249457836 The number of items in train is: 34 The loss for epoch 5 0.2608885955722893 The running loss is: 8.28752523707226 The number of items in train is: 34 The loss for epoch 6 0.24375074226683116 The running loss is: 7.280146740449709 The number of items in train is: 34 The loss for epoch 7 0.2141219629544032 The running loss is: 12.525580656249076 The number of items in train is: 34 The loss for epoch 8 0.3683994310661493 The running loss is: 19.792637944687158 The number of items in train is: 34 The loss for epoch 9 0.5821364101378576 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 102.806030 91 91 Antwerp, Flanders, Belgium ... 91 71.026802 92 92 Antwerp, Flanders, Belgium ... 92 56.383720 93 93 Antwerp, Flanders, Belgium ... 93 51.088078 94 94 Antwerp, Flanders, Belgium ... 94 50.891293 95 95 Antwerp, Flanders, Belgium ... 95 53.475834 96 96 Antwerp, Flanders, Belgium ... 96 57.577534 97 97 Antwerp, Flanders, Belgium ... 97 43.663624 98 98 Antwerp, Flanders, Belgium ... 98 38.765736 99 99 Antwerp, Flanders, Belgium ... 99 38.785915 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5vlib7vq wandb: Agent Starting Run: qkoip9zi with config: batch_size: 2 forecast_history: 1 lr: 0.01 out_seq_length: 2 wandb: Agent Started Run: qkoip9zi
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 20.978312958031893 The number of items in train is: 34 The loss for epoch 0 0.6170092046479968 The running loss is: 39.80216880142689 The number of items in train is: 34 The loss for epoch 1 1.170652023571379 The running loss is: 24.19058443978429 The number of items in train is: 34 The loss for epoch 2 0.7114877776407144 The running loss is: 20.301503472030163 The number of items in train is: 34 The loss for epoch 3 0.5971030432950047 The running loss is: 18.146781336516142 The number of items in train is: 34 The loss for epoch 4 0.53372886283871 The running loss is: 20.873035572469234 The number of items in train is: 34 The loss for epoch 5 0.6139128109549775 The running loss is: 17.74494293704629 The number of items in train is: 34 The loss for epoch 6 0.5219100863837144 The running loss is: 18.19329888187349 The number of items in train is: 34 The loss for epoch 7 0.5350970259374556 The running loss is: 14.98734188452363 The number of items in train is: 34 The loss for epoch 8 0.4408041730742244 The running loss is: 17.561892744153738 The number of items in train is: 34 The loss for epoch 9 0.5165262571809923 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 57.193180 91 91 Antwerp, Flanders, Belgium ... 91 23.370998 92 92 Antwerp, Flanders, Belgium ... 92 14.213340 93 93 Antwerp, Flanders, Belgium ... 93 13.168525 94 94 Antwerp, Flanders, Belgium ... 94 14.792251 95 95 Antwerp, Flanders, Belgium ... 95 17.293728 96 96 Antwerp, Flanders, Belgium ... 96 20.083920 97 97 Antwerp, Flanders, Belgium ... 97 9.197349 98 98 Antwerp, Flanders, Belgium ... 98 7.583842 99 99 Antwerp, Flanders, Belgium ... 99 9.020511 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qkoip9zi wandb: Agent Starting Run: vrtzj2tq with config: batch_size: 2 forecast_history: 1 lr: 0.01 out_seq_length: 3 wandb: Agent Started Run: vrtzj2tq
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 1, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 1, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 1, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.944805666804314 The number of items in train is: 33 The loss for epoch 0 0.6649941111152823 The running loss is: 39.04568848013878 The number of items in train is: 33 The loss for epoch 1 1.1832026812163265 The running loss is: 22.351303592324257 The number of items in train is: 33 The loss for epoch 2 0.6773122300704321 The running loss is: 24.924195021390915 The number of items in train is: 33 The loss for epoch 3 0.7552786370118459 The running loss is: 17.094573065638542 The number of items in train is: 33 The loss for epoch 4 0.5180173656254103 The running loss is: 22.243711099028587 The number of items in train is: 33 The loss for epoch 5 0.6740518514857148 The running loss is: 14.625111401081085 The number of items in train is: 33 The loss for epoch 6 0.4431851939721541 The running loss is: 18.527046501636505 The number of items in train is: 33 The loss for epoch 7 0.5614256515647426 The running loss is: 13.53986869752407 The number of items in train is: 33 The loss for epoch 8 0.41029905144012335 The running loss is: 13.372476078569889 The number of items in train is: 33 The loss for epoch 9 0.4052265478354512 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 155.923538 91 91 Antwerp, Flanders, Belgium ... 91 151.458740 92 92 Antwerp, Flanders, Belgium ... 92 150.204483 93 93 Antwerp, Flanders, Belgium ... 93 150.787048 94 94 Antwerp, Flanders, Belgium ... 94 152.420502 95 95 Antwerp, Flanders, Belgium ... 95 154.655197 96 96 Antwerp, Flanders, Belgium ... 96 157.233871 97 97 Antwerp, Flanders, Belgium ... 97 150.908249 98 98 Antwerp, Flanders, Belgium ... 98 148.589386 99 99 Antwerp, Flanders, Belgium ... 99 148.562866 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vrtzj2tq wandb: Agent Starting Run: 0n6zfk4d with config: batch_size: 2 forecast_history: 2 lr: 0.001 out_seq_length: 1 wandb: Agent Started Run: 0n6zfk4d
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.926211021491326 The number of items in train is: 34 The loss for epoch 0 0.2331238535732743 The running loss is: 45.07759717758745 The number of items in train is: 34 The loss for epoch 1 1.3258116816937484 The running loss is: 17.52304550539702 The number of items in train is: 34 The loss for epoch 2 0.5153836913352066 The running loss is: 19.223857637960464 The number of items in train is: 34 The loss for epoch 3 0.5654075775870725 The running loss is: 17.085357565616505 The number of items in train is: 34 The loss for epoch 4 0.5025105166357795 The running loss is: 26.338379439665005 The number of items in train is: 34 The loss for epoch 5 0.7746582188136766 The running loss is: 12.023202999029309 The number of items in train is: 34 The loss for epoch 6 0.3536236176185091 The running loss is: 10.84097226295853 The number of items in train is: 34 The loss for epoch 7 0.3188521253811332 The running loss is: 9.669757608440705 The number of items in train is: 34 The loss for epoch 8 0.28440463554237366 The running loss is: 7.7529250888037495 The number of items in train is: 34 The loss for epoch 9 0.22802720849422792 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 157.648819 91 91 Antwerp, Flanders, Belgium ... 91 163.518372 92 92 Antwerp, Flanders, Belgium ... 92 164.045349 93 93 Antwerp, Flanders, Belgium ... 93 172.106415 94 94 Antwerp, Flanders, Belgium ... 94 178.464401 95 95 Antwerp, Flanders, Belgium ... 95 189.383789 96 96 Antwerp, Flanders, Belgium ... 96 200.001709 97 97 Antwerp, Flanders, Belgium ... 97 199.110626 98 98 Antwerp, Flanders, Belgium ... 98 195.757309 99 99 Antwerp, Flanders, Belgium ... 99 198.477951 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0n6zfk4d wandb: Agent Starting Run: rukyahky with config: batch_size: 2 forecast_history: 2 lr: 0.001 out_seq_length: 2 wandb: Agent Started Run: rukyahky
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.949298333376646 The number of items in train is: 33 The loss for epoch 0 0.665130252526565 The running loss is: 28.23917729780078 The number of items in train is: 33 The loss for epoch 1 0.8557326453879024 The running loss is: 20.276927853934467 The number of items in train is: 33 The loss for epoch 2 0.6144523592101354 The running loss is: 22.451173399109393 The number of items in train is: 33 The loss for epoch 3 0.6803385878517998 The running loss is: 18.38559128716588 The number of items in train is: 33 The loss for epoch 4 0.5571391299141176 The running loss is: 22.97731645638123 The number of items in train is: 33 The loss for epoch 5 0.6962823168600373 The running loss is: 15.07943250075914 The number of items in train is: 33 The loss for epoch 6 0.45695250002300425 The running loss is: 19.21207500435412 The number of items in train is: 33 The loss for epoch 7 0.582184091041034 The running loss is: 15.169635845348239 The number of items in train is: 33 The loss for epoch 8 0.4596859347075224 The running loss is: 18.277867312077433 The number of items in train is: 33 The loss for epoch 9 0.5538747670326495 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 85.166397 91 91 Antwerp, Flanders, Belgium ... 91 92.528320 92 92 Antwerp, Flanders, Belgium ... 92 80.694923 93 93 Antwerp, Flanders, Belgium ... 93 80.634438 94 94 Antwerp, Flanders, Belgium ... 94 77.969078 95 95 Antwerp, Flanders, Belgium ... 95 78.311951 96 96 Antwerp, Flanders, Belgium ... 96 78.250671 97 97 Antwerp, Flanders, Belgium ... 97 72.981339 98 98 Antwerp, Flanders, Belgium ... 98 72.524170 99 99 Antwerp, Flanders, Belgium ... 99 71.966652 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rukyahky wandb: Agent Starting Run: vspjwn1i with config: batch_size: 2 forecast_history: 2 lr: 0.001 out_seq_length: 3 wandb: Agent Started Run: vspjwn1i
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.00543548539281 The number of items in train is: 33 The loss for epoch 0 0.6365283480422064 The running loss is: 31.75407860055566 The number of items in train is: 33 The loss for epoch 1 0.9622448060774442 The running loss is: 21.44613552838564 The number of items in train is: 33 The loss for epoch 2 0.6498828947995648 The running loss is: 24.966893255710602 The number of items in train is: 33 The loss for epoch 3 0.7565725229003213 The running loss is: 19.329234207049012 The number of items in train is: 33 The loss for epoch 4 0.5857343699105761 The running loss is: 22.27110578864813 The number of items in train is: 33 The loss for epoch 5 0.6748819935953978 The running loss is: 17.701665556058288 The number of items in train is: 33 The loss for epoch 6 0.5364141077593421 The running loss is: 25.693841315805912 The number of items in train is: 33 The loss for epoch 7 0.7786012519941186 The running loss is: 15.266029976308346 The number of items in train is: 33 The loss for epoch 8 0.4626069689790408 The running loss is: 16.428095784038305 The number of items in train is: 33 The loss for epoch 9 0.4978210843647971 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.231934 91 91 Antwerp, Flanders, Belgium ... 91 173.492966 92 92 Antwerp, Flanders, Belgium ... 92 176.606049 93 93 Antwerp, Flanders, Belgium ... 93 182.805557 94 94 Antwerp, Flanders, Belgium ... 94 187.054810 95 95 Antwerp, Flanders, Belgium ... 95 192.212372 96 96 Antwerp, Flanders, Belgium ... 96 196.656876 97 97 Antwerp, Flanders, Belgium ... 97 206.050522 98 98 Antwerp, Flanders, Belgium ... 98 200.513489 99 99 Antwerp, Flanders, Belgium ... 99 204.270187 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vspjwn1i wandb: Agent Starting Run: skf5u077 with config: batch_size: 2 forecast_history: 2 lr: 0.002 out_seq_length: 1 wandb: Agent Started Run: skf5u077
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.926211021491326 The number of items in train is: 34 The loss for epoch 0 0.2331238535732743 The running loss is: 45.07759717758745 The number of items in train is: 34 The loss for epoch 1 1.3258116816937484 The running loss is: 17.52304550539702 The number of items in train is: 34 The loss for epoch 2 0.5153836913352066 The running loss is: 19.223857637960464 The number of items in train is: 34 The loss for epoch 3 0.5654075775870725 The running loss is: 17.085357565616505 The number of items in train is: 34 The loss for epoch 4 0.5025105166357795 The running loss is: 26.338379439665005 The number of items in train is: 34 The loss for epoch 5 0.7746582188136766 The running loss is: 12.023202999029309 The number of items in train is: 34 The loss for epoch 6 0.3536236176185091 The running loss is: 10.84097226295853 The number of items in train is: 34 The loss for epoch 7 0.3188521253811332 The running loss is: 9.669757608440705 The number of items in train is: 34 The loss for epoch 8 0.28440463554237366 The running loss is: 7.7529250888037495 The number of items in train is: 34 The loss for epoch 9 0.22802720849422792 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 157.648819 91 91 Antwerp, Flanders, Belgium ... 91 163.518372 92 92 Antwerp, Flanders, Belgium ... 92 164.045349 93 93 Antwerp, Flanders, Belgium ... 93 172.106415 94 94 Antwerp, Flanders, Belgium ... 94 178.464401 95 95 Antwerp, Flanders, Belgium ... 95 189.383789 96 96 Antwerp, Flanders, Belgium ... 96 200.001709 97 97 Antwerp, Flanders, Belgium ... 97 199.110626 98 98 Antwerp, Flanders, Belgium ... 98 195.757309 99 99 Antwerp, Flanders, Belgium ... 99 198.477951 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: skf5u077 wandb: Agent Starting Run: kwo2n9nm with config: batch_size: 2 forecast_history: 2 lr: 0.002 out_seq_length: 2 wandb: Agent Started Run: kwo2n9nm
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.949298333376646 The number of items in train is: 33 The loss for epoch 0 0.665130252526565 The running loss is: 28.23917729780078 The number of items in train is: 33 The loss for epoch 1 0.8557326453879024 The running loss is: 20.276927853934467 The number of items in train is: 33 The loss for epoch 2 0.6144523592101354 The running loss is: 22.451173399109393 The number of items in train is: 33 The loss for epoch 3 0.6803385878517998 The running loss is: 18.38559128716588 The number of items in train is: 33 The loss for epoch 4 0.5571391299141176 The running loss is: 22.97731645638123 The number of items in train is: 33 The loss for epoch 5 0.6962823168600373 The running loss is: 15.07943250075914 The number of items in train is: 33 The loss for epoch 6 0.45695250002300425 The running loss is: 19.21207500435412 The number of items in train is: 33 The loss for epoch 7 0.582184091041034 The running loss is: 15.169635845348239 The number of items in train is: 33 The loss for epoch 8 0.4596859347075224 The running loss is: 18.277867312077433 The number of items in train is: 33 The loss for epoch 9 0.5538747670326495 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 85.166397 91 91 Antwerp, Flanders, Belgium ... 91 92.528320 92 92 Antwerp, Flanders, Belgium ... 92 80.694923 93 93 Antwerp, Flanders, Belgium ... 93 80.634438 94 94 Antwerp, Flanders, Belgium ... 94 77.969078 95 95 Antwerp, Flanders, Belgium ... 95 78.311951 96 96 Antwerp, Flanders, Belgium ... 96 78.250671 97 97 Antwerp, Flanders, Belgium ... 97 72.981339 98 98 Antwerp, Flanders, Belgium ... 98 72.524170 99 99 Antwerp, Flanders, Belgium ... 99 71.966652 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: kwo2n9nm wandb: Agent Starting Run: 27c31yeh with config: batch_size: 2 forecast_history: 2 lr: 0.002 out_seq_length: 3 wandb: Agent Started Run: 27c31yeh
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.00543548539281 The number of items in train is: 33 The loss for epoch 0 0.6365283480422064 The running loss is: 31.75407860055566 The number of items in train is: 33 The loss for epoch 1 0.9622448060774442 The running loss is: 21.44613552838564 The number of items in train is: 33 The loss for epoch 2 0.6498828947995648 The running loss is: 24.966893255710602 The number of items in train is: 33 The loss for epoch 3 0.7565725229003213 The running loss is: 19.329234207049012 The number of items in train is: 33 The loss for epoch 4 0.5857343699105761 The running loss is: 22.27110578864813 The number of items in train is: 33 The loss for epoch 5 0.6748819935953978 The running loss is: 17.701665556058288 The number of items in train is: 33 The loss for epoch 6 0.5364141077593421 The running loss is: 25.693841315805912 The number of items in train is: 33 The loss for epoch 7 0.7786012519941186 The running loss is: 15.266029976308346 The number of items in train is: 33 The loss for epoch 8 0.4626069689790408 The running loss is: 16.428095784038305 The number of items in train is: 33 The loss for epoch 9 0.4978210843647971 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.231934 91 91 Antwerp, Flanders, Belgium ... 91 173.492966 92 92 Antwerp, Flanders, Belgium ... 92 176.606049 93 93 Antwerp, Flanders, Belgium ... 93 182.805557 94 94 Antwerp, Flanders, Belgium ... 94 187.054810 95 95 Antwerp, Flanders, Belgium ... 95 192.212372 96 96 Antwerp, Flanders, Belgium ... 96 196.656876 97 97 Antwerp, Flanders, Belgium ... 97 206.050522 98 98 Antwerp, Flanders, Belgium ... 98 200.513489 99 99 Antwerp, Flanders, Belgium ... 99 204.270187 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 27c31yeh wandb: Agent Starting Run: icihioxa with config: batch_size: 2 forecast_history: 2 lr: 0.004 out_seq_length: 1 wandb: Agent Started Run: icihioxa
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.926211021491326 The number of items in train is: 34 The loss for epoch 0 0.2331238535732743 The running loss is: 45.07759717758745 The number of items in train is: 34 The loss for epoch 1 1.3258116816937484 The running loss is: 17.52304550539702 The number of items in train is: 34 The loss for epoch 2 0.5153836913352066 The running loss is: 19.223857637960464 The number of items in train is: 34 The loss for epoch 3 0.5654075775870725 The running loss is: 17.085357565616505 The number of items in train is: 34 The loss for epoch 4 0.5025105166357795 The running loss is: 26.338379439665005 The number of items in train is: 34 The loss for epoch 5 0.7746582188136766 The running loss is: 12.023202999029309 The number of items in train is: 34 The loss for epoch 6 0.3536236176185091 The running loss is: 10.84097226295853 The number of items in train is: 34 The loss for epoch 7 0.3188521253811332 The running loss is: 9.669757608440705 The number of items in train is: 34 The loss for epoch 8 0.28440463554237366 The running loss is: 7.7529250888037495 The number of items in train is: 34 The loss for epoch 9 0.22802720849422792 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 157.648819 91 91 Antwerp, Flanders, Belgium ... 91 163.518372 92 92 Antwerp, Flanders, Belgium ... 92 164.045349 93 93 Antwerp, Flanders, Belgium ... 93 172.106415 94 94 Antwerp, Flanders, Belgium ... 94 178.464401 95 95 Antwerp, Flanders, Belgium ... 95 189.383789 96 96 Antwerp, Flanders, Belgium ... 96 200.001709 97 97 Antwerp, Flanders, Belgium ... 97 199.110626 98 98 Antwerp, Flanders, Belgium ... 98 195.757309 99 99 Antwerp, Flanders, Belgium ... 99 198.477951 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: icihioxa wandb: Agent Starting Run: jzz869u5 with config: batch_size: 2 forecast_history: 2 lr: 0.004 out_seq_length: 2 wandb: Agent Started Run: jzz869u5
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.949298333376646 The number of items in train is: 33 The loss for epoch 0 0.665130252526565 The running loss is: 28.23917729780078 The number of items in train is: 33 The loss for epoch 1 0.8557326453879024 The running loss is: 20.276927853934467 The number of items in train is: 33 The loss for epoch 2 0.6144523592101354 The running loss is: 22.451173399109393 The number of items in train is: 33 The loss for epoch 3 0.6803385878517998 The running loss is: 18.38559128716588 The number of items in train is: 33 The loss for epoch 4 0.5571391299141176 The running loss is: 22.97731645638123 The number of items in train is: 33 The loss for epoch 5 0.6962823168600373 The running loss is: 15.07943250075914 The number of items in train is: 33 The loss for epoch 6 0.45695250002300425 The running loss is: 19.21207500435412 The number of items in train is: 33 The loss for epoch 7 0.582184091041034 The running loss is: 15.169635845348239 The number of items in train is: 33 The loss for epoch 8 0.4596859347075224 The running loss is: 18.277867312077433 The number of items in train is: 33 The loss for epoch 9 0.5538747670326495 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 85.166397 91 91 Antwerp, Flanders, Belgium ... 91 92.528320 92 92 Antwerp, Flanders, Belgium ... 92 80.694923 93 93 Antwerp, Flanders, Belgium ... 93 80.634438 94 94 Antwerp, Flanders, Belgium ... 94 77.969078 95 95 Antwerp, Flanders, Belgium ... 95 78.311951 96 96 Antwerp, Flanders, Belgium ... 96 78.250671 97 97 Antwerp, Flanders, Belgium ... 97 72.981339 98 98 Antwerp, Flanders, Belgium ... 98 72.524170 99 99 Antwerp, Flanders, Belgium ... 99 71.966652 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jzz869u5 wandb: Agent Starting Run: 4vrhs88h with config: batch_size: 2 forecast_history: 2 lr: 0.004 out_seq_length: 3 wandb: Agent Started Run: 4vrhs88h
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.00543548539281 The number of items in train is: 33 The loss for epoch 0 0.6365283480422064 The running loss is: 31.75407860055566 The number of items in train is: 33 The loss for epoch 1 0.9622448060774442 The running loss is: 21.44613552838564 The number of items in train is: 33 The loss for epoch 2 0.6498828947995648 The running loss is: 24.966893255710602 The number of items in train is: 33 The loss for epoch 3 0.7565725229003213 The running loss is: 19.329234207049012 The number of items in train is: 33 The loss for epoch 4 0.5857343699105761 The running loss is: 22.27110578864813 The number of items in train is: 33 The loss for epoch 5 0.6748819935953978 The running loss is: 17.701665556058288 The number of items in train is: 33 The loss for epoch 6 0.5364141077593421 The running loss is: 25.693841315805912 The number of items in train is: 33 The loss for epoch 7 0.7786012519941186 The running loss is: 15.266029976308346 The number of items in train is: 33 The loss for epoch 8 0.4626069689790408 The running loss is: 16.428095784038305 The number of items in train is: 33 The loss for epoch 9 0.4978210843647971 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.231934 91 91 Antwerp, Flanders, Belgium ... 91 173.492966 92 92 Antwerp, Flanders, Belgium ... 92 176.606049 93 93 Antwerp, Flanders, Belgium ... 93 182.805557 94 94 Antwerp, Flanders, Belgium ... 94 187.054810 95 95 Antwerp, Flanders, Belgium ... 95 192.212372 96 96 Antwerp, Flanders, Belgium ... 96 196.656876 97 97 Antwerp, Flanders, Belgium ... 97 206.050522 98 98 Antwerp, Flanders, Belgium ... 98 200.513489 99 99 Antwerp, Flanders, Belgium ... 99 204.270187 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4vrhs88h wandb: Agent Starting Run: r2mnfi6q with config: batch_size: 2 forecast_history: 2 lr: 0.01 out_seq_length: 1 wandb: Agent Started Run: r2mnfi6q
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.926211021491326 The number of items in train is: 34 The loss for epoch 0 0.2331238535732743 The running loss is: 45.07759717758745 The number of items in train is: 34 The loss for epoch 1 1.3258116816937484 The running loss is: 17.52304550539702 The number of items in train is: 34 The loss for epoch 2 0.5153836913352066 The running loss is: 19.223857637960464 The number of items in train is: 34 The loss for epoch 3 0.5654075775870725 The running loss is: 17.085357565616505 The number of items in train is: 34 The loss for epoch 4 0.5025105166357795 The running loss is: 26.338379439665005 The number of items in train is: 34 The loss for epoch 5 0.7746582188136766 The running loss is: 12.023202999029309 The number of items in train is: 34 The loss for epoch 6 0.3536236176185091 The running loss is: 10.84097226295853 The number of items in train is: 34 The loss for epoch 7 0.3188521253811332 The running loss is: 9.669757608440705 The number of items in train is: 34 The loss for epoch 8 0.28440463554237366 The running loss is: 7.7529250888037495 The number of items in train is: 34 The loss for epoch 9 0.22802720849422792 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 157.648819 91 91 Antwerp, Flanders, Belgium ... 91 163.518372 92 92 Antwerp, Flanders, Belgium ... 92 164.045349 93 93 Antwerp, Flanders, Belgium ... 93 172.106415 94 94 Antwerp, Flanders, Belgium ... 94 178.464401 95 95 Antwerp, Flanders, Belgium ... 95 189.383789 96 96 Antwerp, Flanders, Belgium ... 96 200.001709 97 97 Antwerp, Flanders, Belgium ... 97 199.110626 98 98 Antwerp, Flanders, Belgium ... 98 195.757309 99 99 Antwerp, Flanders, Belgium ... 99 198.477951 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r2mnfi6q wandb: Agent Starting Run: 6jzdmv5b with config: batch_size: 2 forecast_history: 2 lr: 0.01 out_seq_length: 2 wandb: Agent Started Run: 6jzdmv5b
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.949298333376646 The number of items in train is: 33 The loss for epoch 0 0.665130252526565 The running loss is: 28.23917729780078 The number of items in train is: 33 The loss for epoch 1 0.8557326453879024 The running loss is: 20.276927853934467 The number of items in train is: 33 The loss for epoch 2 0.6144523592101354 The running loss is: 22.451173399109393 The number of items in train is: 33 The loss for epoch 3 0.6803385878517998 The running loss is: 18.38559128716588 The number of items in train is: 33 The loss for epoch 4 0.5571391299141176 The running loss is: 22.97731645638123 The number of items in train is: 33 The loss for epoch 5 0.6962823168600373 The running loss is: 15.07943250075914 The number of items in train is: 33 The loss for epoch 6 0.45695250002300425 The running loss is: 19.21207500435412 The number of items in train is: 33 The loss for epoch 7 0.582184091041034 The running loss is: 15.169635845348239 The number of items in train is: 33 The loss for epoch 8 0.4596859347075224 The running loss is: 18.277867312077433 The number of items in train is: 33 The loss for epoch 9 0.5538747670326495 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 85.166397 91 91 Antwerp, Flanders, Belgium ... 91 92.528320 92 92 Antwerp, Flanders, Belgium ... 92 80.694923 93 93 Antwerp, Flanders, Belgium ... 93 80.634438 94 94 Antwerp, Flanders, Belgium ... 94 77.969078 95 95 Antwerp, Flanders, Belgium ... 95 78.311951 96 96 Antwerp, Flanders, Belgium ... 96 78.250671 97 97 Antwerp, Flanders, Belgium ... 97 72.981339 98 98 Antwerp, Flanders, Belgium ... 98 72.524170 99 99 Antwerp, Flanders, Belgium ... 99 71.966652 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6jzdmv5b wandb: Agent Starting Run: aq47jf5a with config: batch_size: 2 forecast_history: 2 lr: 0.01 out_seq_length: 3 wandb: Agent Started Run: aq47jf5a
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 2, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 2, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 2, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 21.00543548539281 The number of items in train is: 33 The loss for epoch 0 0.6365283480422064 The running loss is: 31.75407860055566 The number of items in train is: 33 The loss for epoch 1 0.9622448060774442 The running loss is: 21.44613552838564 The number of items in train is: 33 The loss for epoch 2 0.6498828947995648 The running loss is: 24.966893255710602 The number of items in train is: 33 The loss for epoch 3 0.7565725229003213 The running loss is: 19.329234207049012 The number of items in train is: 33 The loss for epoch 4 0.5857343699105761 The running loss is: 22.27110578864813 The number of items in train is: 33 The loss for epoch 5 0.6748819935953978 The running loss is: 17.701665556058288 The number of items in train is: 33 The loss for epoch 6 0.5364141077593421 The running loss is: 25.693841315805912 The number of items in train is: 33 The loss for epoch 7 0.7786012519941186 The running loss is: 15.266029976308346 The number of items in train is: 33 The loss for epoch 8 0.4626069689790408 The running loss is: 16.428095784038305 The number of items in train is: 33 The loss for epoch 9 0.4978210843647971 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.231934 91 91 Antwerp, Flanders, Belgium ... 91 173.492966 92 92 Antwerp, Flanders, Belgium ... 92 176.606049 93 93 Antwerp, Flanders, Belgium ... 93 182.805557 94 94 Antwerp, Flanders, Belgium ... 94 187.054810 95 95 Antwerp, Flanders, Belgium ... 95 192.212372 96 96 Antwerp, Flanders, Belgium ... 96 196.656876 97 97 Antwerp, Flanders, Belgium ... 97 206.050522 98 98 Antwerp, Flanders, Belgium ... 98 200.513489 99 99 Antwerp, Flanders, Belgium ... 99 204.270187 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: aq47jf5a wandb: Agent Starting Run: oz15bs5z with config: batch_size: 2 forecast_history: 3 lr: 0.001 out_seq_length: 1 wandb: Agent Started Run: oz15bs5z
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 10.025347635382786 The number of items in train is: 33 The loss for epoch 0 0.30379841319341777 The running loss is: 34.230189617257565 The number of items in train is: 33 The loss for epoch 1 1.0372784732502291 The running loss is: 13.429732192773372 The number of items in train is: 33 The loss for epoch 2 0.4069615815991931 The running loss is: 26.592998671345413 The number of items in train is: 33 The loss for epoch 3 0.8058484445862246 The running loss is: 12.567596087465063 The number of items in train is: 33 The loss for epoch 4 0.3808362450746989 The running loss is: 20.822010218165815 The number of items in train is: 33 The loss for epoch 5 0.6309700066110853 The running loss is: 7.111795865843305 The number of items in train is: 33 The loss for epoch 6 0.2155089656316153 The running loss is: 11.406340244342573 The number of items in train is: 33 The loss for epoch 7 0.34564667407098704 The running loss is: 5.787523627048358 The number of items in train is: 33 The loss for epoch 8 0.17537950384995024 The running loss is: 8.48353370220866 The number of items in train is: 33 The loss for epoch 9 0.2570767788548079 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 136.612915 91 91 Antwerp, Flanders, Belgium ... 91 132.998718 92 92 Antwerp, Flanders, Belgium ... 92 135.038666 93 93 Antwerp, Flanders, Belgium ... 93 122.781960 94 94 Antwerp, Flanders, Belgium ... 94 122.583794 95 95 Antwerp, Flanders, Belgium ... 95 123.441513 96 96 Antwerp, Flanders, Belgium ... 96 120.397736 97 97 Antwerp, Flanders, Belgium ... 97 111.034378 98 98 Antwerp, Flanders, Belgium ... 98 106.719803 99 99 Antwerp, Flanders, Belgium ... 99 104.161469 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: oz15bs5z wandb: Agent Starting Run: 8771p5cp with config: batch_size: 2 forecast_history: 3 lr: 0.001 out_seq_length: 2 wandb: Agent Started Run: 8771p5cp
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 28.064961809664965 The number of items in train is: 33 The loss for epoch 0 0.8504533881716656 The running loss is: 29.085500955581665 The number of items in train is: 33 The loss for epoch 1 0.881378816835808 The running loss is: 26.46319116279483 The number of items in train is: 33 The loss for epoch 2 0.8019148837210555 The running loss is: 27.79352070391178 The number of items in train is: 33 The loss for epoch 3 0.8422279001185389 The running loss is: 37.66246119979769 The number of items in train is: 33 The loss for epoch 4 1.1412867030241725 The running loss is: 23.635434065014124 The number of items in train is: 33 The loss for epoch 5 0.7162252746973977 The running loss is: 22.120809108018875 The number of items in train is: 33 The loss for epoch 6 0.6703275487278447 The running loss is: 20.774387892335653 The number of items in train is: 33 The loss for epoch 7 0.6295269058283531 The running loss is: 17.475550305098295 The number of items in train is: 33 The loss for epoch 8 0.5295621304575241 The running loss is: 17.86318363249302 The number of items in train is: 33 The loss for epoch 9 0.5413085949240308 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 149.282455 91 91 Antwerp, Flanders, Belgium ... 91 184.569229 92 92 Antwerp, Flanders, Belgium ... 92 186.867966 93 93 Antwerp, Flanders, Belgium ... 93 188.032913 94 94 Antwerp, Flanders, Belgium ... 94 202.545227 95 95 Antwerp, Flanders, Belgium ... 95 206.003845 96 96 Antwerp, Flanders, Belgium ... 96 210.492386 97 97 Antwerp, Flanders, Belgium ... 97 248.335281 98 98 Antwerp, Flanders, Belgium ... 98 260.891876 99 99 Antwerp, Flanders, Belgium ... 99 248.564087 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8771p5cp wandb: Agent Starting Run: 7ljdlr01 with config: batch_size: 2 forecast_history: 3 lr: 0.001 out_seq_length: 3 wandb: Agent Started Run: 7ljdlr01
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 17.937730296049267 The number of items in train is: 32 The loss for epoch 0 0.5605540717515396 The running loss is: 35.50285805051681 The number of items in train is: 32 The loss for epoch 1 1.1094643140786502 The running loss is: 17.564409082289785 The number of items in train is: 32 The loss for epoch 2 0.5488877838215558 The running loss is: 23.59525622660294 The number of items in train is: 32 The loss for epoch 3 0.7373517570813419 The running loss is: 15.578202691394836 The number of items in train is: 32 The loss for epoch 4 0.4868188341060886 The running loss is: 24.60211830935441 The number of items in train is: 32 The loss for epoch 5 0.7688161971673253 The running loss is: 14.085245068301447 The number of items in train is: 32 The loss for epoch 6 0.4401639083844202 The running loss is: 12.162914328742772 The number of items in train is: 32 The loss for epoch 7 0.38009107277321164 The running loss is: 12.102874213131145 The number of items in train is: 32 The loss for epoch 8 0.37821481916034827 The running loss is: 11.44598395540379 The number of items in train is: 32 The loss for epoch 9 0.35768699860636843 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 132.449570 91 91 Antwerp, Flanders, Belgium ... 91 163.160934 92 92 Antwerp, Flanders, Belgium ... 92 169.112091 93 93 Antwerp, Flanders, Belgium ... 93 168.411591 94 94 Antwerp, Flanders, Belgium ... 94 187.403351 95 95 Antwerp, Flanders, Belgium ... 95 200.974945 96 96 Antwerp, Flanders, Belgium ... 96 218.312180 97 97 Antwerp, Flanders, Belgium ... 97 233.340790 98 98 Antwerp, Flanders, Belgium ... 98 246.575729 99 99 Antwerp, Flanders, Belgium ... 99 250.199844 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7ljdlr01 wandb: Agent Starting Run: ybqj85zn with config: batch_size: 2 forecast_history: 3 lr: 0.002 out_seq_length: 1 wandb: Agent Started Run: ybqj85zn
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 10.025347635382786 The number of items in train is: 33 The loss for epoch 0 0.30379841319341777 The running loss is: 34.230189617257565 The number of items in train is: 33 The loss for epoch 1 1.0372784732502291 The running loss is: 13.429732192773372 The number of items in train is: 33 The loss for epoch 2 0.4069615815991931 The running loss is: 26.592998671345413 The number of items in train is: 33 The loss for epoch 3 0.8058484445862246 The running loss is: 12.567596087465063 The number of items in train is: 33 The loss for epoch 4 0.3808362450746989 The running loss is: 20.822010218165815 The number of items in train is: 33 The loss for epoch 5 0.6309700066110853 The running loss is: 7.111795865843305 The number of items in train is: 33 The loss for epoch 6 0.2155089656316153 The running loss is: 11.406340244342573 The number of items in train is: 33 The loss for epoch 7 0.34564667407098704 The running loss is: 5.787523627048358 The number of items in train is: 33 The loss for epoch 8 0.17537950384995024 The running loss is: 8.48353370220866 The number of items in train is: 33 The loss for epoch 9 0.2570767788548079 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 136.612915 91 91 Antwerp, Flanders, Belgium ... 91 132.998718 92 92 Antwerp, Flanders, Belgium ... 92 135.038666 93 93 Antwerp, Flanders, Belgium ... 93 122.781960 94 94 Antwerp, Flanders, Belgium ... 94 122.583794 95 95 Antwerp, Flanders, Belgium ... 95 123.441513 96 96 Antwerp, Flanders, Belgium ... 96 120.397736 97 97 Antwerp, Flanders, Belgium ... 97 111.034378 98 98 Antwerp, Flanders, Belgium ... 98 106.719803 99 99 Antwerp, Flanders, Belgium ... 99 104.161469 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ybqj85zn wandb: Agent Starting Run: 20kzhohq with config: batch_size: 2 forecast_history: 3 lr: 0.002 out_seq_length: 2 wandb: Agent Started Run: 20kzhohq
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 28.064961809664965 The number of items in train is: 33 The loss for epoch 0 0.8504533881716656 The running loss is: 29.085500955581665 The number of items in train is: 33 The loss for epoch 1 0.881378816835808 The running loss is: 26.46319116279483 The number of items in train is: 33 The loss for epoch 2 0.8019148837210555 The running loss is: 27.79352070391178 The number of items in train is: 33 The loss for epoch 3 0.8422279001185389 The running loss is: 37.66246119979769 The number of items in train is: 33 The loss for epoch 4 1.1412867030241725 The running loss is: 23.635434065014124 The number of items in train is: 33 The loss for epoch 5 0.7162252746973977 The running loss is: 22.120809108018875 The number of items in train is: 33 The loss for epoch 6 0.6703275487278447 The running loss is: 20.774387892335653 The number of items in train is: 33 The loss for epoch 7 0.6295269058283531 The running loss is: 17.475550305098295 The number of items in train is: 33 The loss for epoch 8 0.5295621304575241 The running loss is: 17.86318363249302 The number of items in train is: 33 The loss for epoch 9 0.5413085949240308 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 149.282455 91 91 Antwerp, Flanders, Belgium ... 91 184.569229 92 92 Antwerp, Flanders, Belgium ... 92 186.867966 93 93 Antwerp, Flanders, Belgium ... 93 188.032913 94 94 Antwerp, Flanders, Belgium ... 94 202.545227 95 95 Antwerp, Flanders, Belgium ... 95 206.003845 96 96 Antwerp, Flanders, Belgium ... 96 210.492386 97 97 Antwerp, Flanders, Belgium ... 97 248.335281 98 98 Antwerp, Flanders, Belgium ... 98 260.891876 99 99 Antwerp, Flanders, Belgium ... 99 248.564087 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 20kzhohq wandb: Agent Starting Run: c01gud1e with config: batch_size: 2 forecast_history: 3 lr: 0.002 out_seq_length: 3 wandb: Agent Started Run: c01gud1e
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 17.937730296049267 The number of items in train is: 32 The loss for epoch 0 0.5605540717515396 The running loss is: 35.50285805051681 The number of items in train is: 32 The loss for epoch 1 1.1094643140786502 The running loss is: 17.564409082289785 The number of items in train is: 32 The loss for epoch 2 0.5488877838215558 The running loss is: 23.59525622660294 The number of items in train is: 32 The loss for epoch 3 0.7373517570813419 The running loss is: 15.578202691394836 The number of items in train is: 32 The loss for epoch 4 0.4868188341060886 The running loss is: 24.60211830935441 The number of items in train is: 32 The loss for epoch 5 0.7688161971673253 The running loss is: 14.085245068301447 The number of items in train is: 32 The loss for epoch 6 0.4401639083844202 The running loss is: 12.162914328742772 The number of items in train is: 32 The loss for epoch 7 0.38009107277321164 The running loss is: 12.102874213131145 The number of items in train is: 32 The loss for epoch 8 0.37821481916034827 The running loss is: 11.44598395540379 The number of items in train is: 32 The loss for epoch 9 0.35768699860636843 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 132.449570 91 91 Antwerp, Flanders, Belgium ... 91 163.160934 92 92 Antwerp, Flanders, Belgium ... 92 169.112091 93 93 Antwerp, Flanders, Belgium ... 93 168.411591 94 94 Antwerp, Flanders, Belgium ... 94 187.403351 95 95 Antwerp, Flanders, Belgium ... 95 200.974945 96 96 Antwerp, Flanders, Belgium ... 96 218.312180 97 97 Antwerp, Flanders, Belgium ... 97 233.340790 98 98 Antwerp, Flanders, Belgium ... 98 246.575729 99 99 Antwerp, Flanders, Belgium ... 99 250.199844 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c01gud1e wandb: Agent Starting Run: t4sfrea9 with config: batch_size: 2 forecast_history: 3 lr: 0.004 out_seq_length: 1 wandb: Agent Started Run: t4sfrea9
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 10.025347635382786 The number of items in train is: 33 The loss for epoch 0 0.30379841319341777 The running loss is: 34.230189617257565 The number of items in train is: 33 The loss for epoch 1 1.0372784732502291 The running loss is: 13.429732192773372 The number of items in train is: 33 The loss for epoch 2 0.4069615815991931 The running loss is: 26.592998671345413 The number of items in train is: 33 The loss for epoch 3 0.8058484445862246 The running loss is: 12.567596087465063 The number of items in train is: 33 The loss for epoch 4 0.3808362450746989 The running loss is: 20.822010218165815 The number of items in train is: 33 The loss for epoch 5 0.6309700066110853 The running loss is: 7.111795865843305 The number of items in train is: 33 The loss for epoch 6 0.2155089656316153 The running loss is: 11.406340244342573 The number of items in train is: 33 The loss for epoch 7 0.34564667407098704 The running loss is: 5.787523627048358 The number of items in train is: 33 The loss for epoch 8 0.17537950384995024 The running loss is: 8.48353370220866 The number of items in train is: 33 The loss for epoch 9 0.2570767788548079 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 136.612915 91 91 Antwerp, Flanders, Belgium ... 91 132.998718 92 92 Antwerp, Flanders, Belgium ... 92 135.038666 93 93 Antwerp, Flanders, Belgium ... 93 122.781960 94 94 Antwerp, Flanders, Belgium ... 94 122.583794 95 95 Antwerp, Flanders, Belgium ... 95 123.441513 96 96 Antwerp, Flanders, Belgium ... 96 120.397736 97 97 Antwerp, Flanders, Belgium ... 97 111.034378 98 98 Antwerp, Flanders, Belgium ... 98 106.719803 99 99 Antwerp, Flanders, Belgium ... 99 104.161469 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: t4sfrea9 wandb: Agent Starting Run: qikm90u1 with config: batch_size: 2 forecast_history: 3 lr: 0.004 out_seq_length: 2 wandb: Agent Started Run: qikm90u1
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 28.064961809664965 The number of items in train is: 33 The loss for epoch 0 0.8504533881716656 The running loss is: 29.085500955581665 The number of items in train is: 33 The loss for epoch 1 0.881378816835808 The running loss is: 26.46319116279483 The number of items in train is: 33 The loss for epoch 2 0.8019148837210555 The running loss is: 27.79352070391178 The number of items in train is: 33 The loss for epoch 3 0.8422279001185389 The running loss is: 37.66246119979769 The number of items in train is: 33 The loss for epoch 4 1.1412867030241725 The running loss is: 23.635434065014124 The number of items in train is: 33 The loss for epoch 5 0.7162252746973977 The running loss is: 22.120809108018875 The number of items in train is: 33 The loss for epoch 6 0.6703275487278447 The running loss is: 20.774387892335653 The number of items in train is: 33 The loss for epoch 7 0.6295269058283531 The running loss is: 17.475550305098295 The number of items in train is: 33 The loss for epoch 8 0.5295621304575241 The running loss is: 17.86318363249302 The number of items in train is: 33 The loss for epoch 9 0.5413085949240308 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 149.282455 91 91 Antwerp, Flanders, Belgium ... 91 184.569229 92 92 Antwerp, Flanders, Belgium ... 92 186.867966 93 93 Antwerp, Flanders, Belgium ... 93 188.032913 94 94 Antwerp, Flanders, Belgium ... 94 202.545227 95 95 Antwerp, Flanders, Belgium ... 95 206.003845 96 96 Antwerp, Flanders, Belgium ... 96 210.492386 97 97 Antwerp, Flanders, Belgium ... 97 248.335281 98 98 Antwerp, Flanders, Belgium ... 98 260.891876 99 99 Antwerp, Flanders, Belgium ... 99 248.564087 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qikm90u1 wandb: Agent Starting Run: pj34i53z with config: batch_size: 2 forecast_history: 3 lr: 0.004 out_seq_length: 3 wandb: Agent Started Run: pj34i53z
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 17.937730296049267 The number of items in train is: 32 The loss for epoch 0 0.5605540717515396 The running loss is: 35.50285805051681 The number of items in train is: 32 The loss for epoch 1 1.1094643140786502 The running loss is: 17.564409082289785 The number of items in train is: 32 The loss for epoch 2 0.5488877838215558 The running loss is: 23.59525622660294 The number of items in train is: 32 The loss for epoch 3 0.7373517570813419 The running loss is: 15.578202691394836 The number of items in train is: 32 The loss for epoch 4 0.4868188341060886 The running loss is: 24.60211830935441 The number of items in train is: 32 The loss for epoch 5 0.7688161971673253 The running loss is: 14.085245068301447 The number of items in train is: 32 The loss for epoch 6 0.4401639083844202 The running loss is: 12.162914328742772 The number of items in train is: 32 The loss for epoch 7 0.38009107277321164 The running loss is: 12.102874213131145 The number of items in train is: 32 The loss for epoch 8 0.37821481916034827 The running loss is: 11.44598395540379 The number of items in train is: 32 The loss for epoch 9 0.35768699860636843 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 132.449570 91 91 Antwerp, Flanders, Belgium ... 91 163.160934 92 92 Antwerp, Flanders, Belgium ... 92 169.112091 93 93 Antwerp, Flanders, Belgium ... 93 168.411591 94 94 Antwerp, Flanders, Belgium ... 94 187.403351 95 95 Antwerp, Flanders, Belgium ... 95 200.974945 96 96 Antwerp, Flanders, Belgium ... 96 218.312180 97 97 Antwerp, Flanders, Belgium ... 97 233.340790 98 98 Antwerp, Flanders, Belgium ... 98 246.575729 99 99 Antwerp, Flanders, Belgium ... 99 250.199844 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pj34i53z wandb: Agent Starting Run: 331k3vz1 with config: batch_size: 2 forecast_history: 3 lr: 0.01 out_seq_length: 1 wandb: Agent Started Run: 331k3vz1
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 10.025347635382786 The number of items in train is: 33 The loss for epoch 0 0.30379841319341777 The running loss is: 34.230189617257565 The number of items in train is: 33 The loss for epoch 1 1.0372784732502291 The running loss is: 13.429732192773372 The number of items in train is: 33 The loss for epoch 2 0.4069615815991931 The running loss is: 26.592998671345413 The number of items in train is: 33 The loss for epoch 3 0.8058484445862246 The running loss is: 12.567596087465063 The number of items in train is: 33 The loss for epoch 4 0.3808362450746989 The running loss is: 20.822010218165815 The number of items in train is: 33 The loss for epoch 5 0.6309700066110853 The running loss is: 7.111795865843305 The number of items in train is: 33 The loss for epoch 6 0.2155089656316153 The running loss is: 11.406340244342573 The number of items in train is: 33 The loss for epoch 7 0.34564667407098704 The running loss is: 5.787523627048358 The number of items in train is: 33 The loss for epoch 8 0.17537950384995024 The running loss is: 8.48353370220866 The number of items in train is: 33 The loss for epoch 9 0.2570767788548079 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 136.612915 91 91 Antwerp, Flanders, Belgium ... 91 132.998718 92 92 Antwerp, Flanders, Belgium ... 92 135.038666 93 93 Antwerp, Flanders, Belgium ... 93 122.781960 94 94 Antwerp, Flanders, Belgium ... 94 122.583794 95 95 Antwerp, Flanders, Belgium ... 95 123.441513 96 96 Antwerp, Flanders, Belgium ... 96 120.397736 97 97 Antwerp, Flanders, Belgium ... 97 111.034378 98 98 Antwerp, Flanders, Belgium ... 98 106.719803 99 99 Antwerp, Flanders, Belgium ... 99 104.161469 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 331k3vz1 wandb: Agent Starting Run: 69i46xdy with config: batch_size: 2 forecast_history: 3 lr: 0.01 out_seq_length: 2 wandb: Agent Started Run: 69i46xdy
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 28.064961809664965 The number of items in train is: 33 The loss for epoch 0 0.8504533881716656 The running loss is: 29.085500955581665 The number of items in train is: 33 The loss for epoch 1 0.881378816835808 The running loss is: 26.46319116279483 The number of items in train is: 33 The loss for epoch 2 0.8019148837210555 The running loss is: 27.79352070391178 The number of items in train is: 33 The loss for epoch 3 0.8422279001185389 The running loss is: 37.66246119979769 The number of items in train is: 33 The loss for epoch 4 1.1412867030241725 The running loss is: 23.635434065014124 The number of items in train is: 33 The loss for epoch 5 0.7162252746973977 The running loss is: 22.120809108018875 The number of items in train is: 33 The loss for epoch 6 0.6703275487278447 The running loss is: 20.774387892335653 The number of items in train is: 33 The loss for epoch 7 0.6295269058283531 The running loss is: 17.475550305098295 The number of items in train is: 33 The loss for epoch 8 0.5295621304575241 The running loss is: 17.86318363249302 The number of items in train is: 33 The loss for epoch 9 0.5413085949240308 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 149.282455 91 91 Antwerp, Flanders, Belgium ... 91 184.569229 92 92 Antwerp, Flanders, Belgium ... 92 186.867966 93 93 Antwerp, Flanders, Belgium ... 93 188.032913 94 94 Antwerp, Flanders, Belgium ... 94 202.545227 95 95 Antwerp, Flanders, Belgium ... 95 206.003845 96 96 Antwerp, Flanders, Belgium ... 96 210.492386 97 97 Antwerp, Flanders, Belgium ... 97 248.335281 98 98 Antwerp, Flanders, Belgium ... 98 260.891876 99 99 Antwerp, Flanders, Belgium ... 99 248.564087 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 69i46xdy wandb: Agent Starting Run: nx8bd762 with config: batch_size: 2 forecast_history: 3 lr: 0.01 out_seq_length: 3 wandb: Agent Started Run: nx8bd762
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 3, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 3, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 3, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 17.937730296049267 The number of items in train is: 32 The loss for epoch 0 0.5605540717515396 The running loss is: 35.50285805051681 The number of items in train is: 32 The loss for epoch 1 1.1094643140786502 The running loss is: 17.564409082289785 The number of items in train is: 32 The loss for epoch 2 0.5488877838215558 The running loss is: 23.59525622660294 The number of items in train is: 32 The loss for epoch 3 0.7373517570813419 The running loss is: 15.578202691394836 The number of items in train is: 32 The loss for epoch 4 0.4868188341060886 The running loss is: 24.60211830935441 The number of items in train is: 32 The loss for epoch 5 0.7688161971673253 The running loss is: 14.085245068301447 The number of items in train is: 32 The loss for epoch 6 0.4401639083844202 The running loss is: 12.162914328742772 The number of items in train is: 32 The loss for epoch 7 0.38009107277321164 The running loss is: 12.102874213131145 The number of items in train is: 32 The loss for epoch 8 0.37821481916034827 The running loss is: 11.44598395540379 The number of items in train is: 32 The loss for epoch 9 0.35768699860636843 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 132.449570 91 91 Antwerp, Flanders, Belgium ... 91 163.160934 92 92 Antwerp, Flanders, Belgium ... 92 169.112091 93 93 Antwerp, Flanders, Belgium ... 93 168.411591 94 94 Antwerp, Flanders, Belgium ... 94 187.403351 95 95 Antwerp, Flanders, Belgium ... 95 200.974945 96 96 Antwerp, Flanders, Belgium ... 96 218.312180 97 97 Antwerp, Flanders, Belgium ... 97 233.340790 98 98 Antwerp, Flanders, Belgium ... 98 246.575729 99 99 Antwerp, Flanders, Belgium ... 99 250.199844 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nx8bd762 wandb: Agent Starting Run: lsdw0an2 with config: batch_size: 2 forecast_history: 4 lr: 0.001 out_seq_length: 1 wandb: Agent Started Run: lsdw0an2
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 13.547936960821971 The number of items in train is: 33 The loss for epoch 0 0.41054354426733247 The running loss is: 26.5433846085798 The number of items in train is: 33 The loss for epoch 1 0.8043449881387819 The running loss is: 14.103622088208795 The number of items in train is: 33 The loss for epoch 2 0.4273824875214786 The running loss is: 9.100044154096395 The number of items in train is: 33 The loss for epoch 3 0.2757589137604968 The running loss is: 14.748382066725753 The number of items in train is: 33 The loss for epoch 4 0.4469206686886592 The running loss is: 11.233333861382562 The number of items in train is: 33 The loss for epoch 5 0.3404040564055322 The running loss is: 21.369321470090654 The number of items in train is: 33 The loss for epoch 6 0.6475551960633531 The running loss is: 7.361885572201572 The number of items in train is: 33 The loss for epoch 7 0.22308744158186583 The running loss is: 8.053950862027705 The number of items in train is: 33 The loss for epoch 8 0.24405911703114258 The running loss is: 11.17254789127037 The number of items in train is: 33 The loss for epoch 9 0.3385620573112233 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 125.017883 91 91 Antwerp, Flanders, Belgium ... 91 123.411812 92 92 Antwerp, Flanders, Belgium ... 92 125.127426 93 93 Antwerp, Flanders, Belgium ... 93 125.062477 94 94 Antwerp, Flanders, Belgium ... 94 115.939461 95 95 Antwerp, Flanders, Belgium ... 95 121.196037 96 96 Antwerp, Flanders, Belgium ... 96 127.404915 97 97 Antwerp, Flanders, Belgium ... 97 114.615707 98 98 Antwerp, Flanders, Belgium ... 98 110.940880 99 99 Antwerp, Flanders, Belgium ... 99 107.993706 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lsdw0an2 wandb: Agent Starting Run: 4pvrvo3l with config: batch_size: 2 forecast_history: 4 lr: 0.001 out_seq_length: 2 wandb: Agent Started Run: 4pvrvo3l
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 9.96654413593933 The number of items in train is: 32 The loss for epoch 0 0.31145450424810406 The running loss is: 28.999742947518826 The number of items in train is: 32 The loss for epoch 1 0.9062419671099633 The running loss is: 7.978736505378038 The number of items in train is: 32 The loss for epoch 2 0.24933551579306368 The running loss is: 16.54671422811225 The number of items in train is: 32 The loss for epoch 3 0.5170848196285078 The running loss is: 9.03373872069642 The number of items in train is: 32 The loss for epoch 4 0.2823043350217631 The running loss is: 23.664487095782533 The number of items in train is: 32 The loss for epoch 5 0.7395152217432042 The running loss is: 9.5151820583269 The number of items in train is: 32 The loss for epoch 6 0.2973494393227156 The running loss is: 7.392919855192304 The number of items in train is: 32 The loss for epoch 7 0.2310287454747595 The running loss is: 13.802258587442338 The number of items in train is: 32 The loss for epoch 8 0.4313205808575731 The running loss is: 6.292614362668246 The number of items in train is: 32 The loss for epoch 9 0.1966441988333827 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.089966 91 91 Antwerp, Flanders, Belgium ... 91 161.481049 92 92 Antwerp, Flanders, Belgium ... 92 161.767853 93 93 Antwerp, Flanders, Belgium ... 93 162.047974 94 94 Antwerp, Flanders, Belgium ... 94 165.752609 95 95 Antwerp, Flanders, Belgium ... 95 170.131912 96 96 Antwerp, Flanders, Belgium ... 96 176.269791 97 97 Antwerp, Flanders, Belgium ... 97 175.326233 98 98 Antwerp, Flanders, Belgium ... 98 177.572510 99 99 Antwerp, Flanders, Belgium ... 99 179.625351 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4pvrvo3l wandb: Agent Starting Run: vhal3k4y with config: batch_size: 2 forecast_history: 4 lr: 0.001 out_seq_length: 3 wandb: Agent Started Run: vhal3k4y
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.6697259191423655 The number of items in train is: 32 The loss for epoch 0 0.23967893497319892 The running loss is: 37.96821307018399 The number of items in train is: 32 The loss for epoch 1 1.1865066584432498 The running loss is: 12.867059556767344 The number of items in train is: 32 The loss for epoch 2 0.4020956111489795 The running loss is: 25.48514431528747 The number of items in train is: 32 The loss for epoch 3 0.7964107598527335 The running loss is: 11.341065876185894 The number of items in train is: 32 The loss for epoch 4 0.3544083086308092 The running loss is: 24.40359308384359 The number of items in train is: 32 The loss for epoch 5 0.7626122838701122 The running loss is: 10.748747183941305 The number of items in train is: 32 The loss for epoch 6 0.33589834949816577 The running loss is: 15.834405758418143 The number of items in train is: 32 The loss for epoch 7 0.49482517995056696 The running loss is: 8.714372392743826 The number of items in train is: 32 The loss for epoch 8 0.27232413727324456 The running loss is: 13.327436484396458 The number of items in train is: 32 The loss for epoch 9 0.4164823901373893 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 112.782478 91 91 Antwerp, Flanders, Belgium ... 91 106.982094 92 92 Antwerp, Flanders, Belgium ... 92 104.220634 93 93 Antwerp, Flanders, Belgium ... 93 103.812248 94 94 Antwerp, Flanders, Belgium ... 94 96.546860 95 95 Antwerp, Flanders, Belgium ... 95 98.490540 96 96 Antwerp, Flanders, Belgium ... 96 101.250137 97 97 Antwerp, Flanders, Belgium ... 97 93.525597 98 98 Antwerp, Flanders, Belgium ... 98 91.633041 99 99 Antwerp, Flanders, Belgium ... 99 92.601295 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vhal3k4y wandb: Agent Starting Run: k3ia09x1 with config: batch_size: 2 forecast_history: 4 lr: 0.002 out_seq_length: 1 wandb: Agent Started Run: k3ia09x1
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 13.547936960821971 The number of items in train is: 33 The loss for epoch 0 0.41054354426733247 The running loss is: 26.5433846085798 The number of items in train is: 33 The loss for epoch 1 0.8043449881387819 The running loss is: 14.103622088208795 The number of items in train is: 33 The loss for epoch 2 0.4273824875214786 The running loss is: 9.100044154096395 The number of items in train is: 33 The loss for epoch 3 0.2757589137604968 The running loss is: 14.748382066725753 The number of items in train is: 33 The loss for epoch 4 0.4469206686886592 The running loss is: 11.233333861382562 The number of items in train is: 33 The loss for epoch 5 0.3404040564055322 The running loss is: 21.369321470090654 The number of items in train is: 33 The loss for epoch 6 0.6475551960633531 The running loss is: 7.361885572201572 The number of items in train is: 33 The loss for epoch 7 0.22308744158186583 The running loss is: 8.053950862027705 The number of items in train is: 33 The loss for epoch 8 0.24405911703114258 The running loss is: 11.17254789127037 The number of items in train is: 33 The loss for epoch 9 0.3385620573112233 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 125.017883 91 91 Antwerp, Flanders, Belgium ... 91 123.411812 92 92 Antwerp, Flanders, Belgium ... 92 125.127426 93 93 Antwerp, Flanders, Belgium ... 93 125.062477 94 94 Antwerp, Flanders, Belgium ... 94 115.939461 95 95 Antwerp, Flanders, Belgium ... 95 121.196037 96 96 Antwerp, Flanders, Belgium ... 96 127.404915 97 97 Antwerp, Flanders, Belgium ... 97 114.615707 98 98 Antwerp, Flanders, Belgium ... 98 110.940880 99 99 Antwerp, Flanders, Belgium ... 99 107.993706 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: k3ia09x1 wandb: Agent Starting Run: x7rh0o15 with config: batch_size: 2 forecast_history: 4 lr: 0.002 out_seq_length: 2 wandb: Agent Started Run: x7rh0o15
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 9.96654413593933 The number of items in train is: 32 The loss for epoch 0 0.31145450424810406 The running loss is: 28.999742947518826 The number of items in train is: 32 The loss for epoch 1 0.9062419671099633 The running loss is: 7.978736505378038 The number of items in train is: 32 The loss for epoch 2 0.24933551579306368 The running loss is: 16.54671422811225 The number of items in train is: 32 The loss for epoch 3 0.5170848196285078 The running loss is: 9.03373872069642 The number of items in train is: 32 The loss for epoch 4 0.2823043350217631 The running loss is: 23.664487095782533 The number of items in train is: 32 The loss for epoch 5 0.7395152217432042 The running loss is: 9.5151820583269 The number of items in train is: 32 The loss for epoch 6 0.2973494393227156 The running loss is: 7.392919855192304 The number of items in train is: 32 The loss for epoch 7 0.2310287454747595 The running loss is: 13.802258587442338 The number of items in train is: 32 The loss for epoch 8 0.4313205808575731 The running loss is: 6.292614362668246 The number of items in train is: 32 The loss for epoch 9 0.1966441988333827 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.089966 91 91 Antwerp, Flanders, Belgium ... 91 161.481049 92 92 Antwerp, Flanders, Belgium ... 92 161.767853 93 93 Antwerp, Flanders, Belgium ... 93 162.047974 94 94 Antwerp, Flanders, Belgium ... 94 165.752609 95 95 Antwerp, Flanders, Belgium ... 95 170.131912 96 96 Antwerp, Flanders, Belgium ... 96 176.269791 97 97 Antwerp, Flanders, Belgium ... 97 175.326233 98 98 Antwerp, Flanders, Belgium ... 98 177.572510 99 99 Antwerp, Flanders, Belgium ... 99 179.625351 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: x7rh0o15 wandb: Agent Starting Run: 0aeujmcx with config: batch_size: 2 forecast_history: 4 lr: 0.002 out_seq_length: 3 wandb: Agent Started Run: 0aeujmcx
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.002, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.6697259191423655 The number of items in train is: 32 The loss for epoch 0 0.23967893497319892 The running loss is: 37.96821307018399 The number of items in train is: 32 The loss for epoch 1 1.1865066584432498 The running loss is: 12.867059556767344 The number of items in train is: 32 The loss for epoch 2 0.4020956111489795 The running loss is: 25.48514431528747 The number of items in train is: 32 The loss for epoch 3 0.7964107598527335 The running loss is: 11.341065876185894 The number of items in train is: 32 The loss for epoch 4 0.3544083086308092 The running loss is: 24.40359308384359 The number of items in train is: 32 The loss for epoch 5 0.7626122838701122 The running loss is: 10.748747183941305 The number of items in train is: 32 The loss for epoch 6 0.33589834949816577 The running loss is: 15.834405758418143 The number of items in train is: 32 The loss for epoch 7 0.49482517995056696 The running loss is: 8.714372392743826 The number of items in train is: 32 The loss for epoch 8 0.27232413727324456 The running loss is: 13.327436484396458 The number of items in train is: 32 The loss for epoch 9 0.4164823901373893 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 112.782478 91 91 Antwerp, Flanders, Belgium ... 91 106.982094 92 92 Antwerp, Flanders, Belgium ... 92 104.220634 93 93 Antwerp, Flanders, Belgium ... 93 103.812248 94 94 Antwerp, Flanders, Belgium ... 94 96.546860 95 95 Antwerp, Flanders, Belgium ... 95 98.490540 96 96 Antwerp, Flanders, Belgium ... 96 101.250137 97 97 Antwerp, Flanders, Belgium ... 97 93.525597 98 98 Antwerp, Flanders, Belgium ... 98 91.633041 99 99 Antwerp, Flanders, Belgium ... 99 92.601295 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0aeujmcx wandb: Agent Starting Run: fjxfqi0k with config: batch_size: 2 forecast_history: 4 lr: 0.004 out_seq_length: 1 wandb: Agent Started Run: fjxfqi0k
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 13.547936960821971 The number of items in train is: 33 The loss for epoch 0 0.41054354426733247 The running loss is: 26.5433846085798 The number of items in train is: 33 The loss for epoch 1 0.8043449881387819 The running loss is: 14.103622088208795 The number of items in train is: 33 The loss for epoch 2 0.4273824875214786 The running loss is: 9.100044154096395 The number of items in train is: 33 The loss for epoch 3 0.2757589137604968 The running loss is: 14.748382066725753 The number of items in train is: 33 The loss for epoch 4 0.4469206686886592 The running loss is: 11.233333861382562 The number of items in train is: 33 The loss for epoch 5 0.3404040564055322 The running loss is: 21.369321470090654 The number of items in train is: 33 The loss for epoch 6 0.6475551960633531 The running loss is: 7.361885572201572 The number of items in train is: 33 The loss for epoch 7 0.22308744158186583 The running loss is: 8.053950862027705 The number of items in train is: 33 The loss for epoch 8 0.24405911703114258 The running loss is: 11.17254789127037 The number of items in train is: 33 The loss for epoch 9 0.3385620573112233 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 125.017883 91 91 Antwerp, Flanders, Belgium ... 91 123.411812 92 92 Antwerp, Flanders, Belgium ... 92 125.127426 93 93 Antwerp, Flanders, Belgium ... 93 125.062477 94 94 Antwerp, Flanders, Belgium ... 94 115.939461 95 95 Antwerp, Flanders, Belgium ... 95 121.196037 96 96 Antwerp, Flanders, Belgium ... 96 127.404915 97 97 Antwerp, Flanders, Belgium ... 97 114.615707 98 98 Antwerp, Flanders, Belgium ... 98 110.940880 99 99 Antwerp, Flanders, Belgium ... 99 107.993706 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fjxfqi0k wandb: Agent Starting Run: wwngpqi2 with config: batch_size: 2 forecast_history: 4 lr: 0.004 out_seq_length: 2 wandb: Agent Started Run: wwngpqi2
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 9.96654413593933 The number of items in train is: 32 The loss for epoch 0 0.31145450424810406 The running loss is: 28.999742947518826 The number of items in train is: 32 The loss for epoch 1 0.9062419671099633 The running loss is: 7.978736505378038 The number of items in train is: 32 The loss for epoch 2 0.24933551579306368 The running loss is: 16.54671422811225 The number of items in train is: 32 The loss for epoch 3 0.5170848196285078 The running loss is: 9.03373872069642 The number of items in train is: 32 The loss for epoch 4 0.2823043350217631 The running loss is: 23.664487095782533 The number of items in train is: 32 The loss for epoch 5 0.7395152217432042 The running loss is: 9.5151820583269 The number of items in train is: 32 The loss for epoch 6 0.2973494393227156 The running loss is: 7.392919855192304 The number of items in train is: 32 The loss for epoch 7 0.2310287454747595 The running loss is: 13.802258587442338 The number of items in train is: 32 The loss for epoch 8 0.4313205808575731 The running loss is: 6.292614362668246 The number of items in train is: 32 The loss for epoch 9 0.1966441988333827 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.089966 91 91 Antwerp, Flanders, Belgium ... 91 161.481049 92 92 Antwerp, Flanders, Belgium ... 92 161.767853 93 93 Antwerp, Flanders, Belgium ... 93 162.047974 94 94 Antwerp, Flanders, Belgium ... 94 165.752609 95 95 Antwerp, Flanders, Belgium ... 95 170.131912 96 96 Antwerp, Flanders, Belgium ... 96 176.269791 97 97 Antwerp, Flanders, Belgium ... 97 175.326233 98 98 Antwerp, Flanders, Belgium ... 98 177.572510 99 99 Antwerp, Flanders, Belgium ... 99 179.625351 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wwngpqi2 wandb: Agent Starting Run: cok8djrp with config: batch_size: 2 forecast_history: 4 lr: 0.004 out_seq_length: 3 wandb: Agent Started Run: cok8djrp
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.004, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.6697259191423655 The number of items in train is: 32 The loss for epoch 0 0.23967893497319892 The running loss is: 37.96821307018399 The number of items in train is: 32 The loss for epoch 1 1.1865066584432498 The running loss is: 12.867059556767344 The number of items in train is: 32 The loss for epoch 2 0.4020956111489795 The running loss is: 25.48514431528747 The number of items in train is: 32 The loss for epoch 3 0.7964107598527335 The running loss is: 11.341065876185894 The number of items in train is: 32 The loss for epoch 4 0.3544083086308092 The running loss is: 24.40359308384359 The number of items in train is: 32 The loss for epoch 5 0.7626122838701122 The running loss is: 10.748747183941305 The number of items in train is: 32 The loss for epoch 6 0.33589834949816577 The running loss is: 15.834405758418143 The number of items in train is: 32 The loss for epoch 7 0.49482517995056696 The running loss is: 8.714372392743826 The number of items in train is: 32 The loss for epoch 8 0.27232413727324456 The running loss is: 13.327436484396458 The number of items in train is: 32 The loss for epoch 9 0.4164823901373893 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 112.782478 91 91 Antwerp, Flanders, Belgium ... 91 106.982094 92 92 Antwerp, Flanders, Belgium ... 92 104.220634 93 93 Antwerp, Flanders, Belgium ... 93 103.812248 94 94 Antwerp, Flanders, Belgium ... 94 96.546860 95 95 Antwerp, Flanders, Belgium ... 95 98.490540 96 96 Antwerp, Flanders, Belgium ... 96 101.250137 97 97 Antwerp, Flanders, Belgium ... 97 93.525597 98 98 Antwerp, Flanders, Belgium ... 98 91.633041 99 99 Antwerp, Flanders, Belgium ... 99 92.601295 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cok8djrp wandb: Agent Starting Run: bppv32v7 with config: batch_size: 2 forecast_history: 4 lr: 0.01 out_seq_length: 1 wandb: Agent Started Run: bppv32v7
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 13.547936960821971 The number of items in train is: 33 The loss for epoch 0 0.41054354426733247 The running loss is: 26.5433846085798 The number of items in train is: 33 The loss for epoch 1 0.8043449881387819 The running loss is: 14.103622088208795 The number of items in train is: 33 The loss for epoch 2 0.4273824875214786 The running loss is: 9.100044154096395 The number of items in train is: 33 The loss for epoch 3 0.2757589137604968 The running loss is: 14.748382066725753 The number of items in train is: 33 The loss for epoch 4 0.4469206686886592 The running loss is: 11.233333861382562 The number of items in train is: 33 The loss for epoch 5 0.3404040564055322 The running loss is: 21.369321470090654 The number of items in train is: 33 The loss for epoch 6 0.6475551960633531 The running loss is: 7.361885572201572 The number of items in train is: 33 The loss for epoch 7 0.22308744158186583 The running loss is: 8.053950862027705 The number of items in train is: 33 The loss for epoch 8 0.24405911703114258 The running loss is: 11.17254789127037 The number of items in train is: 33 The loss for epoch 9 0.3385620573112233 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 125.017883 91 91 Antwerp, Flanders, Belgium ... 91 123.411812 92 92 Antwerp, Flanders, Belgium ... 92 125.127426 93 93 Antwerp, Flanders, Belgium ... 93 125.062477 94 94 Antwerp, Flanders, Belgium ... 94 115.939461 95 95 Antwerp, Flanders, Belgium ... 95 121.196037 96 96 Antwerp, Flanders, Belgium ... 96 127.404915 97 97 Antwerp, Flanders, Belgium ... 97 114.615707 98 98 Antwerp, Flanders, Belgium ... 98 110.940880 99 99 Antwerp, Flanders, Belgium ... 99 107.993706 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bppv32v7 wandb: Agent Starting Run: 4tz4kpt6 with config: batch_size: 2 forecast_history: 4 lr: 0.01 out_seq_length: 2 wandb: Agent Started Run: 4tz4kpt6
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 9.96654413593933 The number of items in train is: 32 The loss for epoch 0 0.31145450424810406 The running loss is: 28.999742947518826 The number of items in train is: 32 The loss for epoch 1 0.9062419671099633 The running loss is: 7.978736505378038 The number of items in train is: 32 The loss for epoch 2 0.24933551579306368 The running loss is: 16.54671422811225 The number of items in train is: 32 The loss for epoch 3 0.5170848196285078 The running loss is: 9.03373872069642 The number of items in train is: 32 The loss for epoch 4 0.2823043350217631 The running loss is: 23.664487095782533 The number of items in train is: 32 The loss for epoch 5 0.7395152217432042 The running loss is: 9.5151820583269 The number of items in train is: 32 The loss for epoch 6 0.2973494393227156 The running loss is: 7.392919855192304 The number of items in train is: 32 The loss for epoch 7 0.2310287454747595 The running loss is: 13.802258587442338 The number of items in train is: 32 The loss for epoch 8 0.4313205808575731 The running loss is: 6.292614362668246 The number of items in train is: 32 The loss for epoch 9 0.1966441988333827 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 164.089966 91 91 Antwerp, Flanders, Belgium ... 91 161.481049 92 92 Antwerp, Flanders, Belgium ... 92 161.767853 93 93 Antwerp, Flanders, Belgium ... 93 162.047974 94 94 Antwerp, Flanders, Belgium ... 94 165.752609 95 95 Antwerp, Flanders, Belgium ... 95 170.131912 96 96 Antwerp, Flanders, Belgium ... 96 176.269791 97 97 Antwerp, Flanders, Belgium ... 97 175.326233 98 98 Antwerp, Flanders, Belgium ... 98 177.572510 99 99 Antwerp, Flanders, Belgium ... 99 179.625351 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4tz4kpt6 wandb: Agent Starting Run: ln5wb2zx with config: batch_size: 2 forecast_history: 4 lr: 0.01 out_seq_length: 3 wandb: Agent Started Run: ln5wb2zx
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 4, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 4, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.01, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 4, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 7.6697259191423655 The number of items in train is: 32 The loss for epoch 0 0.23967893497319892 The running loss is: 37.96821307018399 The number of items in train is: 32 The loss for epoch 1 1.1865066584432498 The running loss is: 12.867059556767344 The number of items in train is: 32 The loss for epoch 2 0.4020956111489795 The running loss is: 25.48514431528747 The number of items in train is: 32 The loss for epoch 3 0.7964107598527335 The running loss is: 11.341065876185894 The number of items in train is: 32 The loss for epoch 4 0.3544083086308092 The running loss is: 24.40359308384359 The number of items in train is: 32 The loss for epoch 5 0.7626122838701122 The running loss is: 10.748747183941305 The number of items in train is: 32 The loss for epoch 6 0.33589834949816577 The running loss is: 15.834405758418143 The number of items in train is: 32 The loss for epoch 7 0.49482517995056696 The running loss is: 8.714372392743826 The number of items in train is: 32 The loss for epoch 8 0.27232413727324456 The running loss is: 13.327436484396458 The number of items in train is: 32 The loss for epoch 9 0.4164823901373893 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 112.782478 91 91 Antwerp, Flanders, Belgium ... 91 106.982094 92 92 Antwerp, Flanders, Belgium ... 92 104.220634 93 93 Antwerp, Flanders, Belgium ... 93 103.812248 94 94 Antwerp, Flanders, Belgium ... 94 96.546860 95 95 Antwerp, Flanders, Belgium ... 95 98.490540 96 96 Antwerp, Flanders, Belgium ... 96 101.250137 97 97 Antwerp, Flanders, Belgium ... 97 93.525597 98 98 Antwerp, Flanders, Belgium ... 98 91.633041 99 99 Antwerp, Flanders, Belgium ... 99 92.601295 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ln5wb2zx wandb: Agent Starting Run: 05q1yi30 with config: batch_size: 2 forecast_history: 5 lr: 0.001 out_seq_length: 1 wandb: Agent Started Run: 05q1yi30
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 5, 'output_seq_len': 1, 'forecast_length': 1}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 5, 'forecast_length': 1, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 5, 'forecast_length': 1, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 14.149641871917993 The number of items in train is: 32 The loss for epoch 0 0.4421763084974373 The running loss is: 19.153084758669138 The number of items in train is: 32 The loss for epoch 1 0.5985338987084106 The running loss is: 12.141699264757335 The number of items in train is: 32 The loss for epoch 2 0.3794281020236667 The running loss is: 10.726733310613781 The number of items in train is: 32 The loss for epoch 3 0.33521041595668066 The running loss is: 27.875308595306706 The number of items in train is: 32 The loss for epoch 4 0.8711033936033346 The running loss is: 15.057293181307614 The number of items in train is: 32 The loss for epoch 5 0.47054041191586293 The running loss is: 8.554784269770607 The number of items in train is: 32 The loss for epoch 6 0.2673370084303315 The running loss is: 15.368095055688173 The number of items in train is: 32 The loss for epoch 7 0.4802529704902554 The running loss is: 12.053984255064279 The number of items in train is: 32 The loss for epoch 8 0.3766870079707587 The running loss is: 15.878508637310006 The number of items in train is: 32 The loss for epoch 9 0.4962033949159377 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 85 85 Antwerp, Flanders, Belgium ... 85 0.000000 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 110.934616 91 91 Antwerp, Flanders, Belgium ... 91 83.300751 92 92 Antwerp, Flanders, Belgium ... 92 80.099800 93 93 Antwerp, Flanders, Belgium ... 93 81.591988 94 94 Antwerp, Flanders, Belgium ... 94 80.869614 95 95 Antwerp, Flanders, Belgium ... 95 70.832413 96 96 Antwerp, Flanders, Belgium ... 96 71.445686 97 97 Antwerp, Flanders, Belgium ... 97 69.036293 98 98 Antwerp, Flanders, Belgium ... 98 71.953468 99 99 Antwerp, Flanders, Belgium ... 99 66.996086 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 05q1yi30 wandb: Agent Starting Run: ewgswxyt with config: batch_size: 2 forecast_history: 5 lr: 0.001 out_seq_length: 2 wandb: Agent Started Run: ewgswxyt
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 5, 'output_seq_len': 2, 'forecast_length': 2}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 5, 'forecast_length': 2, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 5, 'forecast_length': 2, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 11.650028791336808 The number of items in train is: 32 The loss for epoch 0 0.36406339972927526 The running loss is: 30.865524154622108 The number of items in train is: 32 The loss for epoch 1 0.9645476298319409 The running loss is: 13.431060584727675 The number of items in train is: 32 The loss for epoch 2 0.41972064327273984 The running loss is: 31.62627243832685 The number of items in train is: 32 The loss for epoch 3 0.9883210136977141 The running loss is: 12.02412142243702 The number of items in train is: 32 The loss for epoch 4 0.37575379445115686 The running loss is: 23.094838136807084 The number of items in train is: 32 The loss for epoch 5 0.7217136917752214 The running loss is: 12.464333229334443 The number of items in train is: 32 The loss for epoch 6 0.38951041341670134 The running loss is: 22.23100734280888 The number of items in train is: 32 The loss for epoch 7 0.6947189794627775 The running loss is: 8.372417403385043 The number of items in train is: 32 The loss for epoch 8 0.2616380438557826 The running loss is: 7.372722903382964 The number of items in train is: 32 The loss for epoch 9 0.23039759073071764 interpolate should be below Now loading and scaling antwerp.csv CSV Path below antwerp.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:136: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:137: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 85 85 Antwerp, Flanders, Belgium ... 85 0.000000 86 86 Antwerp, Flanders, Belgium ... 86 0.000000 87 87 Antwerp, Flanders, Belgium ... 87 0.000000 88 88 Antwerp, Flanders, Belgium ... 88 0.000000 89 89 Antwerp, Flanders, Belgium ... 89 0.000000 90 90 Antwerp, Flanders, Belgium ... 90 143.672546 91 91 Antwerp, Flanders, Belgium ... 91 132.610565 92 92 Antwerp, Flanders, Belgium ... 92 127.962723 93 93 Antwerp, Flanders, Belgium ... 93 125.382195 94 94 Antwerp, Flanders, Belgium ... 94 126.953491 95 95 Antwerp, Flanders, Belgium ... 95 122.859352 96 96 Antwerp, Flanders, Belgium ... 96 122.826790 97 97 Antwerp, Flanders, Belgium ... 97 117.627235 98 98 Antwerp, Flanders, Belgium ... 98 114.252800 99 99 Antwerp, Flanders, Belgium ... 99 113.222778 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ewgswxyt wandb: Agent Starting Run: 4879h427 with config: batch_size: 2 forecast_history: 5 lr: 0.001 out_seq_length: 3 wandb: Agent Started Run: 4879h427
{'model_name': 'MultiAttnHeadSimple', 'model_type': 'PyTorch', 'model_params': {'number_time_series': 3, 'seq_len': 5, 'output_seq_len': 3, 'forecast_length': 3}, 'dataset_params': {'class': 'default', 'training_path': 'antwerp.csv', 'validation_path': 'antwerp.csv', 'test_path': 'antwerp.csv', 'batch_size': 2, 'forecast_history': 5, 'forecast_length': 3, 'train_end': 71, 'valid_start': 72, 'valid_end': 91, 'target_col': ['new_cases'], 'relevant_cols': ['new_cases', 'month', 'weekday'], 'scaler': 'StandardScaler', 'interpolate': False}, 'training_params': {'criterion': 'MSE', 'optimizer': 'Adam', 'optim_params': {}, 'lr': 0.001, 'epochs': 10, 'batch_size': 2}, 'GCS': False, 'wandb': {'name': 'multihead_pytorch_antwerp', 'tags': ['covid_run', 'circleci'], 'project': 'covid-forecast'}, 'forward_params': {}, 'metrics': ['MSE'], 'inference_params': {'datetime_start': '2020-04-21', 'hours_to_forecast': 10, 'test_csv_path': 'antwerp.csv', 'decoder_params': {'decoder_function': 'simple_decode', 'unsqueeze_dim': 1}, 'dataset_params': {'file_path': 'antwerp.csv', 'forecast_history': 5, 'forecast_length': 3, 'relevant_cols': ['new_cases', 'month', 'weekday'], 'target_col': ['new_cases'], 'scaling': 'StandardScaler', 'interpolate_param': False}}} interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv interpolate should be below Now loading and scaling antwerp.csv
Torch is using cpu The running loss is: 11.67289599776268 The number of items in train is: 31 The loss for epoch 0 0.3765450321858929 The running loss is: 36.93330478295684 The number of items in train is: 31 The loss for epoch 1 1.1913969284824786 The running loss is:
pd.read_csv("antwerp.csv")
Unnamed: 0 | name | level | city | county | state | country | population | lat | long | url | aggregate | tz | cases | deaths | recovered | active | tested | hospitalized | discharged | growthFactor | date | month | weekday | state_county | full_county | datetime | new_cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2020-01-22 | 1 | 2 | Flanders_Antwerp | Flanders_Antwerp | 2020-01-22 | 0.0 |
1 | 1 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2020-01-23 | 1 | 3 | Flanders_Antwerp | Flanders_Antwerp | 2020-01-23 | 0.0 |
2 | 2 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2020-01-24 | 1 | 4 | Flanders_Antwerp | Flanders_Antwerp | 2020-01-24 | 0.0 |
3 | 3 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2020-01-25 | 1 | 5 | Flanders_Antwerp | Flanders_Antwerp | 2020-01-25 | 0.0 |
4 | 4 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2020-01-26 | 1 | 6 | Flanders_Antwerp | Flanders_Antwerp | 2020-01-26 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
93 | 93 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 5713.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2134.0 | 1788.0 | 0.0 | 2020-04-24 | 4 | 4 | Flanders_Antwerp | Flanders_Antwerp | 2020-04-24 | 71.0 |
94 | 94 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 5743.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2169.0 | 1850.0 | 0.0 | 2020-04-25 | 4 | 5 | Flanders_Antwerp | Flanders_Antwerp | 2020-04-25 | 30.0 |
95 | 95 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 5761.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2181.0 | 1869.0 | 0.0 | 2020-04-26 | 4 | 6 | Flanders_Antwerp | Flanders_Antwerp | 2020-04-26 | 18.0 |
96 | 96 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 5761.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2202.0 | 1884.0 | 0.0 | 2020-04-27 | 4 | 0 | Flanders_Antwerp | Flanders_Antwerp | 2020-04-27 | 0.0 |
97 | 97 | Antwerp, Flanders, Belgium | county | 0 | Antwerp | Flanders | Belgium | 1847486.0 | 51.2485 | 4.7175 | https://epistat.wiv-isp.be/ | 0 | Europe/Brussels | 5761.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2202.0 | 1884.0 | 0.0 | 2020-04-28 | 4 | 1 | Flanders_Antwerp | Flanders_Antwerp | 2020-04-28 | 0.0 |
98 rows × 28 columns
wandb.config
<wandb.wandb_config.Config at 0x7f22804d2e10>
!git clone https://github.com/CoronaWhy/task-ts -b add_mobility_data
import os
os.chdir('task-ts')
fatal: destination path 'task-ts' already exists and is not an empty directory.
!pip install loguru
from corona_ts.data_utils.data_crawler import load_data
Requirement already satisfied: loguru in /usr/local/lib/python3.6/dist-packages (0.4.1) Requirement already satisfied: aiocontextvars>=0.2.0; python_version < "3.7" in /usr/local/lib/python3.6/dist-packages (from loguru) (0.2.2) Requirement already satisfied: contextvars==2.4; python_version < "3.7" in /usr/local/lib/python3.6/dist-packages (from aiocontextvars>=0.2.0; python_version < "3.7"->loguru) (2.4) Requirement already satisfied: immutables>=0.9 in /usr/local/lib/python3.6/dist-packages (from contextvars==2.4; python_version < "3.7"->aiocontextvars>=0.2.0; python_version < "3.7"->loguru) (0.12)
!git clone https://github.com/CoronaWhy/task-geo.git
os.chdir('task-geo')
!make install
Cloning into 'task-geo'...
remote: Enumerating objects: 176, done.
remote: Counting objects: 100% (176/176), done.
remote: Compressing objects: 100% (130/130), done.
remote: Total 1530 (delta 67), reused 124 (delta 43), pack-reused 1354
Receiving objects: 100% (1530/1530), 6.72 MiB | 5.07 MiB/s, done.
Resolving deltas: 100% (706/706), done.
rm -fr build/
rm -fr dist/
rm -fr .eggs/
find . -name '*.egg-info' -exec rm -fr {} +
find . -name '*.egg' -exec rm -fr {} +
find . -name '*.pyc' -exec rm -f {} +
find . -name '*.pyo' -exec rm -f {} +
find . -name '*~' -exec rm -f {} +
find . -name '__pycache__' -exec rm -fr {} +
pip install .
Processing /content/task-ts/task-geo
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (1.0.3)
Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (2.23.0)
Requirement already satisfied: jupyter in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (1.0.0)
Collecting hdx-python-api
Downloading https://files.pythonhosted.org/packages/d4/27/5b7f2c83353e0ee6e9c4fab5ec3a6e141c837369f6a23e82f875bc29db53/hdx_python_api-4.5.6-py2.py3-none-any.whl (67kB)
|████████████████████████████████| 71kB 2.3MB/s
Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (2.8.1)
Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (1.18.3)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (2018.9)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (2.9)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (2020.4.5.1)
Requirement already satisfied: notebook in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.2.2)
Requirement already satisfied: qtconsole in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (4.7.3)
Requirement already satisfied: ipywidgets in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (7.5.1)
Requirement already satisfied: jupyter-console in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.2.0)
Requirement already satisfied: ipykernel in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (4.10.1)
Requirement already satisfied: nbconvert in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.6.1)
Requirement already satisfied: pyasn1 in /usr/local/lib/python3.6/dist-packages (from hdx-python-api->task-geo==0.1.0.dev0) (0.4.8)
Collecting ndg-httpsclient
Downloading https://files.pythonhosted.org/packages/fb/67/c2f508c00ed2a6911541494504b7cac16fe0b0473912568df65fd1801132/ndg_httpsclient-0.5.1-py3-none-any.whl
Collecting quantulum3>=0.7.3; python_version >= "3"
Downloading https://files.pythonhosted.org/packages/d0/d5/60d72e7c9393199eba72f88deb06e0fddc4e357d600bdbe5f86e8cfc4512/quantulum3-0.7.3-py3-none-any.whl (11.1MB)
|████████████████████████████████| 11.1MB 8.8MB/s
Collecting pyOpenSSL
Downloading https://files.pythonhosted.org/packages/9e/de/f8342b68fa9e981d348039954657bdf681b2ab93de27443be51865ffa310/pyOpenSSL-19.1.0-py2.py3-none-any.whl (53kB)
|████████████████████████████████| 61kB 8.6MB/s
Collecting ckanapi>=4.3
Downloading https://files.pythonhosted.org/packages/07/c6/50449e18aaf1600dfda955805c58aa7462493511f3ebbb20d0a65874397c/ckanapi-4.3.tar.gz
Collecting hdx-python-country>=2.5.5
Downloading https://files.pythonhosted.org/packages/f5/85/6e656be9218c0e7efaeabd975a3097296cb3d3824b8841ede6590c2de737/hdx_python_country-2.5.5-py2.py3-none-any.whl
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.6.1->pandas->task-geo==0.1.0.dev0) (1.12.0)
Requirement already satisfied: jupyter-client in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (5.3.4)
Requirement already satisfied: jupyter-core in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (4.6.3)
Requirement already satisfied: nbformat in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (5.0.6)
Requirement already satisfied: terminado>=0.3.3; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (0.8.3)
Requirement already satisfied: traitlets>=4.2.1 in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (4.3.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (2.11.2)
Requirement already satisfied: tornado>=4 in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (4.5.3)
Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (0.2.0)
Requirement already satisfied: pyzmq>=17.1 in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (19.0.0)
Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (2.1.3)
Requirement already satisfied: qtpy in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (1.9.0)
Requirement already satisfied: ipython>=4.0.0; python_version >= "3.3" in /usr/local/lib/python3.6/dist-packages (from ipywidgets->jupyter->task-geo==0.1.0.dev0) (5.5.0)
Requirement already satisfied: widgetsnbextension~=3.5.0 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->jupyter->task-geo==0.1.0.dev0) (3.5.1)
Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from jupyter-console->jupyter->task-geo==0.1.0.dev0) (1.0.18)
Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (1.4.2)
Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.3)
Requirement already satisfied: bleach in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (3.1.4)
Requirement already satisfied: testpath in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.4.4)
Requirement already satisfied: defusedxml in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.6.0)
Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.8.4)
Collecting num2words
Downloading https://files.pythonhosted.org/packages/eb/a2/ea800689730732e27711c41beed4b2a129b34974435bdc450377ec407738/num2words-0.5.10-py3-none-any.whl (101kB)
|████████████████████████████████| 102kB 10.1MB/s
Requirement already satisfied: inflect in /usr/local/lib/python3.6/dist-packages (from quantulum3>=0.7.3; python_version >= "3"->hdx-python-api->task-geo==0.1.0.dev0) (2.1.0)
Collecting cryptography>=2.8
Downloading https://files.pythonhosted.org/packages/3c/04/686efee2dcdd25aecf357992e7d9362f443eb182ecd623f882bc9f7a6bba/cryptography-2.9.2-cp35-abi3-manylinux2010_x86_64.whl (2.7MB)
|████████████████████████████████| 2.7MB 43.3MB/s
Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (46.1.3)
Requirement already satisfied: docopt in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (0.6.2)
Requirement already satisfied: python-slugify>=1.0 in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (4.0.0)
Collecting hdx-python-utilities>=2.3.3
Downloading https://files.pythonhosted.org/packages/0d/7a/45d463fffdf951ebb77347dd85020c3ba3e404835eb1864d3ce298d3df4d/hdx_python_utilities-2.3.3-py2.py3-none-any.whl (46kB)
|████████████████████████████████| 51kB 7.6MB/s
Collecting libhxl>=4.18; python_version >= "3"
Downloading https://files.pythonhosted.org/packages/d1/bb/7713720c382aad5260694fd5875fe013ee7ccef771e41a3298f661c01c84/libhxl-4.19.tar.gz (77kB)
|████████████████████████████████| 81kB 10.0MB/s
Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbformat->notebook->jupyter->task-geo==0.1.0.dev0) (2.6.0)
Requirement already satisfied: ptyprocess; os_name != "nt" in /usr/local/lib/python3.6/dist-packages (from terminado>=0.3.3; sys_platform != "win32"->notebook->jupyter->task-geo==0.1.0.dev0) (0.6.0)
Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from traitlets>=4.2.1->notebook->jupyter->task-geo==0.1.0.dev0) (4.4.2)
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2->notebook->jupyter->task-geo==0.1.0.dev0) (1.1.1)
Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (0.8.1)
Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (0.7.5)
Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (4.8.0)
Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.0->jupyter-console->jupyter->task-geo==0.1.0.dev0) (0.1.9)
Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->jupyter->task-geo==0.1.0.dev0) (0.5.1)
Requirement already satisfied: cffi!=1.11.3,>=1.8 in /usr/local/lib/python3.6/dist-packages (from cryptography>=2.8->pyOpenSSL->hdx-python-api->task-geo==0.1.0.dev0) (1.14.0)
Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.6/dist-packages (from python-slugify>=1.0->ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (1.3)
Collecting pyaml
Downloading https://files.pythonhosted.org/packages/15/c4/1310a054d33abc318426a956e7d6df0df76a6ddfa9c66f6310274fb75d42/pyaml-20.4.0-py2.py3-none-any.whl
Collecting psycopg2-binary
Downloading https://files.pythonhosted.org/packages/d3/8a/a7ed55c2c55bd4f5844d72734fedc0cef8a74518a0a19105a21c15628f1e/psycopg2_binary-2.8.5-cp36-cp36m-manylinux1_x86_64.whl (2.9MB)
|████████████████████████████████| 2.9MB 47.2MB/s
Requirement already satisfied: html5lib in /usr/local/lib/python3.6/dist-packages (from hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (1.0.1)
Collecting basicauth
Downloading https://files.pythonhosted.org/packages/76/47/08d21ffcc837bebf3306b8295f5d179f9bc498f6235ebf4a4e38be57839c/basicauth-0.4.1-py2.py3-none-any.whl
Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (3.6.6)
Collecting sshtunnel
Downloading https://files.pythonhosted.org/packages/c5/5c/4b320d7ec4b0d5d4d6df1fdf66a5799625b3623d0ce4efe81719c6f8dfb3/sshtunnel-0.1.5.tar.gz (49kB)
|████████████████████████████████| 51kB 7.9MB/s
Collecting tabulator[cchardet]>=1.38.4
Downloading https://files.pythonhosted.org/packages/b5/6f/3d755b247b354ce55e03f52c77a30b1e85358f3df34ecbbef983826a9ac8/tabulator-1.41.0-py2.py3-none-any.whl (68kB)
|████████████████████████████████| 71kB 9.6MB/s
Collecting yamlloader
Downloading https://files.pythonhosted.org/packages/93/a2/2f0c2394af1559021703c8cbb1bc7419bb5a94ea6bde0ab8cd1e973bb605/yamlloader-0.5.5-py3-none-any.whl
Collecting colorlog
Downloading https://files.pythonhosted.org/packages/00/0d/22c73c2eccb21dd3498df7d22c0b1d4a30f5a5fb3feb64e1ce06bc247747/colorlog-4.1.0-py2.py3-none-any.whl
Collecting email-validator
Downloading https://files.pythonhosted.org/packages/45/54/1a1da475b684aa4eb30da169ea5ebd9341a5d3138138bc2b365222b9ac87/email_validator-1.1.0-py2.py3-none-any.whl
Collecting ratelimit
Downloading https://files.pythonhosted.org/packages/ab/38/ff60c8fc9e002d50d48822cc5095deb8ebbc5f91a6b8fdd9731c87a147c9/ratelimit-2.2.1.tar.gz
Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.6/dist-packages (from hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (4.6.3)
Requirement already satisfied: xlrd in /usr/local/lib/python3.6/dist-packages (from libhxl>=4.18; python_version >= "3"->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (1.1.0)
Collecting unidecode
Downloading https://files.pythonhosted.org/packages/d0/42/d9edfed04228bacea2d824904cae367ee9efd05e6cce7ceaaedd0b0ad964/Unidecode-1.1.1-py2.py3-none-any.whl (238kB)
|████████████████████████████████| 245kB 48.8MB/s
Collecting python-io-wrapper
Downloading https://files.pythonhosted.org/packages/76/81/88e02bc603e55883a087811a641fd3836749b7509365778fea29d74fd58c/python-io-wrapper-0.1.tar.gz
Collecting jsonpath_rw
Downloading https://files.pythonhosted.org/packages/71/7c/45001b1f19af8c4478489fbae4fc657b21c4c669d7a5a036a86882581d85/jsonpath-rw-1.4.0.tar.gz
Collecting ply
Downloading https://files.pythonhosted.org/packages/a3/58/35da89ee790598a0700ea49b2a66594140f44dec458c07e8e3d4979137fc/ply-3.11-py2.py3-none-any.whl (49kB)
|████████████████████████████████| 51kB 7.5MB/s
Requirement already satisfied: pycparser in /usr/local/lib/python3.6/dist-packages (from cffi!=1.11.3,>=1.8->cryptography>=2.8->pyOpenSSL->hdx-python-api->task-geo==0.1.0.dev0) (2.20)
Requirement already satisfied: PyYAML in /usr/local/lib/python3.6/dist-packages (from pyaml->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (3.13)
Collecting paramiko>=1.15.2
Downloading https://files.pythonhosted.org/packages/06/1e/1e08baaaf6c3d3df1459fd85f0e7d2d6aa916f33958f151ee1ecc9800971/paramiko-2.7.1-py2.py3-none-any.whl (206kB)
|████████████████████████████████| 215kB 46.1MB/s
Collecting openpyxl>=2.6
Downloading https://files.pythonhosted.org/packages/95/8c/83563c60489954e5b80f9e2596b93a68e1ac4e4a730deb1aae632066d704/openpyxl-3.0.3.tar.gz (172kB)
|████████████████████████████████| 174kB 53.8MB/s
Collecting ijson>=3.0.3
Downloading https://files.pythonhosted.org/packages/75/38/e2d650844fd69ced9fb8d2804ffd3cd76d43bcc1950c266367aaf9a456f6/ijson-3.0.3-cp36-cp36m-manylinux1_x86_64.whl (96kB)
|████████████████████████████████| 102kB 12.9MB/s
Requirement already satisfied: sqlalchemy>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (1.3.16)
Requirement already satisfied: boto3>=1.9 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (1.12.47)
Collecting linear-tsv>=1.0
Downloading https://files.pythonhosted.org/packages/82/e5/03207a0f11e1d60df85b97b61704ed701b725a7c2feaf83f7bfbd0c2d83e/linear-tsv-1.1.0.tar.gz
Collecting unicodecsv>=0.14
Downloading https://files.pythonhosted.org/packages/6f/a4/691ab63b17505a26096608cc309960b5a6bdf39e4ba1a793d5f9b1a53270/unicodecsv-0.14.1.tar.gz
Collecting jsonlines>=1.1
Downloading https://files.pythonhosted.org/packages/4f/9a/ab96291470e305504aa4b7a2e0ec132e930da89eb3ca7a82fbe03167c131/jsonlines-1.2.0-py2.py3-none-any.whl
Requirement already satisfied: click>=6.0 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (7.1.2)
Collecting cchardet>=2.0; extra == "cchardet"
Downloading https://files.pythonhosted.org/packages/1e/c5/7e1a0d7b4afd83d6f8de794fce82820ec4c5136c6d52e14000822681a842/cchardet-2.1.6-cp36-cp36m-manylinux2010_x86_64.whl (241kB)
|████████████████████████████████| 245kB 49.7MB/s
Collecting dnspython>=1.15.0
Downloading https://files.pythonhosted.org/packages/ec/d3/3aa0e7213ef72b8585747aa0e271a9523e713813b9a20177ebe1e939deb0/dnspython-1.16.0-py2.py3-none-any.whl (188kB)
|████████████████████████████████| 194kB 53.4MB/s
Collecting pynacl>=1.0.1
Downloading https://files.pythonhosted.org/packages/27/15/2cd0a203f318c2240b42cd9dd13c931ddd61067809fee3479f44f086103e/PyNaCl-1.3.0-cp34-abi3-manylinux1_x86_64.whl (759kB)
|████████████████████████████████| 768kB 54.6MB/s
Collecting bcrypt>=3.1.3
Downloading https://files.pythonhosted.org/packages/8b/1d/82826443777dd4a624e38a08957b975e75df859b381ae302cfd7a30783ed/bcrypt-3.1.7-cp34-abi3-manylinux1_x86_64.whl (56kB)
|████████████████████████████████| 61kB 8.5MB/s
Requirement already satisfied: jdcal in /usr/local/lib/python3.6/dist-packages (from openpyxl>=2.6->tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (1.4.1)
Requirement already satisfied: et_xmlfile in /usr/local/lib/python3.6/dist-packages (from openpyxl>=2.6->tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (1.0.1)
Requirement already satisfied: botocore<1.16.0,>=1.15.47 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (1.15.47)
Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (0.3.3)
Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (0.9.5)
Requirement already satisfied: docutils<0.16,>=0.10 in /usr/local/lib/python3.6/dist-packages (from botocore<1.16.0,>=1.15.47->boto3>=1.9->tabulator[cchardet]>=1.38.4->hdx-python-utilities>=2.3.3->hdx-python-country>=2.5.5->hdx-python-api->task-geo==0.1.0.dev0) (0.15.2)
Building wheels for collected packages: task-geo, ckanapi, libhxl, sshtunnel, ratelimit, python-io-wrapper, jsonpath-rw, openpyxl, linear-tsv, unicodecsv
Building wheel for task-geo (setup.py) ... done
Created wheel for task-geo: filename=task_geo-0.1.0.dev0-py2.py3-none-any.whl size=177389 sha256=fa9f8ea35c5daa130fc5c33540c4cb66e54af488b1275dc3cca3eef090b6b72c
Stored in directory: /root/.cache/pip/wheels/f2/42/40/dba27500b60934a7ac65cdefe4845fd3001fdc3a1c5938c8d4
Building wheel for ckanapi (setup.py) ... done
Created wheel for ckanapi: filename=ckanapi-4.3-cp36-none-any.whl size=38647 sha256=e873e55af78a0a989160eb522dac01a1cdc303b819568908215cd1c87538bfb9
Stored in directory: /root/.cache/pip/wheels/41/f2/fb/c8ce857007de64cc6b36b8f1048272396bc0817c35ee3a3e73
Building wheel for libhxl (setup.py) ... done
Created wheel for libhxl: filename=libhxl-4.19-cp36-none-any.whl size=81540 sha256=780459df15ae2bc96ff813b4c9236d0fdf8c38a186b0932396ac6e7ef9dab8fd
Stored in directory: /root/.cache/pip/wheels/99/4e/75/2c1d5d8cd3c34a42dcd9a388562d3dd3fb2197adbb47e20503
Building wheel for sshtunnel (setup.py) ... done
Created wheel for sshtunnel: filename=sshtunnel-0.1.5-py2.py3-none-any.whl size=23243 sha256=21bc695380c8d89c4b5765d40d9e64afcc2b42cf73f1813b0dea5514f0098ca5
Stored in directory: /root/.cache/pip/wheels/e8/d2/38/b9791b7391f634099194ec6697fa671194f3353906d94c8f92
Building wheel for ratelimit (setup.py) ... done
Created wheel for ratelimit: filename=ratelimit-2.2.1-cp36-none-any.whl size=5893 sha256=8666de8ebdec13cbf6c7bcdd0029a993ba77e19e49185641bc488caf4c9f1a07
Stored in directory: /root/.cache/pip/wheels/05/d9/82/3c6044cf1a54aab9151612458446d9b17a38416869e1b1d9b8
Building wheel for python-io-wrapper (setup.py) ... done
Created wheel for python-io-wrapper: filename=python_io_wrapper-0.1-cp36-none-any.whl size=2490 sha256=ae932fd2014bec6c0902559f3357e9549c1c1567d29d3b78cc852c53e8d5fb72
Stored in directory: /root/.cache/pip/wheels/6b/26/be/da3c0a774901c557a0bee985e7aade5b9db75fe4dc8ef99ced
Building wheel for jsonpath-rw (setup.py) ... done
Created wheel for jsonpath-rw: filename=jsonpath_rw-1.4.0-cp36-none-any.whl size=15146 sha256=30ef8e57898b0eb41633f88e5d9d405fc2d50e0e6df252e9d553840dd0c95418
Stored in directory: /root/.cache/pip/wheels/5c/00/9a/82822db383c2d96dcebf839786665a185f92d37e5026f9806f
Building wheel for openpyxl (setup.py) ... done
Created wheel for openpyxl: filename=openpyxl-3.0.3-py2.py3-none-any.whl size=241262 sha256=bd0378aa96fd157fb44a9cd8f6129489dd537094749833787851e9304ce5cd56
Stored in directory: /root/.cache/pip/wheels/b5/85/ca/e768ac132e57e75e645a151f8badac71cc0089e7225dddf76b
Building wheel for linear-tsv (setup.py) ... done
Created wheel for linear-tsv: filename=linear_tsv-1.1.0-cp36-none-any.whl size=7383 sha256=244e9c6e9535cc9e2a8901455b85aeabdb2e2c10e06fa77a1eeabfad94f9d93c
Stored in directory: /root/.cache/pip/wheels/3f/8a/cb/38917fd1ef4356b9870ace7331b83417dc594bf2c029bd991f
Building wheel for unicodecsv (setup.py) ... done
Created wheel for unicodecsv: filename=unicodecsv-0.14.1-cp36-none-any.whl size=10768 sha256=32b94e21c42944719e5521605927de64740facc54827f0a78f609652ed5cf6a0
Stored in directory: /root/.cache/pip/wheels/a6/09/e9/e800279c98a0a8c94543f3de6c8a562f60e51363ed26e71283
Successfully built task-geo ckanapi libhxl sshtunnel ratelimit python-io-wrapper jsonpath-rw openpyxl linear-tsv unicodecsv
ERROR: hdx-python-utilities 2.3.3 has requirement six>=1.14.0, but you'll have six 1.12.0 which is incompatible.
Installing collected packages: cryptography, pyOpenSSL, ndg-httpsclient, num2words, quantulum3, ckanapi, pyaml, psycopg2-binary, basicauth, pynacl, bcrypt, paramiko, sshtunnel, openpyxl, ijson, linear-tsv, unicodecsv, jsonlines, cchardet, tabulator, yamlloader, colorlog, dnspython, email-validator, ratelimit, hdx-python-utilities, unidecode, python-io-wrapper, ply, jsonpath-rw, libhxl, hdx-python-country, hdx-python-api, task-geo
Found existing installation: openpyxl 2.5.9
Uninstalling openpyxl-2.5.9:
Successfully uninstalled openpyxl-2.5.9
Successfully installed basicauth-0.4.1 bcrypt-3.1.7 cchardet-2.1.6 ckanapi-4.3 colorlog-4.1.0 cryptography-2.9.2 dnspython-1.16.0 email-validator-1.1.0 hdx-python-api-4.5.6 hdx-python-country-2.5.5 hdx-python-utilities-2.3.3 ijson-3.0.3 jsonlines-1.2.0 jsonpath-rw-1.4.0 libhxl-4.19 linear-tsv-1.1.0 ndg-httpsclient-0.5.1 num2words-0.5.10 openpyxl-3.0.3 paramiko-2.7.1 ply-3.11 psycopg2-binary-2.8.5 pyOpenSSL-19.1.0 pyaml-20.4.0 pynacl-1.3.0 python-io-wrapper-0.1 quantulum3-0.7.3 ratelimit-2.2.1 sshtunnel-0.1.5 tabulator-1.41.0 task-geo-0.1.0.dev0 unicodecsv-0.14.1 unidecode-1.1.1 yamlloader-0.5.5
os.chdir('..')
df = load_data()
/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2882: DtypeWarning: Columns (2) have mixed types.Specify dtype option on import or set low_memory=False. exec(code_obj, self.user_global_ns, self.user_ns) /content/task-ts/corona_ts/data_utils/data_crawler.py:92: DtypeWarning: Columns (3) have mixed types.Specify dtype option on import or set low_memory=False. mobility_df = fetch_mobility_data()
df[df['region']=='Florida'].sort_by()
country | region | sub_region | city | lat | long | date | level | tz | cases | deaths | recovered | active | tested | hospitalized | discharged | country_retail_recreation | country_grocery_pharmacy | country_parks | country_transit_stations | country_workplaces | country_residential | region_retail_recreation | region_grocery_pharmacy | region_parks | region_transit_stations | region_workplaces | region_residential | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
27492 | United States | Florida | Manatee County | NaN | 27.4270 | -82.4000 | 2020-03-01 | sub_region | America/New_York | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13.0 | 9.0 | 18.0 | 7.0 | 3.0 | -1.0 | 8.0 | 7.0 | 10.0 | 7.0 | 1.0 | -1.0 |
27493 | United States | Florida | Manatee County | NaN | 27.4270 | -82.4000 | 2020-03-01 | sub_region | America/New_York | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13.0 | 9.0 | 18.0 | 7.0 | 3.0 | -1.0 | 3.0 | 5.0 | 16.0 | -4.0 | -3.0 | -1.0 |
27494 | United States | Florida | Manatee County | NaN | 27.4270 | -82.4000 | 2020-03-01 | sub_region | America/New_York | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13.0 | 9.0 | 18.0 | 7.0 | 3.0 | -1.0 | 19.0 | 19.0 | NaN | NaN | 0.0 | NaN |
27495 | United States | Florida | Manatee County | NaN | 27.4270 | -82.4000 | 2020-03-01 | sub_region | America/New_York | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13.0 | 9.0 | 18.0 | 7.0 | 3.0 | -1.0 | 19.0 | 11.0 | 33.0 | 24.0 | 11.0 | -3.0 |
27496 | United States | Florida | Manatee County | NaN | 27.4270 | -82.4000 | 2020-03-01 | sub_region | America/New_York | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13.0 | 9.0 | 18.0 | 7.0 | 3.0 | -1.0 | 19.0 | 12.0 | NaN | NaN | 0.0 | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
7679488 | United States | Florida | Calhoun County | NaN | 30.4040 | -85.1615 | 2020-05-02 | sub_region | America/Chicago | 14 | 0 | 0 | 0 | 141 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
7679495 | United States | Florida | Citrus County | NaN | 28.8570 | -82.4640 | 2020-05-02 | sub_region | America/New_York | 99 | 11 | 0 | 0 | 1704 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
7679499 | United States | Florida | Collier County | NaN | 26.1600 | -81.3595 | 2020-05-02 | sub_region | America/New_York | 628 | 21 | 0 | 0 | 5867 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
7679508 | United States | Florida | Clay County | NaN | 29.9560 | -81.8150 | 2020-05-02 | sub_region | America/New_York | 278 | 18 | 0 | 0 | 4060 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
7679765 | United States | Florida | NaN | NaN | 27.8185 | -83.8385 | 2020-05-02 | region | America/New_York | 35463 | 1364 | 0 | 0 | 417762 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
192901 rows × 28 columns