import os
import pandas as pd
from google.colab import auth
from datetime import datetime
auth.authenticate_user()
!gcloud source repos clone github_aistream-peelout_flow-forecast --project=gmap-997
os.chdir('/content/github_aistream-peelout_flow-forecast')
!git checkout -t origin/covid_fixes
!python setup.py develop
!pip install -r requirements.txt
!mkdir data
from flood_forecast.trainer import train_function
!pip install git+https://github.com/CoronaWhy/task-geo.git
!wandb login
WARNING: Repository "github_aistream-peelout_flow-forecast" in project "gmap-997" is a mirror. Pushing to this clone will have no effect. Instead, clone the mirrored repository directly with $ git clone https://github.com/AIStream-Peelout/flow-forecast Cloning into '/content/github_aistream-peelout_flow-forecast'... remote: Total 3703 (delta 2463), reused 3703 (delta 2463) Receiving objects: 100% (3703/3703), 2.63 MiB | 13.23 MiB/s, done. Resolving deltas: 100% (2463/2463), done. Project [gmap-997] repository [github_aistream-peelout_flow-forecast] was cloned to [/content/github_aistream-peelout_flow-forecast]. Branch 'covid_fixes' set up to track remote branch 'covid_fixes' from 'origin'. Switched to a new branch 'covid_fixes' /usr/local/lib/python3.6/dist-packages/setuptools/dist.py:454: UserWarning: Normalizing '0.01dev' to '0.1.dev0' warnings.warn(tmpl.format(**locals())) running develop running egg_info creating flood_forecast.egg-info writing flood_forecast.egg-info/PKG-INFO writing dependency_links to flood_forecast.egg-info/dependency_links.txt writing requirements to flood_forecast.egg-info/requires.txt writing top-level names to flood_forecast.egg-info/top_level.txt writing manifest file 'flood_forecast.egg-info/SOURCES.txt' package init file 'flood_forecast/__init__.py' not found (or not a regular file) package init file 'flood_forecast/transformer_xl/__init__.py' not found (or not a regular file) package init file 'flood_forecast/preprocessing/__init__.py' not found (or not a regular file) package init file 'flood_forecast/da_rnn/__init__.py' not found (or not a regular file) package init file 'flood_forecast/basic/__init__.py' not found (or not a regular file) package init file 'flood_forecast/custom/__init__.py' not found (or not a regular file) writing manifest file 'flood_forecast.egg-info/SOURCES.txt' running build_ext Creating /usr/local/lib/python3.6/dist-packages/flood-forecast.egg-link (link to .) Adding flood-forecast 0.1.dev0 to easy-install.pth file Installed /content/github_aistream-peelout_flow-forecast Processing dependencies for flood-forecast==0.1.dev0 Searching for google-cloud Reading https://pypi.org/simple/google-cloud/ Downloading https://files.pythonhosted.org/packages/ba/b1/7c54d1950e7808df06642274e677dbcedba57f75307adf2e5ad8d39e5e0e/google_cloud-0.34.0-py2.py3-none-any.whl#sha256=fb1ab7b0548fe44b3d538041f0a374505b7f990d448a935ea36649c5ccab5acf Best match: google-cloud 0.34.0 Processing google_cloud-0.34.0-py2.py3-none-any.whl Installing google_cloud-0.34.0-py2.py3-none-any.whl to /usr/local/lib/python3.6/dist-packages Adding google-cloud 0.34.0 to easy-install.pth file Installed /usr/local/lib/python3.6/dist-packages/google_cloud-0.34.0-py3.6.egg Searching for pandas==1.0.3 Best match: pandas 1.0.3 Adding pandas 1.0.3 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for tensorflow==2.2.0rc4 Best match: tensorflow 2.2.0rc4 Adding tensorflow 2.2.0rc4 to easy-install.pth file Installing estimator_ckpt_converter script to /usr/local/bin Installing saved_model_cli script to /usr/local/bin Installing tensorboard script to /usr/local/bin Installing tf_upgrade_v2 script to /usr/local/bin Installing tflite_convert script to /usr/local/bin Installing toco script to /usr/local/bin Installing toco_from_protos script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for torch==1.5.0+cu101 Best match: torch 1.5.0+cu101 Adding torch 1.5.0+cu101 to easy-install.pth file Installing convert-caffe2-to-onnx script to /usr/local/bin Installing convert-onnx-to-caffe2 script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for scikit-learn==0.22.2.post1 Best match: scikit-learn 0.22.2.post1 Adding scikit-learn 0.22.2.post1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for python-dateutil==2.8.1 Best match: python-dateutil 2.8.1 Adding python-dateutil 2.8.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for numpy==1.18.4 Best match: numpy 1.18.4 Adding numpy 1.18.4 to easy-install.pth file Installing f2py script to /usr/local/bin Installing f2py3 script to /usr/local/bin Installing f2py3.6 script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for pytz==2018.9 Best match: pytz 2018.9 Adding pytz 2018.9 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for wrapt==1.12.1 Best match: wrapt 1.12.1 Adding wrapt 1.12.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for wheel==0.34.2 Best match: wheel 0.34.2 Adding wheel 0.34.2 to easy-install.pth file Installing wheel script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for h5py==2.10.0 Best match: h5py 2.10.0 Adding h5py 2.10.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for six==1.12.0 Best match: six 1.12.0 Adding six 1.12.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for absl-py==0.9.0 Best match: absl-py 0.9.0 Adding absl-py 0.9.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for Keras-Preprocessing==1.1.0 Best match: Keras-Preprocessing 1.1.0 Adding Keras-Preprocessing 1.1.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for google-pasta==0.2.0 Best match: google-pasta 0.2.0 Adding google-pasta 0.2.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for scipy==1.4.1 Best match: scipy 1.4.1 Adding scipy 1.4.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for gast==0.3.3 Best match: gast 0.3.3 Adding gast 0.3.3 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for opt-einsum==3.2.1 Best match: opt-einsum 3.2.1 Adding opt-einsum 3.2.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for protobuf==3.10.0 Best match: protobuf 3.10.0 Adding protobuf 3.10.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for grpcio==1.28.1 Best match: grpcio 1.28.1 Adding grpcio 1.28.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for tensorflow-estimator==2.2.0 Best match: tensorflow-estimator 2.2.0 Adding tensorflow-estimator 2.2.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for tensorboard==2.2.1 Best match: tensorboard 2.2.1 Adding tensorboard 2.2.1 to easy-install.pth file Installing tensorboard script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for astunparse==1.6.3 Best match: astunparse 1.6.3 Adding astunparse 1.6.3 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for termcolor==1.1.0 Best match: termcolor 1.1.0 Adding termcolor 1.1.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for future==0.16.0 Best match: future 0.16.0 Adding future 0.16.0 to easy-install.pth file Installing futurize script to /usr/local/bin Installing pasteurize script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for joblib==0.14.1 Best match: joblib 0.14.1 Adding joblib 0.14.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for setuptools==46.1.3 Best match: setuptools 46.1.3 Adding setuptools 46.1.3 to easy-install.pth file Installing easy_install script to /usr/local/bin Installing easy_install-3.8 script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for Werkzeug==1.0.1 Best match: Werkzeug 1.0.1 Adding Werkzeug 1.0.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for google-auth==1.7.2 Best match: google-auth 1.7.2 Adding google-auth 1.7.2 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for google-auth-oauthlib==0.4.1 Best match: google-auth-oauthlib 0.4.1 Adding google-auth-oauthlib 0.4.1 to easy-install.pth file Installing google-oauthlib-tool script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for Markdown==3.2.1 Best match: Markdown 3.2.1 Adding Markdown 3.2.1 to easy-install.pth file Installing markdown_py script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for tensorboard-plugin-wit==1.6.0.post3 Best match: tensorboard-plugin-wit 1.6.0.post3 Adding tensorboard-plugin-wit 1.6.0.post3 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for requests==2.23.0 Best match: requests 2.23.0 Adding requests 2.23.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for cachetools==3.1.1 Best match: cachetools 3.1.1 Adding cachetools 3.1.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for rsa==4.0 Best match: rsa 4.0 Adding rsa 4.0 to easy-install.pth file Installing pyrsa-decrypt script to /usr/local/bin Installing pyrsa-encrypt script to /usr/local/bin Installing pyrsa-keygen script to /usr/local/bin Installing pyrsa-priv2pub script to /usr/local/bin Installing pyrsa-sign script to /usr/local/bin Installing pyrsa-verify script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for pyasn1-modules==0.2.8 Best match: pyasn1-modules 0.2.8 Adding pyasn1-modules 0.2.8 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for requests-oauthlib==1.3.0 Best match: requests-oauthlib 1.3.0 Adding requests-oauthlib 1.3.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for chardet==3.0.4 Best match: chardet 3.0.4 Adding chardet 3.0.4 to easy-install.pth file Installing chardetect script to /usr/local/bin Using /usr/local/lib/python3.6/dist-packages Searching for urllib3==1.24.3 Best match: urllib3 1.24.3 Adding urllib3 1.24.3 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for idna==2.9 Best match: idna 2.9 Adding idna 2.9 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for certifi==2020.4.5.1 Best match: certifi 2020.4.5.1 Adding certifi 2020.4.5.1 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for pyasn1==0.4.8 Best match: pyasn1 0.4.8 Adding pyasn1 0.4.8 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Searching for oauthlib==3.1.0 Best match: oauthlib 3.1.0 Adding oauthlib 3.1.0 to easy-install.pth file Using /usr/local/lib/python3.6/dist-packages Finished processing dependencies for flood-forecast==0.1.dev0 Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 1)) (0.22.2.post1) Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 2)) (1.0.3) Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 3)) (1.5.0+cu101) Collecting tb-nightly Downloading https://files.pythonhosted.org/packages/ba/68/c413fa084dfcb95cb1b3fe9ea9d9de072e6c4acac3c3763a0ce50e1d8daf/tb_nightly-2.3.0a20200509-py3-none-any.whl (2.9MB) |████████████████████████████████| 3.0MB 3.5MB/s Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 5)) (0.10.1) Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 6)) (0.16.0) Collecting wandb Downloading https://files.pythonhosted.org/packages/2d/c9/ebbcefa6ef2ba14a7c62a4ee4415a5fecef8fac5e4d1b4e22af26fd9fe22/wandb-0.8.35-py2.py3-none-any.whl (1.4MB) |████████████████████████████████| 1.4MB 47.1MB/s Requirement already satisfied: pandas_gbq in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 8)) (0.11.0) Requirement already satisfied: google-cloud in /usr/local/lib/python3.6/dist-packages/google_cloud-0.34.0-py3.6.egg (from -r requirements.txt (line 9)) (0.34.0) Requirement already satisfied: google-cloud-storage in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 10)) (1.18.1) Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 11)) (3.13) Requirement already satisfied: plotly in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 12)) (4.4.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->-r requirements.txt (line 1)) (0.14.1) Requirement already satisfied: numpy>=1.11.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->-r requirements.txt (line 1)) (1.18.4) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->-r requirements.txt (line 1)) (1.4.1) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->-r requirements.txt (line 2)) (2018.9) Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas->-r requirements.txt (line 2)) (2.8.1) Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (2.23.0) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (3.2.1) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (0.4.1) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.12.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.6.0.post3) Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (46.1.3) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.7.2) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.0.1) Requirement already satisfied: wheel>=0.26; python_version >= "3" in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (0.34.2) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (3.10.0) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.28.1) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (0.9.0) Requirement already satisfied: matplotlib>=2.1.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->-r requirements.txt (line 5)) (3.2.1) Collecting gql==0.2.0 Downloading https://files.pythonhosted.org/packages/c4/6f/cf9a3056045518f06184e804bae89390eb706168349daa9dff8ac609962a/gql-0.2.0.tar.gz Collecting sentry-sdk>=0.4.0 Downloading https://files.pythonhosted.org/packages/20/7e/19545324e83db4522b885808cd913c3b93ecc0c88b03e037b78c6a417fa8/sentry_sdk-0.14.3-py2.py3-none-any.whl (103kB) |████████████████████████████████| 112kB 43.1MB/s Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.6/dist-packages (from wandb->-r requirements.txt (line 7)) (5.4.8) Requirement already satisfied: nvidia-ml-py3>=7.352.0 in /usr/local/lib/python3.6/dist-packages (from wandb->-r requirements.txt (line 7)) (7.352.0) Collecting shortuuid>=0.5.0 Downloading https://files.pythonhosted.org/packages/25/a6/2ecc1daa6a304e7f1b216f0896b26156b78e7c38e1211e9b798b4716c53d/shortuuid-1.0.1-py3-none-any.whl Collecting configparser>=3.8.1 Downloading https://files.pythonhosted.org/packages/4b/6b/01baa293090240cf0562cc5eccb69c6f5006282127f2b846fad011305c79/configparser-5.0.0-py3-none-any.whl Collecting subprocess32>=3.5.3 Downloading https://files.pythonhosted.org/packages/32/c8/564be4d12629b912ea431f1a50eb8b3b9d00f1a0b1ceff17f266be190007/subprocess32-3.5.4.tar.gz (97kB) |████████████████████████████████| 102kB 9.5MB/s Collecting watchdog>=0.8.3 Downloading https://files.pythonhosted.org/packages/73/c3/ed6d992006837e011baca89476a4bbffb0a91602432f73bd4473816c76e2/watchdog-0.10.2.tar.gz (95kB) |████████████████████████████████| 102kB 10.2MB/s Collecting docker-pycreds>=0.4.0 Downloading https://files.pythonhosted.org/packages/f5/e8/f6bd1eee09314e7e6dee49cbe2c5e22314ccdb38db16c9fc72d2fa80d054/docker_pycreds-0.4.0-py2.py3-none-any.whl Requirement already satisfied: Click>=7.0 in /usr/local/lib/python3.6/dist-packages (from wandb->-r requirements.txt (line 7)) (7.1.2) Collecting GitPython>=1.0.0 Downloading https://files.pythonhosted.org/packages/44/33/917e6fde1cad13daa7053f39b7c8af3be287314f75f1b1ea8d3fe37a8571/GitPython-3.1.2-py3-none-any.whl (451kB) |████████████████████████████████| 460kB 45.8MB/s Requirement already satisfied: pydata-google-auth in /usr/local/lib/python3.6/dist-packages (from pandas_gbq->-r requirements.txt (line 8)) (1.1.0) Requirement already satisfied: google-cloud-bigquery>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from pandas_gbq->-r requirements.txt (line 8)) (1.21.0) Requirement already satisfied: google-cloud-core<2.0dev,>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from google-cloud-storage->-r requirements.txt (line 10)) (1.0.3) Requirement already satisfied: google-resumable-media<0.5.0dev,>=0.3.1 in /usr/local/lib/python3.6/dist-packages (from google-cloud-storage->-r requirements.txt (line 10)) (0.4.1) Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.6/dist-packages (from plotly->-r requirements.txt (line 12)) (1.3.3) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (2.9) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (1.24.3) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (2020.4.5.1) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 4)) (1.3.0) Requirement already satisfied: cachetools<3.2,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (3.1.1) Requirement already satisfied: rsa<4.1,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (4.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (0.2.8) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->seaborn->-r requirements.txt (line 5)) (1.2.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->seaborn->-r requirements.txt (line 5)) (2.4.7) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->seaborn->-r requirements.txt (line 5)) (0.10.0) Collecting graphql-core<2,>=0.5.0 Downloading https://files.pythonhosted.org/packages/b0/89/00ad5e07524d8c523b14d70c685e0299a8b0de6d0727e368c41b89b7ed0b/graphql-core-1.1.tar.gz (70kB) |████████████████████████████████| 71kB 7.2MB/s Requirement already satisfied: promise<3,>=2.0 in /usr/local/lib/python3.6/dist-packages (from gql==0.2.0->wandb->-r requirements.txt (line 7)) (2.3) Collecting pathtools>=0.1.1 Downloading https://files.pythonhosted.org/packages/e7/7f/470d6fcdf23f9f3518f6b0b76be9df16dcc8630ad409947f8be2eb0ed13a/pathtools-0.1.2.tar.gz Collecting gitdb<5,>=4.0.1 Downloading https://files.pythonhosted.org/packages/48/11/d1800bca0a3bae820b84b7d813ad1eff15a48a64caea9c823fc8c1b119e8/gitdb-4.0.5-py3-none-any.whl (63kB) |████████████████████████████████| 71kB 5.7MB/s Requirement already satisfied: google-api-core<2.0.0dev,>=1.14.0 in /usr/local/lib/python3.6/dist-packages (from google-cloud-core<2.0dev,>=1.0.0->google-cloud-storage->-r requirements.txt (line 10)) (1.16.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 4)) (3.1.0) Requirement already satisfied: pyasn1>=0.1.3 in /usr/local/lib/python3.6/dist-packages (from rsa<4.1,>=3.1.4->google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (0.4.8) Collecting smmap<4,>=3.0.1 Downloading https://files.pythonhosted.org/packages/b0/9a/4d409a6234eb940e6a78dfdfc66156e7522262f5f2fecca07dc55915952d/smmap-3.0.4-py2.py3-none-any.whl Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from google-api-core<2.0.0dev,>=1.14.0->google-cloud-core<2.0dev,>=1.0.0->google-cloud-storage->-r requirements.txt (line 10)) (1.51.0) Building wheels for collected packages: gql, subprocess32, watchdog, graphql-core, pathtools Building wheel for gql (setup.py) ... done Created wheel for gql: filename=gql-0.2.0-cp36-none-any.whl size=7630 sha256=efdb6942864b790a728bf5da03b8f5217618c33f4db086398a4e65c0702548c9 Stored in directory: /root/.cache/pip/wheels/ce/0e/7b/58a8a5268655b3ad74feef5aa97946f0addafb3cbb6bd2da23 Building wheel for subprocess32 (setup.py) ... done Created wheel for subprocess32: filename=subprocess32-3.5.4-cp36-none-any.whl size=6489 sha256=5ad23f1ec1134b6b82eca206bdd195eeedf3fab18493700cff5834ff8ee37041 Stored in directory: /root/.cache/pip/wheels/68/39/1a/5e402bdfdf004af1786c8b853fd92f8c4a04f22aad179654d1 Building wheel for watchdog (setup.py) ... done Created wheel for watchdog: filename=watchdog-0.10.2-cp36-none-any.whl size=73605 sha256=4f13410c32204b416349c9f898ad95f5a3c89ff1b3e07d3724dfd9de0898886c Stored in directory: /root/.cache/pip/wheels/bc/ed/6c/028dea90d31b359cd2a7c8b0da4db80e41d24a59614154072e Building wheel for graphql-core (setup.py) ... done Created wheel for graphql-core: filename=graphql_core-1.1-cp36-none-any.whl size=104650 sha256=990e5fb8fe2bece99f37b18a8bcc3ebe91f66b477f239cae3791e95b2058d7df Stored in directory: /root/.cache/pip/wheels/45/99/d7/c424029bb0fe910c63b68dbf2aa20d3283d023042521bcd7d5 Building wheel for pathtools (setup.py) ... done Created wheel for pathtools: filename=pathtools-0.1.2-cp36-none-any.whl size=8784 sha256=1959d68adefe6f08809257d74c1bbe351986b205e7cc04b9ad84ad3e024d075b Stored in directory: /root/.cache/pip/wheels/0b/04/79/c3b0c3a0266a3cb4376da31e5bfe8bba0c489246968a68e843 Successfully built gql subprocess32 watchdog graphql-core pathtools Installing collected packages: tb-nightly, graphql-core, gql, sentry-sdk, shortuuid, configparser, subprocess32, pathtools, watchdog, docker-pycreds, smmap, gitdb, GitPython, wandb Successfully installed GitPython-3.1.2 configparser-5.0.0 docker-pycreds-0.4.0 gitdb-4.0.5 gql-0.2.0 graphql-core-1.1 pathtools-0.1.2 sentry-sdk-0.14.3 shortuuid-1.0.1 smmap-3.0.4 subprocess32-3.5.4 tb-nightly-2.3.0a20200509 wandb-0.8.35 watchdog-0.10.2 Collecting git+https://github.com/CoronaWhy/task-geo.git Cloning https://github.com/CoronaWhy/task-geo.git to /tmp/pip-req-build-xptgbhwy Running command git clone -q https://github.com/CoronaWhy/task-geo.git /tmp/pip-req-build-xptgbhwy Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (1.0.3) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (2.23.0) Requirement already satisfied: jupyter in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (1.0.0) Collecting hdx-python-api Downloading https://files.pythonhosted.org/packages/79/32/7033d6d9ff01fd592ec649756f78460dc66640c1001f39c2d421037866f3/hdx_python_api-4.5.8-py2.py3-none-any.whl (67kB) |████████████████████████████████| 71kB 2.3MB/s Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (1.18.4) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (2018.9) Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (2.8.1) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (2020.4.5.1) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (2.9) Requirement already satisfied: nbconvert in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.6.1) Requirement already satisfied: ipywidgets in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (7.5.1) Requirement already satisfied: qtconsole in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (4.7.3) Requirement already satisfied: jupyter-console in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.2.0) Requirement already satisfied: ipykernel in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (4.10.1) Requirement already satisfied: notebook in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.2.2) Requirement already satisfied: pyasn1 in /usr/local/lib/python3.6/dist-packages (from hdx-python-api->task-geo==0.1.0.dev0) (0.4.8) Collecting ckanapi>=4.3 Downloading https://files.pythonhosted.org/packages/07/c6/50449e18aaf1600dfda955805c58aa7462493511f3ebbb20d0a65874397c/ckanapi-4.3.tar.gz Collecting pyOpenSSL Downloading https://files.pythonhosted.org/packages/9e/de/f8342b68fa9e981d348039954657bdf681b2ab93de27443be51865ffa310/pyOpenSSL-19.1.0-py2.py3-none-any.whl (53kB) |████████████████████████████████| 61kB 5.3MB/s Collecting quantulum3>=0.7.3; python_version >= "3" Downloading https://files.pythonhosted.org/packages/d0/d5/60d72e7c9393199eba72f88deb06e0fddc4e357d600bdbe5f86e8cfc4512/quantulum3-0.7.3-py3-none-any.whl (11.1MB) |████████████████████████████████| 11.1MB 25.3MB/s Collecting ndg-httpsclient Downloading https://files.pythonhosted.org/packages/fb/67/c2f508c00ed2a6911541494504b7cac16fe0b0473912568df65fd1801132/ndg_httpsclient-0.5.1-py3-none-any.whl Collecting hdx-python-country>=2.5.6 Downloading https://files.pythonhosted.org/packages/24/45/684ec41e237b3e185c268b4ad4cd71581c3dfdb9c3e279d7777473edb8c2/hdx_python_country-2.5.6-py2.py3-none-any.whl Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.6.1->pandas->task-geo==0.1.0.dev0) (1.12.0) Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (2.1.3) Requirement already satisfied: testpath in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.4.4) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (4.3.3) Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.3) Requirement already satisfied: jupyter-core in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (4.6.3) Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (1.4.2) Requirement already satisfied: defusedxml in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.6.0) Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.8.4) Requirement already satisfied: bleach in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (3.1.5) Requirement already satisfied: nbformat>=4.4 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (5.0.6) Requirement already satisfied: jinja2>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (2.11.2) Requirement already satisfied: ipython>=4.0.0; python_version >= "3.3" in /usr/local/lib/python3.6/dist-packages (from ipywidgets->jupyter->task-geo==0.1.0.dev0) (5.5.0) Requirement already satisfied: widgetsnbextension~=3.5.0 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->jupyter->task-geo==0.1.0.dev0) (3.5.1) Requirement already satisfied: pyzmq>=17.1 in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (19.0.0) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (0.2.0) Requirement already satisfied: jupyter-client>=4.1 in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (5.3.4) Requirement already satisfied: qtpy in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (1.9.0) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from jupyter-console->jupyter->task-geo==0.1.0.dev0) (1.0.18) Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.6/dist-packages (from ipykernel->jupyter->task-geo==0.1.0.dev0) (4.5.3) Requirement already satisfied: terminado>=0.3.3; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (0.8.3) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (46.1.3) Requirement already satisfied: docopt in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (0.6.2) Requirement already satisfied: python-slugify>=1.0 in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (4.0.0) Collecting cryptography>=2.8 Downloading https://files.pythonhosted.org/packages/3c/04/686efee2dcdd25aecf357992e7d9362f443eb182ecd623f882bc9f7a6bba/cryptography-2.9.2-cp35-abi3-manylinux2010_x86_64.whl (2.7MB) |████████████████████████████████| 2.7MB 46.7MB/s Requirement already satisfied: inflect in /usr/local/lib/python3.6/dist-packages (from quantulum3>=0.7.3; python_version >= "3"->hdx-python-api->task-geo==0.1.0.dev0) (2.1.0) Collecting num2words Downloading https://files.pythonhosted.org/packages/eb/a2/ea800689730732e27711c41beed4b2a129b34974435bdc450377ec407738/num2words-0.5.10-py3-none-any.whl (101kB) |████████████████████████████████| 102kB 10.4MB/s Collecting libhxl>=4.19; python_version >= "3" Downloading https://files.pythonhosted.org/packages/d1/bb/7713720c382aad5260694fd5875fe013ee7ccef771e41a3298f661c01c84/libhxl-4.19.tar.gz (77kB) |████████████████████████████████| 81kB 8.6MB/s Collecting hdx-python-utilities>=2.3.4 Downloading https://files.pythonhosted.org/packages/13/0c/dd417c960de745a129d6c0cf63bb0215b179c29674e45ca041c75cf76baf/hdx_python_utilities-2.3.4-py2.py3-none-any.whl (46kB) |████████████████████████████████| 51kB 4.9MB/s Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from traitlets>=4.2->nbconvert->jupyter->task-geo==0.1.0.dev0) (4.4.2) Requirement already satisfied: packaging in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->jupyter->task-geo==0.1.0.dev0) (20.3) Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->jupyter->task-geo==0.1.0.dev0) (0.5.1) Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbformat>=4.4->nbconvert->jupyter->task-geo==0.1.0.dev0) (2.6.0) Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2>=2.4->nbconvert->jupyter->task-geo==0.1.0.dev0) (1.1.1) Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (0.7.5) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (0.8.1) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (4.8.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.0->jupyter-console->jupyter->task-geo==0.1.0.dev0) (0.1.9) Requirement already satisfied: ptyprocess; os_name != "nt" in /usr/local/lib/python3.6/dist-packages (from terminado>=0.3.3; sys_platform != "win32"->notebook->jupyter->task-geo==0.1.0.dev0) (0.6.0) Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.6/dist-packages (from python-slugify>=1.0->ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (1.3) Requirement already satisfied: cffi!=1.11.3,>=1.8 in /usr/local/lib/python3.6/dist-packages (from cryptography>=2.8->pyOpenSSL->hdx-python-api->task-geo==0.1.0.dev0) (1.14.0) Requirement already satisfied: xlrd in /usr/local/lib/python3.6/dist-packages (from libhxl>=4.19; python_version >= "3"->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.1.0) Collecting unidecode Downloading https://files.pythonhosted.org/packages/d0/42/d9edfed04228bacea2d824904cae367ee9efd05e6cce7ceaaedd0b0ad964/Unidecode-1.1.1-py2.py3-none-any.whl (238kB) |████████████████████████████████| 245kB 48.8MB/s Collecting python-io-wrapper Downloading https://files.pythonhosted.org/packages/76/81/88e02bc603e55883a087811a641fd3836749b7509365778fea29d74fd58c/python-io-wrapper-0.1.tar.gz Collecting jsonpath_rw Downloading https://files.pythonhosted.org/packages/71/7c/45001b1f19af8c4478489fbae4fc657b21c4c669d7a5a036a86882581d85/jsonpath-rw-1.4.0.tar.gz Collecting ply Downloading https://files.pythonhosted.org/packages/a3/58/35da89ee790598a0700ea49b2a66594140f44dec458c07e8e3d4979137fc/ply-3.11-py2.py3-none-any.whl (49kB) |████████████████████████████████| 51kB 5.4MB/s Collecting sshtunnel Downloading https://files.pythonhosted.org/packages/c5/5c/4b320d7ec4b0d5d4d6df1fdf66a5799625b3623d0ce4efe81719c6f8dfb3/sshtunnel-0.1.5.tar.gz (49kB) |████████████████████████████████| 51kB 5.5MB/s Requirement already satisfied: html5lib in /usr/local/lib/python3.6/dist-packages (from hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.0.1) Collecting ratelimit Downloading https://files.pythonhosted.org/packages/ab/38/ff60c8fc9e002d50d48822cc5095deb8ebbc5f91a6b8fdd9731c87a147c9/ratelimit-2.2.1.tar.gz Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.6/dist-packages (from hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (4.6.3) Collecting basicauth Downloading https://files.pythonhosted.org/packages/76/47/08d21ffcc837bebf3306b8295f5d179f9bc498f6235ebf4a4e38be57839c/basicauth-0.4.1-py2.py3-none-any.whl Collecting email-validator Downloading https://files.pythonhosted.org/packages/45/54/1a1da475b684aa4eb30da169ea5ebd9341a5d3138138bc2b365222b9ac87/email_validator-1.1.0-py2.py3-none-any.whl Collecting psycopg2-binary Downloading https://files.pythonhosted.org/packages/d3/8a/a7ed55c2c55bd4f5844d72734fedc0cef8a74518a0a19105a21c15628f1e/psycopg2_binary-2.8.5-cp36-cp36m-manylinux1_x86_64.whl (2.9MB) |████████████████████████████████| 2.9MB 35.6MB/s Collecting yamlloader Downloading https://files.pythonhosted.org/packages/93/a2/2f0c2394af1559021703c8cbb1bc7419bb5a94ea6bde0ab8cd1e973bb605/yamlloader-0.5.5-py3-none-any.whl Collecting tabulator[cchardet]>=1.42.0 Downloading https://files.pythonhosted.org/packages/57/82/517ec480d4cfadb0e6d6d441e11a349d7d607f929f2f34f7777d65b1e421/tabulator-1.44.0-py2.py3-none-any.whl (69kB) |████████████████████████████████| 71kB 964kB/s Collecting colorlog Downloading https://files.pythonhosted.org/packages/00/0d/22c73c2eccb21dd3498df7d22c0b1d4a30f5a5fb3feb64e1ce06bc247747/colorlog-4.1.0-py2.py3-none-any.whl Collecting pyaml Downloading https://files.pythonhosted.org/packages/15/c4/1310a054d33abc318426a956e7d6df0df76a6ddfa9c66f6310274fb75d42/pyaml-20.4.0-py2.py3-none-any.whl Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from packaging->bleach->nbconvert->jupyter->task-geo==0.1.0.dev0) (2.4.7) Requirement already satisfied: pycparser in /usr/local/lib/python3.6/dist-packages (from cffi!=1.11.3,>=1.8->cryptography>=2.8->pyOpenSSL->hdx-python-api->task-geo==0.1.0.dev0) (2.20) Collecting paramiko>=1.15.2 Downloading https://files.pythonhosted.org/packages/06/1e/1e08baaaf6c3d3df1459fd85f0e7d2d6aa916f33958f151ee1ecc9800971/paramiko-2.7.1-py2.py3-none-any.whl (206kB) |████████████████████████████████| 215kB 42.9MB/s Collecting dnspython>=1.15.0 Downloading https://files.pythonhosted.org/packages/ec/d3/3aa0e7213ef72b8585747aa0e271a9523e713813b9a20177ebe1e939deb0/dnspython-1.16.0-py2.py3-none-any.whl (188kB) |████████████████████████████████| 194kB 45.1MB/s Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from yamlloader->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (3.13) Collecting openpyxl>=2.6 Downloading https://files.pythonhosted.org/packages/95/8c/83563c60489954e5b80f9e2596b93a68e1ac4e4a730deb1aae632066d704/openpyxl-3.0.3.tar.gz (172kB) |████████████████████████████████| 174kB 46.9MB/s Collecting linear-tsv>=1.0 Downloading https://files.pythonhosted.org/packages/82/e5/03207a0f11e1d60df85b97b61704ed701b725a7c2feaf83f7bfbd0c2d83e/linear-tsv-1.1.0.tar.gz Collecting jsonlines>=1.1 Downloading https://files.pythonhosted.org/packages/4f/9a/ab96291470e305504aa4b7a2e0ec132e930da89eb3ca7a82fbe03167c131/jsonlines-1.2.0-py2.py3-none-any.whl Collecting ijson>=3.0.3 Downloading https://files.pythonhosted.org/packages/75/38/e2d650844fd69ced9fb8d2804ffd3cd76d43bcc1950c266367aaf9a456f6/ijson-3.0.3-cp36-cp36m-manylinux1_x86_64.whl (96kB) |████████████████████████████████| 102kB 8.2MB/s Collecting unicodecsv>=0.14 Downloading https://files.pythonhosted.org/packages/6f/a4/691ab63b17505a26096608cc309960b5a6bdf39e4ba1a793d5f9b1a53270/unicodecsv-0.14.1.tar.gz Requirement already satisfied: sqlalchemy>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.3.16) Requirement already satisfied: click>=6.0 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (7.1.2) Requirement already satisfied: boto3>=1.9 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.13.3) Collecting cchardet>=2.0; extra == "cchardet" Downloading https://files.pythonhosted.org/packages/1e/c5/7e1a0d7b4afd83d6f8de794fce82820ec4c5136c6d52e14000822681a842/cchardet-2.1.6-cp36-cp36m-manylinux2010_x86_64.whl (241kB) |████████████████████████████████| 245kB 35.6MB/s Collecting pynacl>=1.0.1 Downloading https://files.pythonhosted.org/packages/27/15/2cd0a203f318c2240b42cd9dd13c931ddd61067809fee3479f44f086103e/PyNaCl-1.3.0-cp34-abi3-manylinux1_x86_64.whl (759kB) |████████████████████████████████| 768kB 38.7MB/s Collecting bcrypt>=3.1.3 Downloading https://files.pythonhosted.org/packages/8b/1d/82826443777dd4a624e38a08957b975e75df859b381ae302cfd7a30783ed/bcrypt-3.1.7-cp34-abi3-manylinux1_x86_64.whl (56kB) |████████████████████████████████| 61kB 6.8MB/s Requirement already satisfied: jdcal in /usr/local/lib/python3.6/dist-packages (from openpyxl>=2.6->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.4.1) Requirement already satisfied: et_xmlfile in /usr/local/lib/python3.6/dist-packages (from openpyxl>=2.6->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.0.1) Requirement already satisfied: botocore<1.17.0,>=1.16.3 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.16.3) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (0.9.5) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (0.3.3) Requirement already satisfied: docutils<0.16,>=0.10 in /usr/local/lib/python3.6/dist-packages (from botocore<1.17.0,>=1.16.3->boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (0.15.2) Building wheels for collected packages: task-geo, ckanapi, libhxl, python-io-wrapper, jsonpath-rw, sshtunnel, ratelimit, openpyxl, linear-tsv, unicodecsv Building wheel for task-geo (setup.py) ... done Created wheel for task-geo: filename=task_geo-0.1.0.dev0-py2.py3-none-any.whl size=177461 sha256=0715f4a9dc29541d20496dcf78309daca37dcecc0766292fd97b6013d48fc64e Stored in directory: /tmp/pip-ephem-wheel-cache-3sl_wni3/wheels/4f/c4/a4/33f04d80a745ae3ff088cae6f8cda3b46c48e007585d9ff0bf Building wheel for ckanapi (setup.py) ... done Created wheel for ckanapi: filename=ckanapi-4.3-cp36-none-any.whl size=38647 sha256=166b963560cbf1edd246d53404ba0507436fb0958384d80cce630caaf3520117 Stored in directory: /root/.cache/pip/wheels/41/f2/fb/c8ce857007de64cc6b36b8f1048272396bc0817c35ee3a3e73 Building wheel for libhxl (setup.py) ... done Created wheel for libhxl: filename=libhxl-4.19-cp36-none-any.whl size=81540 sha256=309fe0e5b61a416b217a1f4582902f2a769dfcd4a1007f300df360d73256c54b Stored in directory: /root/.cache/pip/wheels/99/4e/75/2c1d5d8cd3c34a42dcd9a388562d3dd3fb2197adbb47e20503 Building wheel for python-io-wrapper (setup.py) ... done Created wheel for python-io-wrapper: filename=python_io_wrapper-0.1-cp36-none-any.whl size=2490 sha256=748d1694385e018f7999b32242ef7889fb519e710fc56845cd660a2eb0db8356 Stored in directory: /root/.cache/pip/wheels/6b/26/be/da3c0a774901c557a0bee985e7aade5b9db75fe4dc8ef99ced Building wheel for jsonpath-rw (setup.py) ... done Created wheel for jsonpath-rw: filename=jsonpath_rw-1.4.0-cp36-none-any.whl size=15146 sha256=d5daeb5cf825d4b7f450ca43c889d1d2ae8c9767d9c5bf70cbe25e44c872a0c9 Stored in directory: /root/.cache/pip/wheels/5c/00/9a/82822db383c2d96dcebf839786665a185f92d37e5026f9806f Building wheel for sshtunnel (setup.py) ... done Created wheel for sshtunnel: filename=sshtunnel-0.1.5-py2.py3-none-any.whl size=23243 sha256=fd7eb4dd7d7fe19108857f707f017972fcbea90a053e1856c4431746003fc41a Stored in directory: /root/.cache/pip/wheels/e8/d2/38/b9791b7391f634099194ec6697fa671194f3353906d94c8f92 Building wheel for ratelimit (setup.py) ... done Created wheel for ratelimit: filename=ratelimit-2.2.1-cp36-none-any.whl size=5893 sha256=89b5a5ec5d39b5432f0338b114fce29ea2e1fb09d7dee74c0547102660f13e89 Stored in directory: /root/.cache/pip/wheels/05/d9/82/3c6044cf1a54aab9151612458446d9b17a38416869e1b1d9b8 Building wheel for openpyxl (setup.py) ... done Created wheel for openpyxl: filename=openpyxl-3.0.3-py2.py3-none-any.whl size=241262 sha256=e8124e8bea3e1eea2ed30c228a40eabb8003d9803813984a602fbde0b46c136f Stored in directory: /root/.cache/pip/wheels/b5/85/ca/e768ac132e57e75e645a151f8badac71cc0089e7225dddf76b Building wheel for linear-tsv (setup.py) ... done Created wheel for linear-tsv: filename=linear_tsv-1.1.0-cp36-none-any.whl size=7383 sha256=8b473779da3f1baccf57e16557a6ca83195947f8f2d7d03b26a3ccd7b7b620f8 Stored in directory: /root/.cache/pip/wheels/3f/8a/cb/38917fd1ef4356b9870ace7331b83417dc594bf2c029bd991f Building wheel for unicodecsv (setup.py) ... done Created wheel for unicodecsv: filename=unicodecsv-0.14.1-cp36-none-any.whl size=10768 sha256=52517a383a97e3efcdf4a77de6f33a714ce97cc4565733dd3d95f67cbb8caa52 Stored in directory: /root/.cache/pip/wheels/a6/09/e9/e800279c98a0a8c94543f3de6c8a562f60e51363ed26e71283 Successfully built task-geo ckanapi libhxl python-io-wrapper jsonpath-rw sshtunnel ratelimit openpyxl linear-tsv unicodecsv ERROR: hdx-python-utilities 2.3.4 has requirement six>=1.14.0, but you'll have six 1.12.0 which is incompatible. Installing collected packages: ckanapi, cryptography, pyOpenSSL, num2words, quantulum3, ndg-httpsclient, unidecode, python-io-wrapper, ply, jsonpath-rw, libhxl, pynacl, bcrypt, paramiko, sshtunnel, ratelimit, basicauth, dnspython, email-validator, psycopg2-binary, yamlloader, openpyxl, linear-tsv, jsonlines, ijson, unicodecsv, cchardet, tabulator, colorlog, pyaml, hdx-python-utilities, hdx-python-country, hdx-python-api, task-geo Found existing installation: openpyxl 2.5.9 Uninstalling openpyxl-2.5.9: Successfully uninstalled openpyxl-2.5.9 Successfully installed basicauth-0.4.1 bcrypt-3.1.7 cchardet-2.1.6 ckanapi-4.3 colorlog-4.1.0 cryptography-2.9.2 dnspython-1.16.0 email-validator-1.1.0 hdx-python-api-4.5.8 hdx-python-country-2.5.6 hdx-python-utilities-2.3.4 ijson-3.0.3 jsonlines-1.2.0 jsonpath-rw-1.4.0 libhxl-4.19 linear-tsv-1.1.0 ndg-httpsclient-0.5.1 num2words-0.5.10 openpyxl-3.0.3 paramiko-2.7.1 ply-3.11 psycopg2-binary-2.8.5 pyOpenSSL-19.1.0 pyaml-20.4.0 pynacl-1.3.0 python-io-wrapper-0.1 quantulum3-0.7.3 ratelimit-2.2.1 sshtunnel-0.1.5 tabulator-1.44.0 task-geo-0.1.0.dev0 unicodecsv-0.14.1 unidecode-1.1.1 yamlloader-0.5.5 wandb: You can find your API key in your browser here: https://app.wandb.ai/authorize wandb: Paste an API key from your profile and hit enter: 936f243deff8f026e476a495792f87a7942c65bf wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc Successfully logged in to Weights & Biases!
def make_config_file(file_path, df_len, weight_path=None):
run = wandb.init(project="covid-forecast")
wandb_config = wandb.config
train_number = df_len * .7
validation_number = df_len *.9
config_default={
"model_name": "MultiAttnHeadSimple",
"model_type": "PyTorch",
"model_params": {
"number_time_series":3,
"seq_len":wandb_config["forecast_history"],
"output_seq_len":wandb_config["out_seq_length"],
"forecast_length":wandb_config["out_seq_length"]
},
"dataset_params":
{ "class": "default",
"training_path": file_path,
"validation_path": file_path,
"test_path": file_path,
"batch_size":wandb_config["batch_size"],
"forecast_history":wandb_config["forecast_history"],
"forecast_length":wandb_config["out_seq_length"],
"train_end": int(train_number),
"valid_start":int(train_number+1),
"valid_end": int(validation_number),
"target_col": ["new_cases"],
"relevant_cols": ["new_cases", "month", "weekday"],
"scaler": "StandardScaler",
"interpolate": False
},
"training_params":
{
"criterion":"MSE",
"optimizer": wandb_config["optimizer"],
"optim_params":
{
"lr": wandb_config["lr"]
},
"epochs": 10,
"batch_size":wandb_config["batch_size"]
},
"GCS": False,
"sweep":True,
"wandb":False,
"forward_params":{},
"metrics":["MSE"],
"inference_params":
{
"datetime_start":"2020-04-21",
"hours_to_forecast":10,
"test_csv_path":file_path,
"decoder_params":{
"decoder_function": "simple_decode",
"unsqueeze_dim": 1
},
"dataset_params":{
"file_path": file_path,
"forecast_history":wandb_config["forecast_history"],
"forecast_length":wandb_config["out_seq_length"],
"relevant_cols": ["new_cases", "month", "weekday"],
"target_col": ["new_cases"],
"scaling": "StandardScaler",
"interpolate_param": False
}
}
}
if weight_path:
config_default["weight_path"] = weight_path
wandb.config.update(config_default)
return config_default
sweep_config = {
"name": "Default sweep",
"method": "grid",
"parameters": {
"batch_size": {
"values": [2, 3, 4, 5]
},
"lr":{
"values":[0.001, 0.002, 0.004, 0.01]
},
"optimizer":{
"values":["Adam"]
},
"forecast_history":{
"values":[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
},
"out_seq_length":{
"values":[1, 2, 3]
}
}
}
def format_corona_data(region_df:pd.DataFrame, region_name:str):
"""
Format data for a specific region into
a format that can be used with flow forecast.
"""
if region_name == 'county':
region_name = region_df['full_county'].iloc[0]
else:
region_name = region_df['state'].iloc[0]
#else:
#region_name = region_df['country'].iloc[0]
print(region_name)
region_df['datetime'] = region_df['date']
region_df['precip'] = 0
region_df['temp'] = 0
region_df = region_df.fillna(0)
region_df['new_cases'] = region_df['cases'].diff()
region_df.iloc[0]['new_cases'] = 0
region_df= region_df.fillna(0)
region_df.to_csv(region_name+".csv")
return region_df, len(region_df), region_name+".csv"
def loop_through_geo_codes(df, column='full_county'):
df_county_list = []
df['full_county'] = df['state'] + "_" + df['county']
for code in df['full_county'].unique():
mask = df['full_county'] == code
df_code = df[mask]
ts_count = len(df_code)
if ts_count > 60:
df_county_list.append(df_code)
return df_county_list
def fetch_time_series() -> pd.DataFrame:
"""Fetch raw time series data from coronadatascraper.com
Returns:
pd.DataFrame: raw timeseries data at county/sub-region level
"""
if 1==1:
url = "https://coronadatascraper.com/timeseries.csv"
urllib.request.urlretrieve(url, "timeseries.csv")
time_series_df = pd.read_csv("timeseries.csv")
return time_series_df
import urllib
df = fetch_time_series()
df['month'] = pd.to_datetime(df['date']).map(lambda x: x.month)
df['weekday'] = pd.to_datetime(df['date']).map(lambda x: x.weekday())
df_list = loop_through_geo_codes(df)
/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2822: DtypeWarning: Columns (2) have mixed types.Specify dtype option on import or set low_memory=False. if self.run_code(code, result):
Run sweep
import wandb
def sweep_all_geo(df_list, region_level, start_index=0, end_index=38):
for array_index in range(start_index, end_index):
region_df, full_len, file_path = format_corona_data(df_list[array_index], region_level)
sweep_id = wandb.sweep(sweep_config, project="covid-forecast")
wandb.agent(sweep_id, lambda:train_function("PyTorch", make_config_file(file_path, full_len)))
print(len(df_list))
sweep_all_geo(df_list, 'county', 40, len(df_list))
173 Colorado_Douglas County
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:13: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy del sys.path[0] /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:14: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy from ipykernel import kernelapp as app /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:18: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
Create sweep with ID: dmjolbmp Sweep URL: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp wandb: Agent Starting Run: ikjglsrm with config: batch_size: 2 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ikjglsrm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.209745293483138 The number of items in train is: 21 The loss for epoch 0 1.0576069187372923 The running loss is: 25.875566819682717 The number of items in train is: 21 The loss for epoch 1 1.23216984855632 The running loss is: 16.456275817006826 The number of items in train is: 21 The loss for epoch 2 0.7836321817622298 The running loss is: 16.631219685077667 The number of items in train is: 21 The loss for epoch 3 0.7919628421465555 The running loss is: 15.837834678590298 The number of items in train is: 21 The loss for epoch 4 0.7541826037423951 The running loss is: 14.741810627281666 The number of items in train is: 21 The loss for epoch 5 0.7019909822515079 The running loss is: 15.050849847495556 The number of items in train is: 21 The loss for epoch 6 0.7167071355950265 The running loss is: 15.953906068578362 The number of items in train is: 21 The loss for epoch 7 0.7597098127894458 The running loss is: 16.0874502658844 The number of items in train is: 21 The loss for epoch 8 0.7660690602802095 The running loss is: 15.227701779454947 The number of items in train is: 21 The loss for epoch 9 0.7251286561645213 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.894448 48 30755 ... 11.626228 49 30756 ... 11.733383 50 30757 ... 12.008819 51 30758 ... 12.359694 52 30759 ... 12.744390 53 30760 ... 13.144247 54 30761 ... 11.959114 55 30762 ... 11.655218 56 30763 ... 11.746380 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ikjglsrm wandb: Agent Starting Run: sccle7in with config: batch_size: 2 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sccle7in
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 32.99953880906105 The number of items in train is: 21 The loss for epoch 0 1.5714066099552881 The running loss is: 34.578114688396454 The number of items in train is: 21 The loss for epoch 1 1.6465768899236406 The running loss is: 25.18665075302124 The number of items in train is: 21 The loss for epoch 2 1.19936432157244 The running loss is: 24.97196725010872 The number of items in train is: 21 The loss for epoch 3 1.1891412976242246 The running loss is: 24.43036612868309 The number of items in train is: 21 The loss for epoch 4 1.1633507680325281 The running loss is: 24.190653383731842 The number of items in train is: 21 The loss for epoch 5 1.151935875415802 The running loss is: 23.219544798135757 The number of items in train is: 21 The loss for epoch 6 1.1056926094350361 The running loss is: 22.971314638853073 The number of items in train is: 21 The loss for epoch 7 1.0938721256596702 The running loss is: 21.56657423079014 The number of items in train is: 21 The loss for epoch 8 1.026979725275721 The running loss is: 22.224213495850563 The number of items in train is: 21 The loss for epoch 9 1.0582958807547886 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 15.966778 48 30755 ... 17.588491 49 30756 ... 18.489956 50 30757 ... 19.005741 51 30758 ... 19.315006 52 30759 ... 19.513683 53 30760 ... 19.653145 54 30761 ... 19.529381 55 30762 ... 19.496183 56 30763 ... 19.511480 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sccle7in wandb: Agent Starting Run: 1kbxwatt with config: batch_size: 2 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1kbxwatt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 27.474478989839554 The number of items in train is: 20 The loss for epoch 0 1.3737239494919777 The running loss is: 35.779832273721695 The number of items in train is: 20 The loss for epoch 1 1.7889916136860848 The running loss is: 23.186582028865814 The number of items in train is: 20 The loss for epoch 2 1.1593291014432907 The running loss is: 22.105967074632645 The number of items in train is: 20 The loss for epoch 3 1.1052983537316323 The running loss is: 21.186039209365845 The number of items in train is: 20 The loss for epoch 4 1.0593019604682923 The running loss is: 21.136306032538414 The number of items in train is: 20 The loss for epoch 5 1.0568153016269206 The running loss is: 20.87136097252369 The number of items in train is: 20 The loss for epoch 6 1.0435680486261845 The running loss is: 20.777209982275963 The number of items in train is: 20 The loss for epoch 7 1.0388604991137982 The running loss is: 20.66132915019989 The number of items in train is: 20 The loss for epoch 8 1.0330664575099946 The running loss is: 20.37255945801735 The number of items in train is: 20 The loss for epoch 9 1.0186279729008674 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 6.496966 48 30755 ... 3.573092 49 30756 ... 2.030942 50 30757 ... 1.022203 51 30758 ... 0.219382 52 30759 ... -0.503940 53 30760 ... -1.196578 54 30761 ... 1.016424 55 30762 ... 1.457347 56 30763 ... 1.214166 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1kbxwatt wandb: Agent Starting Run: yr7zkt33 with config: batch_size: 2 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yr7zkt33
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.944366239011288 The number of items in train is: 21 The loss for epoch 0 0.854493630429109 The running loss is: 34.34139671176672 The number of items in train is: 21 The loss for epoch 1 1.6353046053222247 The running loss is: 27.00930019468069 The number of items in train is: 21 The loss for epoch 2 1.286157152127652 The running loss is: 17.550274595618248 The number of items in train is: 21 The loss for epoch 3 0.8357273616961071 The running loss is: 15.303298708051443 The number of items in train is: 21 The loss for epoch 4 0.7287285099072116 The running loss is: 16.061053287237883 The number of items in train is: 21 The loss for epoch 5 0.764812061297042 The running loss is: 15.270921267569065 The number of items in train is: 21 The loss for epoch 6 0.7271867270270983 The running loss is: 15.990724802017212 The number of items in train is: 21 The loss for epoch 7 0.7614630858103434 The running loss is: 15.62948726862669 The number of items in train is: 21 The loss for epoch 8 0.7442612985060328 The running loss is: 15.671696230769157 The number of items in train is: 21 The loss for epoch 9 0.7462712490842456 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.829262 48 30755 ... 11.559772 49 30756 ... 11.661650 50 30757 ... 11.916553 51 30758 ... 12.234512 52 30759 ... 12.578454 53 30760 ... 12.933103 54 30761 ... 11.801696 55 30762 ... 11.548413 56 30763 ... 11.656969 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yr7zkt33 wandb: Agent Starting Run: 64pwuc2m with config: batch_size: 2 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 64pwuc2m
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 27.359292954206467 The number of items in train is: 21 The loss for epoch 0 1.3028234740098317 The running loss is: 43.42585930228233 The number of items in train is: 21 The loss for epoch 1 2.0678980620134446 The running loss is: 33.279954731464386 The number of items in train is: 21 The loss for epoch 2 1.5847597491173517 The running loss is: 25.072028666734695 The number of items in train is: 21 The loss for epoch 3 1.1939061269873665 The running loss is: 22.292101874947548 The number of items in train is: 21 The loss for epoch 4 1.061528660711788 The running loss is: 23.1343837082386 The number of items in train is: 21 The loss for epoch 5 1.1016373194399334 The running loss is: 21.76330964267254 The number of items in train is: 21 The loss for epoch 6 1.0363480782225019 The running loss is: 21.404461607336998 The number of items in train is: 21 The loss for epoch 7 1.019260076539857 The running loss is: 19.915255278348923 The number of items in train is: 21 The loss for epoch 8 0.9483454894451868 The running loss is: 19.895478509366512 The number of items in train is: 21 The loss for epoch 9 0.9474037385412625 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 14.941013 48 30755 ... 15.908203 49 30756 ... 16.418524 50 30757 ... 16.714504 51 30758 ... 16.909929 52 30759 ... 17.058176 53 30760 ... 17.184292 54 30761 ... 16.904070 55 30762 ... 16.829170 56 30763 ... 16.850595 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 64pwuc2m wandb: Agent Starting Run: s51msur4 with config: batch_size: 2 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: s51msur4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.703781209886074 The number of items in train is: 20 The loss for epoch 0 1.0351890604943037 The running loss is: 47.7876605540514 The number of items in train is: 20 The loss for epoch 1 2.38938302770257 The running loss is: 35.47767253220081 The number of items in train is: 20 The loss for epoch 2 1.7738836266100406 The running loss is: 23.832139432430267 The number of items in train is: 20 The loss for epoch 3 1.1916069716215134 The running loss is: 21.081158697605133 The number of items in train is: 20 The loss for epoch 4 1.0540579348802566 The running loss is: 20.350356683135033 The number of items in train is: 20 The loss for epoch 5 1.0175178341567517 The running loss is: 19.832687944173813 The number of items in train is: 20 The loss for epoch 6 0.9916343972086906 The running loss is: 19.82853750884533 The number of items in train is: 20 The loss for epoch 7 0.9914268754422665 The running loss is: 19.4885743111372 The number of items in train is: 20 The loss for epoch 8 0.97442871555686 The running loss is: 18.965040057897568 The number of items in train is: 20 The loss for epoch 9 0.9482520028948784 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 7.287391 48 30755 ... 4.862523 49 30756 ... 3.617318 50 30757 ... 2.795383 51 30758 ... 2.125319 52 30759 ... 1.509749 53 30760 ... 0.913731 54 30761 ... 2.950763 55 30762 ... 3.306514 56 30763 ... 3.059012 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: s51msur4 wandb: Agent Starting Run: wx5xxkqb with config: batch_size: 2 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: wx5xxkqb
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.458090774714947 The number of items in train is: 21 The loss for epoch 0 0.9741947987959498 The running loss is: 24.059880753979087 The number of items in train is: 21 The loss for epoch 1 1.1457086073323375 The running loss is: 23.21456527709961 The number of items in train is: 21 The loss for epoch 2 1.1054554893856956 The running loss is: 28.819509647786617 The number of items in train is: 21 The loss for epoch 3 1.3723576022755533 The running loss is: 31.193957291543484 The number of items in train is: 21 The loss for epoch 4 1.4854265376925468 The running loss is: 27.668494045734406 The number of items in train is: 21 The loss for epoch 5 1.3175473355111622 The running loss is: 25.656272009015083 The number of items in train is: 21 The loss for epoch 6 1.2217272385245277 The running loss is: 20.36942693591118 The number of items in train is: 21 The loss for epoch 7 0.9699727112338656 The running loss is: 15.879903003573418 The number of items in train is: 21 The loss for epoch 8 0.7561858573130199 The running loss is: 16.215510118752718 The number of items in train is: 21 The loss for epoch 9 0.7721671485120342 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 12.331620 48 30755 ... 12.283362 49 30756 ... 12.453766 50 30757 ... 12.701273 51 30758 ... 12.975966 52 30759 ... 13.260247 53 30760 ... 13.547908 54 30761 ... 12.524818 55 30762 ... 12.351486 56 30763 ... 12.477787 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wx5xxkqb wandb: Agent Starting Run: 0wqxnael with config: batch_size: 2 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 0wqxnael
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 25.328899294137955 The number of items in train is: 21 The loss for epoch 0 1.206138061625617 The running loss is: 28.402115911245346 The number of items in train is: 21 The loss for epoch 1 1.3524817100593023 The running loss is: 27.489022433757782 The number of items in train is: 21 The loss for epoch 2 1.3090010682741802 The running loss is: 32.18459129333496 The number of items in train is: 21 The loss for epoch 3 1.532599585396903 The running loss is: 33.80143202841282 The number of items in train is: 21 The loss for epoch 4 1.6095920013529914 The running loss is: 32.85577954351902 The number of items in train is: 21 The loss for epoch 5 1.564560930643763 The running loss is: 30.47883702814579 The number of items in train is: 21 The loss for epoch 6 1.4513731918164663 The running loss is: 25.70555293187499 The number of items in train is: 21 The loss for epoch 7 1.2240739491369044 The running loss is: 20.333487920463085 The number of items in train is: 21 The loss for epoch 8 0.9682613295458612 The running loss is: 18.726626021787524 The number of items in train is: 21 The loss for epoch 9 0.8917440962755964 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 13.114093 48 30755 ... 13.178655 49 30756 ... 13.227503 50 30757 ... 13.271365 51 30758 ... 13.313645 52 30759 ... 13.355424 53 30760 ... 13.397043 54 30761 ... 13.240062 55 30762 ... 13.218620 56 30763 ... 13.240183 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0wqxnael wandb: Agent Starting Run: vi2glmaj with config: batch_size: 2 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: vi2glmaj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.522139191627502 The number of items in train is: 20 The loss for epoch 0 1.0261069595813752 The running loss is: 28.824470579624176 The number of items in train is: 20 The loss for epoch 1 1.4412235289812088 The running loss is: 26.96215519309044 The number of items in train is: 20 The loss for epoch 2 1.348107759654522 The running loss is: 24.277756571769714 The number of items in train is: 20 The loss for epoch 3 1.2138878285884858 The running loss is: 39.18795786798 The number of items in train is: 20 The loss for epoch 4 1.9593978933990002 The running loss is: 27.062116272747517 The number of items in train is: 20 The loss for epoch 5 1.353105813637376 The running loss is: 31.32304859161377 The number of items in train is: 20 The loss for epoch 6 1.5661524295806886 The running loss is: 25.954569905996323 The number of items in train is: 20 The loss for epoch 7 1.297728495299816 The running loss is: 20.310090392827988 The number of items in train is: 20 The loss for epoch 8 1.0155045196413994 The running loss is: 18.296321973204613 The number of items in train is: 20 The loss for epoch 9 0.9148160986602306 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 8.719911 48 30755 ... 7.223289 49 30756 ... 6.481489 50 30757 ... 5.944383 51 30758 ... 5.462785 52 30759 ... 4.996240 53 30760 ... 4.533777 54 30761 ... 6.424037 55 30762 ... 6.600693 56 30763 ... 6.312653 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vi2glmaj wandb: Agent Starting Run: t6tt7nnl with config: batch_size: 2 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: t6tt7nnl
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 61.04869698733091 The number of items in train is: 21 The loss for epoch 0 2.9070808089205196 The running loss is: 24.786502487957478 The number of items in train is: 21 The loss for epoch 1 1.1803096422836894 The running loss is: 30.512474812567234 The number of items in train is: 21 The loss for epoch 2 1.4529749910746301 The running loss is: 22.967344410717487 The number of items in train is: 21 The loss for epoch 3 1.0936830671770232 The running loss is: 25.316022649407387 The number of items in train is: 21 The loss for epoch 4 1.2055248880670184 The running loss is: 23.791697189211845 The number of items in train is: 21 The loss for epoch 5 1.1329379613910402 The running loss is: 20.797373056411743 The number of items in train is: 21 The loss for epoch 6 0.9903510979243687 The running loss is: 18.34804441407323 The number of items in train is: 21 The loss for epoch 7 0.8737164006701538 The running loss is: 16.632033981382847 The number of items in train is: 21 The loss for epoch 8 0.7920016181610879 The running loss is: 16.302831880748272 The number of items in train is: 21 The loss for epoch 9 0.7763253276546797 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.427103 48 30755 ... 11.119713 49 30756 ... 11.244295 50 30757 ... 11.516330 51 30758 ... 11.838696 52 30759 ... 12.178244 53 30760 ... 12.523656 54 30761 ... 11.264505 55 30762 ... 11.064211 56 30763 ... 11.225350 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: t6tt7nnl wandb: Agent Starting Run: i0dy7151 with config: batch_size: 2 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: i0dy7151
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 69.45899105072021 The number of items in train is: 21 The loss for epoch 0 3.3075710024152483 The running loss is: 24.351533740758896 The number of items in train is: 21 The loss for epoch 1 1.1595968447980427 The running loss is: 38.97736042737961 The number of items in train is: 21 The loss for epoch 2 1.8560647822561718 The running loss is: 25.299872055649757 The number of items in train is: 21 The loss for epoch 3 1.204755812173798 The running loss is: 23.097379501909018 The number of items in train is: 21 The loss for epoch 4 1.09987521437662 The running loss is: 25.473997458815575 The number of items in train is: 21 The loss for epoch 5 1.2130474980388368 The running loss is: 22.643349528312683 The number of items in train is: 21 The loss for epoch 6 1.0782547394434612 The running loss is: 18.14205700904131 The number of items in train is: 21 The loss for epoch 7 0.8639074766210147 The running loss is: 16.48433183133602 The number of items in train is: 21 The loss for epoch 8 0.7849681824445724 The running loss is: 16.34719529747963 The number of items in train is: 21 The loss for epoch 9 0.7784378713085538 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.766082 48 30755 ... 11.452952 49 30756 ... 11.440730 50 30757 ... 11.526842 51 30758 ... 11.645089 52 30759 ... 11.773837 53 30760 ... 11.906017 54 30761 ... 11.408577 55 30762 ... 11.336123 56 30763 ... 11.402551 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: i0dy7151 wandb: Agent Starting Run: 4tuwhbc3 with config: batch_size: 2 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 4tuwhbc3
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 73.17438182234764 The number of items in train is: 20 The loss for epoch 0 3.658719091117382 The running loss is: 24.5871611982584 The number of items in train is: 20 The loss for epoch 1 1.22935805991292 The running loss is: 48.73001056909561 The number of items in train is: 20 The loss for epoch 2 2.4365005284547805 The running loss is: 35.53122544288635 The number of items in train is: 20 The loss for epoch 3 1.7765612721443176 The running loss is: 24.193623542785645 The number of items in train is: 20 The loss for epoch 4 1.2096811771392821 The running loss is: 31.478034928441048 The number of items in train is: 20 The loss for epoch 5 1.5739017464220524 The running loss is: 26.469323992729187 The number of items in train is: 20 The loss for epoch 6 1.3234661996364594 The running loss is: 21.868590533733368 The number of items in train is: 20 The loss for epoch 7 1.0934295266866685 The running loss is: 17.746363550424576 The number of items in train is: 20 The loss for epoch 8 0.8873181775212288 The running loss is: 16.37228138744831 The number of items in train is: 20 The loss for epoch 9 0.8186140693724155 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 10.991632 48 30755 ... 9.842609 49 30756 ... 8.999443 50 30757 ... 8.265136 51 30758 ... 7.569574 52 30759 ... 6.887804 53 30760 ... 6.210940 54 30761 ... 8.575280 55 30762 ... 8.982585 56 30763 ... 8.693344 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4tuwhbc3 wandb: Agent Starting Run: 0r1mvx0k with config: batch_size: 2 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 0r1mvx0k
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.008637461811304 The number of items in train is: 21 The loss for epoch 0 1.0956494029433954 The running loss is: 32.2327605355531 The number of items in train is: 21 The loss for epoch 1 1.5348933588358618 The running loss is: 17.726538762450218 The number of items in train is: 21 The loss for epoch 2 0.8441208934500104 The running loss is: 12.940901616588235 The number of items in train is: 21 The loss for epoch 3 0.6162334103137255 The running loss is: 16.331525344401598 The number of items in train is: 21 The loss for epoch 4 0.7776916830667427 The running loss is: 12.3541901409626 The number of items in train is: 21 The loss for epoch 5 0.5882947686172667 The running loss is: 12.735355507582426 The number of items in train is: 21 The loss for epoch 6 0.6064455003610679 The running loss is: 13.34062596410513 The number of items in train is: 21 The loss for epoch 7 0.6352679030526251 The running loss is: 11.95759018138051 The number of items in train is: 21 The loss for epoch 8 0.5694090562562147 The running loss is: 12.26656811311841 The number of items in train is: 21 The loss for epoch 9 0.5841222911008767 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.974232 48 30755 ... 15.381114 49 30756 ... 14.857310 50 30757 ... 15.986811 51 30758 ... 15.042921 52 30759 ... 14.311747 53 30760 ... 12.546846 54 30761 ... 14.352466 55 30762 ... 16.448072 56 30763 ... 16.995480 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0r1mvx0k wandb: Agent Starting Run: e62ibr45 with config: batch_size: 2 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: e62ibr45
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.77712646126747 The number of items in train is: 20 The loss for epoch 0 1.1388563230633735 The running loss is: 30.30465880036354 The number of items in train is: 20 The loss for epoch 1 1.515232940018177 The running loss is: 19.663687139749527 The number of items in train is: 20 The loss for epoch 2 0.9831843569874763 The running loss is: 17.537601500749588 The number of items in train is: 20 The loss for epoch 3 0.8768800750374794 The running loss is: 17.679495960474014 The number of items in train is: 20 The loss for epoch 4 0.8839747980237007 The running loss is: 15.744170039892197 The number of items in train is: 20 The loss for epoch 5 0.7872085019946098 The running loss is: 15.426739200949669 The number of items in train is: 20 The loss for epoch 6 0.7713369600474834 The running loss is: 14.944714151322842 The number of items in train is: 20 The loss for epoch 7 0.7472357075661421 The running loss is: 14.250869244337082 The number of items in train is: 20 The loss for epoch 8 0.712543462216854 The running loss is: 14.41989190876484 The number of items in train is: 20 The loss for epoch 9 0.720994595438242 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.836431 48 30755 ... 14.815100 49 30756 ... 13.822679 50 30757 ... 14.759495 51 30758 ... 13.484217 52 30759 ... 12.383018 53 30760 ... 10.215312 54 30761 ... 12.387611 55 30762 ... 13.979239 56 30763 ... 14.619460 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: e62ibr45 wandb: Agent Starting Run: 0g2cidja with config: batch_size: 2 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 0g2cidja
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.578702680766582 The number of items in train is: 20 The loss for epoch 0 1.078935134038329 The running loss is: 28.895316019654274 The number of items in train is: 20 The loss for epoch 1 1.4447658009827138 The running loss is: 17.934798389673233 The number of items in train is: 20 The loss for epoch 2 0.8967399194836616 The running loss is: 15.32413261756301 The number of items in train is: 20 The loss for epoch 3 0.7662066308781504 The running loss is: 15.212896093726158 The number of items in train is: 20 The loss for epoch 4 0.7606448046863079 The running loss is: 13.6849125623703 The number of items in train is: 20 The loss for epoch 5 0.684245628118515 The running loss is: 15.095305874943733 The number of items in train is: 20 The loss for epoch 6 0.7547652937471867 The running loss is: 13.407148011028767 The number of items in train is: 20 The loss for epoch 7 0.6703574005514383 The running loss is: 14.454618975520134 The number of items in train is: 20 The loss for epoch 8 0.7227309487760067 The running loss is: 13.429822385311127 The number of items in train is: 20 The loss for epoch 9 0.6714911192655564 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.413411 48 30755 ... 15.669946 49 30756 ... 17.122110 50 30757 ... 18.615124 51 30758 ... 19.127787 52 30759 ... 19.283003 53 30760 ... 18.859772 54 30761 ... 21.885056 55 30762 ... 23.855570 56 30763 ... 25.221436 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0g2cidja wandb: Agent Starting Run: rjep75dc with config: batch_size: 2 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: rjep75dc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.55631679482758 The number of items in train is: 21 The loss for epoch 0 0.8836341330870277 The running loss is: 39.76102647557855 The number of items in train is: 21 The loss for epoch 1 1.893382213122788 The running loss is: 31.392640566453338 The number of items in train is: 21 The loss for epoch 2 1.4948876460215874 The running loss is: 21.55244082212448 The number of items in train is: 21 The loss for epoch 3 1.0263067058154516 The running loss is: 13.321244258899242 The number of items in train is: 21 The loss for epoch 4 0.6343449647094876 The running loss is: 16.369411423802376 The number of items in train is: 21 The loss for epoch 5 0.7794957820858274 The running loss is: 12.878714980557561 The number of items in train is: 21 The loss for epoch 6 0.6132721419313124 The running loss is: 15.277130480855703 The number of items in train is: 21 The loss for epoch 7 0.7274824038502716 The running loss is: 12.423281671479344 The number of items in train is: 21 The loss for epoch 8 0.5915848414990164 The running loss is: 13.389100320637226 The number of items in train is: 21 The loss for epoch 9 0.6375762057446298 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.093603 48 30755 ... 15.438350 49 30756 ... 15.362393 50 30757 ... 15.736447 51 30758 ... 15.006408 52 30759 ... 14.255008 53 30760 ... 12.908654 54 30761 ... 14.277620 55 30762 ... 15.742886 56 30763 ... 16.026230 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rjep75dc wandb: Agent Starting Run: 1hy1myeb with config: batch_size: 2 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 1hy1myeb
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.790002673864365 The number of items in train is: 20 The loss for epoch 0 0.9895001336932182 The running loss is: 35.51101356744766 The number of items in train is: 20 The loss for epoch 1 1.7755506783723831 The running loss is: 29.900236278772354 The number of items in train is: 20 The loss for epoch 2 1.4950118139386177 The running loss is: 20.32610148191452 The number of items in train is: 20 The loss for epoch 3 1.016305074095726 The running loss is: 17.535978391766548 The number of items in train is: 20 The loss for epoch 4 0.8767989195883275 The running loss is: 15.788296699523926 The number of items in train is: 20 The loss for epoch 5 0.7894148349761962 The running loss is: 15.298003315925598 The number of items in train is: 20 The loss for epoch 6 0.76490016579628 The running loss is: 14.471397161483765 The number of items in train is: 20 The loss for epoch 7 0.7235698580741883 The running loss is: 15.182393252849579 The number of items in train is: 20 The loss for epoch 8 0.759119662642479 The running loss is: 15.049454137682915 The number of items in train is: 20 The loss for epoch 9 0.7524727068841457 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.637438 48 30755 ... 13.303226 49 30756 ... 12.201837 50 30757 ... 12.177489 51 30758 ... 10.806701 52 30759 ... 9.582183 53 30760 ... 7.934246 54 30761 ... 8.110060 55 30762 ... 10.489552 56 30763 ... 10.417169 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1hy1myeb wandb: Agent Starting Run: izha8psp with config: batch_size: 2 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: izha8psp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.73946076631546 The number of items in train is: 20 The loss for epoch 0 0.836973038315773 The running loss is: 34.69972918741405 The number of items in train is: 20 The loss for epoch 1 1.7349864593707025 The running loss is: 28.933668479323387 The number of items in train is: 20 The loss for epoch 2 1.4466834239661694 The running loss is: 20.98772995173931 The number of items in train is: 20 The loss for epoch 3 1.0493864975869656 The running loss is: 14.910560678690672 The number of items in train is: 20 The loss for epoch 4 0.7455280339345336 The running loss is: 13.784054175019264 The number of items in train is: 20 The loss for epoch 5 0.6892027087509632 The running loss is: 14.498991958796978 The number of items in train is: 20 The loss for epoch 6 0.7249495979398489 The running loss is: 13.606230936944485 The number of items in train is: 20 The loss for epoch 7 0.6803115468472243 The running loss is: 14.566328644752502 The number of items in train is: 20 The loss for epoch 8 0.7283164322376251 The running loss is: 12.793043170124292 The number of items in train is: 20 The loss for epoch 9 0.6396521585062146 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.115752 48 30755 ... 14.251652 49 30756 ... 15.619260 50 30757 ... 16.408094 51 30758 ... 16.587444 52 30759 ... 16.368526 53 30760 ... 15.831397 54 30761 ... 17.615082 55 30762 ... 19.396448 56 30763 ... 20.256659 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: izha8psp wandb: Agent Starting Run: j4p3rea7 with config: batch_size: 2 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: j4p3rea7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.612260351888835 The number of items in train is: 21 The loss for epoch 0 0.8386790643756589 The running loss is: 27.575611753884004 The number of items in train is: 21 The loss for epoch 1 1.3131243692325716 The running loss is: 19.56693585170433 The number of items in train is: 21 The loss for epoch 2 0.9317588500811586 The running loss is: 29.6243880931288 The number of items in train is: 21 The loss for epoch 3 1.4106851472918476 The running loss is: 31.01244868338108 The number of items in train is: 21 The loss for epoch 4 1.4767832706371944 The running loss is: 30.337950587272644 The number of items in train is: 21 The loss for epoch 5 1.4446643136796498 The running loss is: 20.72286257147789 The number of items in train is: 21 The loss for epoch 6 0.9868029795941853 The running loss is: 13.726178638637066 The number of items in train is: 21 The loss for epoch 7 0.6536275542208126 The running loss is: 15.882041074335575 The number of items in train is: 21 The loss for epoch 8 0.7562876702064559 The running loss is: 13.951960653066635 The number of items in train is: 21 The loss for epoch 9 0.6643790787174588 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.314129 48 30755 ... 14.173787 49 30756 ... 13.942454 50 30757 ... 14.106256 51 30758 ... 13.663309 52 30759 ... 13.262284 53 30760 ... 12.640742 54 30761 ... 13.062532 55 30762 ... 14.247359 56 30763 ... 14.199184 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: j4p3rea7 wandb: Agent Starting Run: oyn5vyw0 with config: batch_size: 2 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: oyn5vyw0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.16664184629917 The number of items in train is: 20 The loss for epoch 0 0.9583320923149585 The running loss is: 24.30276045203209 The number of items in train is: 20 The loss for epoch 1 1.2151380226016044 The running loss is: 21.017927818000317 The number of items in train is: 20 The loss for epoch 2 1.0508963909000157 The running loss is: 25.24866795539856 The number of items in train is: 20 The loss for epoch 3 1.262433397769928 The running loss is: 29.989633813500404 The number of items in train is: 20 The loss for epoch 4 1.4994816906750201 The running loss is: 27.833610378205776 The number of items in train is: 20 The loss for epoch 5 1.3916805189102888 The running loss is: 20.38179862499237 The number of items in train is: 20 The loss for epoch 6 1.0190899312496184 The running loss is: 19.694613575935364 The number of items in train is: 20 The loss for epoch 7 0.9847306787967682 The running loss is: 16.29368768632412 The number of items in train is: 20 The loss for epoch 8 0.8146843843162059 The running loss is: 16.283535540103912 The number of items in train is: 20 The loss for epoch 9 0.8141767770051956 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.646613 48 30755 ... 12.670735 49 30756 ... 12.202353 50 30757 ... 12.349521 51 30758 ... 11.980251 52 30759 ... 11.627564 53 30760 ... 11.168602 54 30761 ... 11.710465 55 30762 ... 12.506949 56 30763 ... 12.491008 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: oyn5vyw0 wandb: Agent Starting Run: ard0kcgk with config: batch_size: 2 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ard0kcgk
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.326067708432674 The number of items in train is: 20 The loss for epoch 0 0.8663033854216338 The running loss is: 26.125781033188105 The number of items in train is: 20 The loss for epoch 1 1.3062890516594052 The running loss is: 20.05863458663225 The number of items in train is: 20 The loss for epoch 2 1.0029317293316127 The running loss is: 26.94086644053459 The number of items in train is: 20 The loss for epoch 3 1.3470433220267295 The running loss is: 27.031484097242355 The number of items in train is: 20 The loss for epoch 4 1.3515742048621178 The running loss is: 26.107848599553108 The number of items in train is: 20 The loss for epoch 5 1.3053924299776554 The running loss is: 19.87912854552269 The number of items in train is: 20 The loss for epoch 6 0.9939564272761345 The running loss is: 19.120233863592148 The number of items in train is: 20 The loss for epoch 7 0.9560116931796074 The running loss is: 18.272066473960876 The number of items in train is: 20 The loss for epoch 8 0.9136033236980439 The running loss is: 16.09623235464096 The number of items in train is: 20 The loss for epoch 9 0.804811617732048 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.101974 48 30755 ... 10.439401 49 30756 ... 9.826941 50 30757 ... 9.700224 51 30758 ... 9.537777 52 30759 ... 9.432247 53 30760 ... 9.338076 54 30761 ... 8.713398 55 30762 ... 9.319012 56 30763 ... 9.401543 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ard0kcgk wandb: Agent Starting Run: qm4xgxw1 with config: batch_size: 2 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: qm4xgxw1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 88.16768562421203 The number of items in train is: 21 The loss for epoch 0 4.198461220200572 The running loss is: 32.399377366527915 The number of items in train is: 21 The loss for epoch 1 1.5428274936441864 The running loss is: 44.084197610616684 The number of items in train is: 21 The loss for epoch 2 2.0992475052674613 The running loss is: 31.271542832255363 The number of items in train is: 21 The loss for epoch 3 1.4891210872502554 The running loss is: 24.642942052334547 The number of items in train is: 21 The loss for epoch 4 1.17347343106355 The running loss is: 25.46325683966279 The number of items in train is: 21 The loss for epoch 5 1.2125360399839424 The running loss is: 22.69593182578683 The number of items in train is: 21 The loss for epoch 6 1.0807586583708013 The running loss is: 22.1004674769938 The number of items in train is: 21 The loss for epoch 7 1.0524032131901808 The running loss is: 21.082351729273796 The number of items in train is: 21 The loss for epoch 8 1.0039215109178 The running loss is: 20.709456760436296 The number of items in train is: 21 The loss for epoch 9 0.9861646076398236 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.968234 48 30755 ... 12.532819 49 30756 ... 12.348880 50 30757 ... 12.427336 51 30758 ... 12.384806 52 30759 ... 12.386845 53 30760 ... 12.371067 54 30761 ... 11.455049 55 30762 ... 12.432656 56 30763 ... 12.267653 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qm4xgxw1 wandb: Agent Starting Run: xau7eqeu with config: batch_size: 2 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: xau7eqeu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 51.44850631058216 The number of items in train is: 20 The loss for epoch 0 2.572425315529108 The running loss is: 26.536537259817123 The number of items in train is: 20 The loss for epoch 1 1.3268268629908562 The running loss is: 25.394971758127213 The number of items in train is: 20 The loss for epoch 2 1.2697485879063606 The running loss is: 26.157265178859234 The number of items in train is: 20 The loss for epoch 3 1.3078632589429617 The running loss is: 26.907141968607903 The number of items in train is: 20 The loss for epoch 4 1.345357098430395 The running loss is: 23.60898245871067 The number of items in train is: 20 The loss for epoch 5 1.1804491229355336 The running loss is: 21.588230818510056 The number of items in train is: 20 The loss for epoch 6 1.0794115409255027 The running loss is: 23.299431294202805 The number of items in train is: 20 The loss for epoch 7 1.1649715647101402 The running loss is: 17.95345228165388 The number of items in train is: 20 The loss for epoch 8 0.897672614082694 The running loss is: 21.56754533946514 The number of items in train is: 20 The loss for epoch 9 1.078377266973257 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.127200 48 30755 ... 9.427205 49 30756 ... 8.578013 50 30757 ... 8.423813 51 30758 ... 8.186283 52 30759 ... 8.086294 53 30760 ... 7.967240 54 30761 ... 8.324524 55 30762 ... 8.337108 56 30763 ... 8.307590 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xau7eqeu wandb: Agent Starting Run: falknk2c with config: batch_size: 2 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: falknk2c
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 50.97534599900246 The number of items in train is: 20 The loss for epoch 0 2.5487672999501227 The running loss is: 28.12403143942356 The number of items in train is: 20 The loss for epoch 1 1.406201571971178 The running loss is: 24.375909984111786 The number of items in train is: 20 The loss for epoch 2 1.2187954992055894 The running loss is: 22.562284395098686 The number of items in train is: 20 The loss for epoch 3 1.1281142197549343 The running loss is: 28.00324049592018 The number of items in train is: 20 The loss for epoch 4 1.4001620247960092 The running loss is: 21.4647678732872 The number of items in train is: 20 The loss for epoch 5 1.0732383936643601 The running loss is: 21.226560071110725 The number of items in train is: 20 The loss for epoch 6 1.0613280035555364 The running loss is: 20.05168192088604 The number of items in train is: 20 The loss for epoch 7 1.002584096044302 The running loss is: 19.073723807930946 The number of items in train is: 20 The loss for epoch 8 0.9536861903965473 The running loss is: 20.08955078572035 The number of items in train is: 20 The loss for epoch 9 1.0044775392860175 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.038617 48 30755 ... 10.301286 49 30756 ... 10.527411 50 30757 ... 10.665849 51 30758 ... 10.829441 52 30759 ... 10.893164 53 30760 ... 11.022404 54 30761 ... 9.990615 55 30762 ... 10.360154 56 30763 ... 10.527678 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: falknk2c wandb: Agent Starting Run: 6sarts3o with config: batch_size: 2 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 6sarts3o
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.16620772331953 The number of items in train is: 20 The loss for epoch 0 0.6583103861659765 The running loss is: 47.089191913604736 The number of items in train is: 20 The loss for epoch 1 2.354459595680237 The running loss is: 20.295180901885033 The number of items in train is: 20 The loss for epoch 2 1.0147590450942516 The running loss is: 14.66391147999093 The number of items in train is: 20 The loss for epoch 3 0.7331955739995465 The running loss is: 14.51472514308989 The number of items in train is: 20 The loss for epoch 4 0.7257362571544945 The running loss is: 11.414592620916665 The number of items in train is: 20 The loss for epoch 5 0.5707296310458332 The running loss is: 10.380168374627829 The number of items in train is: 20 The loss for epoch 6 0.5190084187313915 The running loss is: 10.854458432644606 The number of items in train is: 20 The loss for epoch 7 0.5427229216322302 The running loss is: 9.902051273267716 The number of items in train is: 20 The loss for epoch 8 0.4951025636633858 The running loss is: 11.478069743141532 The number of items in train is: 20 The loss for epoch 9 0.5739034871570766 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 4.791970 48 30755 ... 4.017214 49 30756 ... 9.296926 50 30757 ... 8.501606 51 30758 ... 7.561368 52 30759 ... 6.628009 53 30760 ... 4.479429 54 30761 ... 3.208868 55 30762 ... 2.426350 56 30763 ... 6.978889 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6sarts3o wandb: Agent Starting Run: u7zvotqr with config: batch_size: 2 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: u7zvotqr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.250229328870773 The number of items in train is: 20 The loss for epoch 0 1.0125114664435386 The running loss is: 36.03919892013073 The number of items in train is: 20 The loss for epoch 1 1.8019599460065365 The running loss is: 21.369008541107178 The number of items in train is: 20 The loss for epoch 2 1.068450427055359 The running loss is: 16.745819223113358 The number of items in train is: 20 The loss for epoch 3 0.8372909611556679 The running loss is: 16.19626347720623 The number of items in train is: 20 The loss for epoch 4 0.8098131738603115 The running loss is: 15.289014890789986 The number of items in train is: 20 The loss for epoch 5 0.7644507445394992 The running loss is: 14.291767127811909 The number of items in train is: 20 The loss for epoch 6 0.7145883563905955 The running loss is: 13.00631546229124 The number of items in train is: 20 The loss for epoch 7 0.650315773114562 The running loss is: 12.850601639598608 The number of items in train is: 20 The loss for epoch 8 0.6425300819799304 The running loss is: 11.07451168447733 The number of items in train is: 20 The loss for epoch 9 0.5537255842238664 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.846800 48 30755 ... 8.844935 49 30756 ... 11.833019 50 30757 ... 11.595754 51 30758 ... 10.915969 52 30759 ... 9.609382 53 30760 ... 6.918744 54 30761 ... 7.512626 55 30762 ... 9.482866 56 30763 ... 11.247615 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u7zvotqr wandb: Agent Starting Run: cf5ckshz with config: batch_size: 2 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: cf5ckshz
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.24230197072029 The number of items in train is: 19 The loss for epoch 0 0.8548579984589627 The running loss is: 33.577625170350075 The number of items in train is: 19 The loss for epoch 1 1.767243430018425 The running loss is: 17.50975675880909 The number of items in train is: 19 The loss for epoch 2 0.9215661452004784 The running loss is: 15.19348393380642 The number of items in train is: 19 The loss for epoch 3 0.7996570491477063 The running loss is: 14.183778703212738 The number of items in train is: 19 The loss for epoch 4 0.7465146685901441 The running loss is: 13.036552771925926 The number of items in train is: 19 The loss for epoch 5 0.686134356417154 The running loss is: 12.580513373017311 The number of items in train is: 19 The loss for epoch 6 0.6621322827903848 The running loss is: 12.409655019640923 The number of items in train is: 19 The loss for epoch 7 0.653139737875838 The running loss is: 12.531418025493622 The number of items in train is: 19 The loss for epoch 8 0.6595483171312433 The running loss is: 11.11167886853218 The number of items in train is: 19 The loss for epoch 9 0.5848252036069569 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.913255 48 30755 ... 10.473210 49 30756 ... 13.590547 50 30757 ... 14.313401 51 30758 ... 14.773838 52 30759 ... 15.313439 53 30760 ... 15.069212 54 30761 ... 17.728813 55 30762 ... 18.329552 56 30763 ... 21.203745 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cf5ckshz wandb: Agent Starting Run: olx3ydle with config: batch_size: 2 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: olx3ydle
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.871346639934927 The number of items in train is: 20 The loss for epoch 0 0.8435673319967464 The running loss is: 38.40473223477602 The number of items in train is: 20 The loss for epoch 1 1.920236611738801 The running loss is: 31.12108042370528 The number of items in train is: 20 The loss for epoch 2 1.556054021185264 The running loss is: 24.62357160821557 The number of items in train is: 20 The loss for epoch 3 1.2311785804107784 The running loss is: 12.468314666301012 The number of items in train is: 20 The loss for epoch 4 0.6234157333150506 The running loss is: 13.174285745597444 The number of items in train is: 20 The loss for epoch 5 0.6587142872798722 The running loss is: 11.788977996446192 The number of items in train is: 20 The loss for epoch 6 0.5894488998223096 The running loss is: 11.11843922547996 The number of items in train is: 20 The loss for epoch 7 0.5559219612739981 The running loss is: 9.287355293519795 The number of items in train is: 20 The loss for epoch 8 0.4643677646759897 The running loss is: 9.838816735893488 The number of items in train is: 20 The loss for epoch 9 0.4919408367946744 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.513413 48 30755 ... 7.168951 49 30756 ... 11.346724 50 30757 ... 10.831080 51 30758 ... 10.000001 52 30759 ... 9.303995 53 30760 ... 7.738368 54 30761 ... 7.970766 55 30762 ... 7.753849 56 30763 ... 10.696944 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: olx3ydle wandb: Agent Starting Run: 6d8tazmf with config: batch_size: 2 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 6d8tazmf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.881873853504658 The number of items in train is: 20 The loss for epoch 0 0.9440936926752329 The running loss is: 33.3425434269011 The number of items in train is: 20 The loss for epoch 1 1.667127171345055 The running loss is: 29.829890869557858 The number of items in train is: 20 The loss for epoch 2 1.4914945434778928 The running loss is: 25.49375832080841 The number of items in train is: 20 The loss for epoch 3 1.2746879160404205 The running loss is: 17.11493468284607 The number of items in train is: 20 The loss for epoch 4 0.8557467341423035 The running loss is: 14.997745260596275 The number of items in train is: 20 The loss for epoch 5 0.7498872630298138 The running loss is: 14.11250153183937 The number of items in train is: 20 The loss for epoch 6 0.7056250765919685 The running loss is: 12.541615918278694 The number of items in train is: 20 The loss for epoch 7 0.6270807959139347 The running loss is: 11.791180847212672 The number of items in train is: 20 The loss for epoch 8 0.5895590423606336 The running loss is: 11.034595467150211 The number of items in train is: 20 The loss for epoch 9 0.5517297733575106 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.561110 48 30755 ... 12.150685 49 30756 ... 14.576173 50 30757 ... 16.192913 51 30758 ... 17.393833 52 30759 ... 18.037010 53 30760 ... 17.864153 54 30761 ... 22.358480 55 30762 ... 24.322353 56 30763 ... 28.962704 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6d8tazmf wandb: Agent Starting Run: tsnek2xz with config: batch_size: 2 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: tsnek2xz
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.180935945361853 The number of items in train is: 19 The loss for epoch 0 0.7989966287032554 The running loss is: 32.76849117875099 The number of items in train is: 19 The loss for epoch 1 1.7246574304605786 The running loss is: 29.06931023299694 The number of items in train is: 19 The loss for epoch 2 1.5299636964735233 The running loss is: 19.419804587960243 The number of items in train is: 19 The loss for epoch 3 1.022094978313697 The running loss is: 15.750009074807167 The number of items in train is: 19 The loss for epoch 4 0.8289478460424825 The running loss is: 13.63320517539978 The number of items in train is: 19 The loss for epoch 5 0.7175371144947252 The running loss is: 12.82888300716877 The number of items in train is: 19 The loss for epoch 6 0.6752043687983563 The running loss is: 12.820624247193336 The number of items in train is: 19 The loss for epoch 7 0.6747696972207019 The running loss is: 12.8362637758255 The number of items in train is: 19 The loss for epoch 8 0.6755928303066053 The running loss is: 12.048322603106499 The number of items in train is: 19 The loss for epoch 9 0.6341222422687631 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.238999 48 30755 ... 12.542111 49 30756 ... 14.634971 50 30757 ... 15.151684 51 30758 ... 15.261534 52 30759 ... 15.495893 53 30760 ... 15.244351 54 30761 ... 18.465002 55 30762 ... 18.929951 56 30763 ... 19.493837 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tsnek2xz wandb: Agent Starting Run: ouepskbi with config: batch_size: 2 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ouepskbi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 25.258195054717362 The number of items in train is: 20 The loss for epoch 0 1.2629097527358681 The running loss is: 28.71645049750805 The number of items in train is: 20 The loss for epoch 1 1.4358225248754024 The running loss is: 21.496938847005367 The number of items in train is: 20 The loss for epoch 2 1.0748469423502685 The running loss is: 32.175556898117065 The number of items in train is: 20 The loss for epoch 3 1.6087778449058532 The running loss is: 31.53068858385086 The number of items in train is: 20 The loss for epoch 4 1.576534429192543 The running loss is: 25.01493700221181 The number of items in train is: 20 The loss for epoch 5 1.2507468501105905 The running loss is: 20.540104411542416 The number of items in train is: 20 The loss for epoch 6 1.0270052205771207 The running loss is: 13.346534442156553 The number of items in train is: 20 The loss for epoch 7 0.6673267221078276 The running loss is: 14.965123616158962 The number of items in train is: 20 The loss for epoch 8 0.7482561808079481 The running loss is: 12.449737954884768 The number of items in train is: 20 The loss for epoch 9 0.6224868977442384 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.540903 48 30755 ... 8.264866 49 30756 ... 11.485750 50 30757 ... 10.229491 51 30758 ... 9.189299 52 30759 ... 8.309838 53 30760 ... 6.608351 54 30761 ... 6.017721 55 30762 ... 5.683835 56 30763 ... 8.788109 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ouepskbi wandb: Agent Starting Run: hvnouxk7 with config: batch_size: 2 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: hvnouxk7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.307929329574108 The number of items in train is: 20 The loss for epoch 0 1.1153964664787055 The running loss is: 24.764474764466286 The number of items in train is: 20 The loss for epoch 1 1.2382237382233143 The running loss is: 20.000230103731155 The number of items in train is: 20 The loss for epoch 2 1.0000115051865577 The running loss is: 27.805497139692307 The number of items in train is: 20 The loss for epoch 3 1.3902748569846153 The running loss is: 25.04505816102028 The number of items in train is: 20 The loss for epoch 4 1.2522529080510139 The running loss is: 27.622999258339405 The number of items in train is: 20 The loss for epoch 5 1.3811499629169703 The running loss is: 21.294054619967937 The number of items in train is: 20 The loss for epoch 6 1.064702730998397 The running loss is: 18.15154094994068 The number of items in train is: 20 The loss for epoch 7 0.907577047497034 The running loss is: 18.175693213939667 The number of items in train is: 20 The loss for epoch 8 0.9087846606969834 The running loss is: 16.293617084622383 The number of items in train is: 20 The loss for epoch 9 0.8146808542311191 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.284172 48 30755 ... 11.301517 49 30756 ... 12.338721 50 30757 ... 12.630889 51 30758 ... 12.970084 52 30759 ... 13.607054 53 30760 ... 14.193722 54 30761 ... 14.774322 55 30762 ... 14.798644 56 30763 ... 14.683531 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hvnouxk7 wandb: Agent Starting Run: j32zrla3 with config: batch_size: 2 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: j32zrla3
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.678802952170372 The number of items in train is: 19 The loss for epoch 0 0.9304633132721248 The running loss is: 23.775851890444756 The number of items in train is: 19 The loss for epoch 1 1.2513606258128818 The running loss is: 19.22152805328369 The number of items in train is: 19 The loss for epoch 2 1.0116593712254573 The running loss is: 22.740102007985115 The number of items in train is: 19 The loss for epoch 3 1.1968474741044797 The running loss is: 23.430920630693436 The number of items in train is: 19 The loss for epoch 4 1.233206348983865 The running loss is: 20.96139857172966 The number of items in train is: 19 The loss for epoch 5 1.1032315037752454 The running loss is: 16.538328647613525 The number of items in train is: 19 The loss for epoch 6 0.8704383498743961 The running loss is: 16.061340644955635 The number of items in train is: 19 The loss for epoch 7 0.8453337181555597 The running loss is: 12.803979389369488 The number of items in train is: 19 The loss for epoch 8 0.6738936520720783 The running loss is: 13.952543005347252 The number of items in train is: 19 The loss for epoch 9 0.734344368702487 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.579448 48 30755 ... 8.149343 49 30756 ... 9.415684 50 30757 ... 8.551306 51 30758 ... 7.895852 52 30759 ... 7.565929 53 30760 ... 6.785355 54 30761 ... 6.457073 55 30762 ... 6.417875 56 30763 ... 7.045417 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: j32zrla3 wandb: Agent Starting Run: vwt7qbzu with config: batch_size: 2 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: vwt7qbzu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 109.38623917661607 The number of items in train is: 20 The loss for epoch 0 5.4693119588308035 The running loss is: 36.06812307983637 The number of items in train is: 20 The loss for epoch 1 1.8034061539918185 The running loss is: 27.07236859574914 The number of items in train is: 20 The loss for epoch 2 1.353618429787457 The running loss is: 19.878866678103805 The number of items in train is: 20 The loss for epoch 3 0.9939433339051902 The running loss is: 36.85931820055703 The number of items in train is: 20 The loss for epoch 4 1.8429659100278513 The running loss is: 19.018329231534153 The number of items in train is: 20 The loss for epoch 5 0.9509164615767076 The running loss is: 22.288700968027115 The number of items in train is: 20 The loss for epoch 6 1.1144350484013557 The running loss is: 30.49784292280674 The number of items in train is: 20 The loss for epoch 7 1.524892146140337 The running loss is: 21.91693382896483 The number of items in train is: 20 The loss for epoch 8 1.0958466914482414 The running loss is: 15.250084459781647 The number of items in train is: 20 The loss for epoch 9 0.7625042229890824 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.705070 48 30755 ... 10.367969 49 30756 ... 13.145773 50 30757 ... 12.067879 51 30758 ... 11.397724 52 30759 ... 11.419276 53 30760 ... 10.288182 54 30761 ... 8.814781 55 30762 ... 10.714540 56 30763 ... 12.394072 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vwt7qbzu wandb: Agent Starting Run: d9ptfhot with config: batch_size: 2 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: d9ptfhot
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 68.95865529216826 The number of items in train is: 20 The loss for epoch 0 3.447932764608413 The running loss is: 27.954812914133072 The number of items in train is: 20 The loss for epoch 1 1.3977406457066537 The running loss is: 21.58340122550726 The number of items in train is: 20 The loss for epoch 2 1.079170061275363 The running loss is: 27.75279625505209 The number of items in train is: 20 The loss for epoch 3 1.3876398127526044 The running loss is: 29.550814539194107 The number of items in train is: 20 The loss for epoch 4 1.4775407269597054 The running loss is: 26.29482465982437 The number of items in train is: 20 The loss for epoch 5 1.3147412329912185 The running loss is: 23.998366855084896 The number of items in train is: 20 The loss for epoch 6 1.1999183427542448 The running loss is: 20.050680205225945 The number of items in train is: 20 The loss for epoch 7 1.0025340102612972 The running loss is: 20.464960746467113 The number of items in train is: 20 The loss for epoch 8 1.0232480373233557 The running loss is: 19.200842931866646 The number of items in train is: 20 The loss for epoch 9 0.9600421465933323 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.980211 48 30755 ... 11.990289 49 30756 ... 12.143848 50 30757 ... 12.068938 51 30758 ... 12.045371 52 30759 ... 12.029554 53 30760 ... 12.001999 54 30761 ... 11.946033 55 30762 ... 11.977056 56 30763 ... 12.094289 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: d9ptfhot wandb: Agent Starting Run: x2eijjhc with config: batch_size: 2 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: x2eijjhc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 51.38577203452587 The number of items in train is: 19 The loss for epoch 0 2.7045143176066246 The running loss is: 26.914206624031067 The number of items in train is: 19 The loss for epoch 1 1.4165371907384772 The running loss is: 27.34442164748907 The number of items in train is: 19 The loss for epoch 2 1.4391800867099511 The running loss is: 21.851982936263084 The number of items in train is: 19 The loss for epoch 3 1.1501043650664782 The running loss is: 19.491085931658745 The number of items in train is: 19 The loss for epoch 4 1.0258466279820393 The running loss is: 20.605526842176914 The number of items in train is: 19 The loss for epoch 5 1.0845014127461534 The running loss is: 17.233258858323097 The number of items in train is: 19 The loss for epoch 6 0.9070136241222683 The running loss is: 16.62893322110176 The number of items in train is: 19 The loss for epoch 7 0.8752070116369348 The running loss is: 14.914175763726234 The number of items in train is: 19 The loss for epoch 8 0.784956619143486 The running loss is: 16.455472081899643 The number of items in train is: 19 The loss for epoch 9 0.866077477994718 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.186721 48 30755 ... 12.263892 49 30756 ... 15.433131 50 30757 ... 14.697458 51 30758 ... 13.453771 52 30759 ... 13.202712 53 30760 ... 11.757782 54 30761 ... 13.192609 55 30762 ... 13.191557 56 30763 ... 15.276033 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: x2eijjhc wandb: Agent Starting Run: ayj47mls with config: batch_size: 2 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ayj47mls
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.244433240033686 The number of items in train is: 20 The loss for epoch 0 0.9122216620016843 The running loss is: 30.7520240098238 The number of items in train is: 20 The loss for epoch 1 1.5376012004911899 The running loss is: 15.300197042524815 The number of items in train is: 20 The loss for epoch 2 0.7650098521262407 The running loss is: 12.945850990712643 The number of items in train is: 20 The loss for epoch 3 0.6472925495356321 The running loss is: 11.861743465065956 The number of items in train is: 20 The loss for epoch 4 0.5930871732532979 The running loss is: 10.992941904813051 The number of items in train is: 20 The loss for epoch 5 0.5496470952406526 The running loss is: 11.330213017761707 The number of items in train is: 20 The loss for epoch 6 0.5665106508880854 The running loss is: 9.959945164620876 The number of items in train is: 20 The loss for epoch 7 0.4979972582310438 The running loss is: 8.969771122094244 The number of items in train is: 20 The loss for epoch 8 0.44848855610471217 The running loss is: 9.06965771317482 The number of items in train is: 20 The loss for epoch 9 0.453482885658741 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.373440 48 30755 ... 10.899719 49 30756 ... 13.438485 50 30757 ... 13.496451 51 30758 ... 13.684741 52 30759 ... 14.650225 53 30760 ... 16.323957 54 30761 ... 15.094393 55 30762 ... 18.117064 56 30763 ... 19.815842 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ayj47mls wandb: Agent Starting Run: ovsyk6z6 with config: batch_size: 2 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ovsyk6z6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.05331265926361 The number of items in train is: 19 The loss for epoch 0 1.1080690873296637 The running loss is: 26.215594351291656 The number of items in train is: 19 The loss for epoch 1 1.3797681237521924 The running loss is: 14.164807230234146 The number of items in train is: 19 The loss for epoch 2 0.7455161700123235 The running loss is: 12.458269132301211 The number of items in train is: 19 The loss for epoch 3 0.6556983753842743 The running loss is: 10.816738000139594 The number of items in train is: 19 The loss for epoch 4 0.5693020000073471 The running loss is: 10.055854829028249 The number of items in train is: 19 The loss for epoch 5 0.5292555173172763 The running loss is: 9.955036200582981 The number of items in train is: 19 The loss for epoch 6 0.5239492737148937 The running loss is: 10.308482509106398 The number of items in train is: 19 The loss for epoch 7 0.5425517110055998 The running loss is: 11.734940055757761 The number of items in train is: 19 The loss for epoch 8 0.6176284239872506 The running loss is: 11.233778834342957 The number of items in train is: 19 The loss for epoch 9 0.5912515175969977 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.582728 48 30755 ... 8.345654 49 30756 ... 8.558024 50 30757 ... 7.619164 51 30758 ... 7.354745 52 30759 ... 7.545932 53 30760 ... 8.023136 54 30761 ... 7.720142 55 30762 ... 7.814631 56 30763 ... 7.839913 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ovsyk6z6 wandb: Agent Starting Run: 47aj1nt6 with config: batch_size: 2 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 47aj1nt6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.88846641778946 The number of items in train is: 19 The loss for epoch 0 0.9941298114626032 The running loss is: 32.47899427264929 The number of items in train is: 19 The loss for epoch 1 1.7094207511920678 The running loss is: 15.767253905534744 The number of items in train is: 19 The loss for epoch 2 0.8298554687123549 The running loss is: 14.174503304064274 The number of items in train is: 19 The loss for epoch 3 0.7460264896875933 The running loss is: 12.41873462498188 The number of items in train is: 19 The loss for epoch 4 0.6536176118411516 The running loss is: 11.58222109079361 The number of items in train is: 19 The loss for epoch 5 0.6095905837259794 The running loss is: 11.454800620675087 The number of items in train is: 19 The loss for epoch 6 0.6028842431934256 The running loss is: 10.778091475367546 The number of items in train is: 19 The loss for epoch 7 0.5672679723877656 The running loss is: 11.654729049652815 The number of items in train is: 19 The loss for epoch 8 0.6134067920869902 The running loss is: 11.17945396900177 The number of items in train is: 19 The loss for epoch 9 0.5883923141579879 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.925244 48 30755 ... 9.496317 49 30756 ... 9.974865 50 30757 ... 9.552412 51 30758 ... 9.775986 52 30759 ... 10.380938 53 30760 ... 11.176371 54 30761 ... 11.189506 55 30762 ... 11.451692 56 30763 ... 11.802545 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 47aj1nt6 wandb: Agent Starting Run: z76wnyg2 with config: batch_size: 2 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: z76wnyg2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.582077455706894 The number of items in train is: 20 The loss for epoch 0 0.7291038727853447 The running loss is: 36.46464059967548 The number of items in train is: 20 The loss for epoch 1 1.8232320299837739 The running loss is: 26.12745802849531 The number of items in train is: 20 The loss for epoch 2 1.3063729014247656 The running loss is: 15.507666435092688 The number of items in train is: 20 The loss for epoch 3 0.7753833217546344 The running loss is: 13.647030219435692 The number of items in train is: 20 The loss for epoch 4 0.6823515109717846 The running loss is: 12.357491072267294 The number of items in train is: 20 The loss for epoch 5 0.6178745536133647 The running loss is: 12.394297644495964 The number of items in train is: 20 The loss for epoch 6 0.6197148822247982 The running loss is: 12.705570708960295 The number of items in train is: 20 The loss for epoch 7 0.6352785354480147 The running loss is: 11.57705445960164 The number of items in train is: 20 The loss for epoch 8 0.5788527229800821 The running loss is: 11.144980823621154 The number of items in train is: 20 The loss for epoch 9 0.5572490411810577 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.404851 48 30755 ... 12.857892 49 30756 ... 12.778332 50 30757 ... 13.997534 51 30758 ... 15.216475 52 30759 ... 16.760254 53 30760 ... 17.938425 54 30761 ... 19.327490 55 30762 ... 20.218571 56 30763 ... 20.834126 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z76wnyg2 wandb: Agent Starting Run: e8mr8uwe with config: batch_size: 2 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: e8mr8uwe
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.169267039746046 The number of items in train is: 19 The loss for epoch 0 0.7457508968287393 The running loss is: 37.72724857926369 The number of items in train is: 19 The loss for epoch 1 1.9856446620665098 The running loss is: 24.199124343693256 The number of items in train is: 19 The loss for epoch 2 1.2736381233522767 The running loss is: 16.194256775081158 The number of items in train is: 19 The loss for epoch 3 0.8523293039516399 The running loss is: 13.103187538683414 The number of items in train is: 19 The loss for epoch 4 0.6896414494043902 The running loss is: 11.879832331091166 The number of items in train is: 19 The loss for epoch 5 0.6252543332153245 The running loss is: 10.950798781588674 The number of items in train is: 19 The loss for epoch 6 0.5763578306099302 The running loss is: 13.645143084228039 The number of items in train is: 19 The loss for epoch 7 0.7181654254856863 The running loss is: 10.349268220365047 The number of items in train is: 19 The loss for epoch 8 0.5446983273876341 The running loss is: 10.853834997862577 The number of items in train is: 19 The loss for epoch 9 0.5712544735717145 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.738805 48 30755 ... 9.343151 49 30756 ... 9.593056 50 30757 ... 7.918449 51 30758 ... 7.861307 52 30759 ... 8.376973 53 30760 ... 9.427421 54 30761 ... 9.342373 55 30762 ... 9.391384 56 30763 ... 9.584616 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: e8mr8uwe wandb: Agent Starting Run: s3zxbtg0 with config: batch_size: 2 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: s3zxbtg0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.212389975786209 The number of items in train is: 19 The loss for epoch 0 0.695388946094011 The running loss is: 38.891341254115105 The number of items in train is: 19 The loss for epoch 1 2.0469126975850056 The running loss is: 29.096228800714016 The number of items in train is: 19 The loss for epoch 2 1.5313804631954746 The running loss is: 16.55887496471405 The number of items in train is: 19 The loss for epoch 3 0.8715197349849501 The running loss is: 14.256739430129528 The number of items in train is: 19 The loss for epoch 4 0.7503547068489226 The running loss is: 12.388054355978966 The number of items in train is: 19 The loss for epoch 5 0.6520028608409982 The running loss is: 10.843463119119406 The number of items in train is: 19 The loss for epoch 6 0.5707085852168108 The running loss is: 10.851479662582278 The number of items in train is: 19 The loss for epoch 7 0.571130508556962 The running loss is: 10.446336604654789 The number of items in train is: 19 The loss for epoch 8 0.5498071897186732 The running loss is: 14.638044934719801 The number of items in train is: 19 The loss for epoch 9 0.7704234176168316 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.673492 48 30755 ... 10.855934 49 30756 ... 11.532489 50 30757 ... 10.763280 51 30758 ... 11.245664 52 30759 ... 12.068069 53 30760 ... 13.055459 54 30761 ... 12.345917 55 30762 ... 13.218924 56 30763 ... 13.677047 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: s3zxbtg0
wandb: Network error resolved after 0:00:14.038303, resuming normal operation.
wandb: Agent Starting Run: maiell3o with config: batch_size: 2 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: maiell3o
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.558507455512881 The number of items in train is: 19 The loss for epoch 0 0.7662372345006779 The running loss is: 26.34476036950946 The number of items in train is: 19 The loss for epoch 1 1.3865663352373399 The running loss is: 24.001122549176216 The number of items in train is: 19 The loss for epoch 2 1.2632169762724323 The running loss is: 19.9936896674335 The number of items in train is: 19 The loss for epoch 3 1.0522994561807106 The running loss is: 17.85635165683925 The number of items in train is: 19 The loss for epoch 4 0.939807981938908 The running loss is: 19.134501039981842 The number of items in train is: 19 The loss for epoch 5 1.0070790021043075 The running loss is: 16.33119323849678 The number of items in train is: 19 The loss for epoch 6 0.8595364862366727 The running loss is: 17.35211842507124 The number of items in train is: 19 The loss for epoch 7 0.9132693907932231 The running loss is: 16.150467596948147 The number of items in train is: 19 The loss for epoch 8 0.850024610365692 The running loss is: 15.309038482606411 The number of items in train is: 19 The loss for epoch 9 0.8057388675056005 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.779421 48 30755 ... 8.413671 49 30756 ... 8.781001 50 30757 ... 7.955806 51 30758 ... 6.871974 52 30759 ... 6.721382 53 30760 ... 6.816398 54 30761 ... 7.125331 55 30762 ... 6.847043 56 30763 ... 6.823972 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: maiell3o wandb: Agent Starting Run: 1s257vao with config: batch_size: 2 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1s257vao
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.950616918504238 The number of items in train is: 19 The loss for epoch 0 0.8395061536054862 The running loss is: 25.045804142951965 The number of items in train is: 19 The loss for epoch 1 1.3182002180501033 The running loss is: 28.8318188264966 The number of items in train is: 19 The loss for epoch 2 1.517464148762979 The running loss is: 20.126703716814518 The number of items in train is: 19 The loss for epoch 3 1.0593001956218167 The running loss is: 17.79351157695055 The number of items in train is: 19 The loss for epoch 4 0.9365006093131868 The running loss is: 17.524609372019768 The number of items in train is: 19 The loss for epoch 5 0.922347861685251 The running loss is: 18.517031900584698 The number of items in train is: 19 The loss for epoch 6 0.9745806263465631 The running loss is: 16.52970390021801 The number of items in train is: 19 The loss for epoch 7 0.8699844158009479 The running loss is: 15.491389200091362 The number of items in train is: 19 The loss for epoch 8 0.8153362736890191 The running loss is: 16.75063694268465 The number of items in train is: 19 The loss for epoch 9 0.8816124706676132 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.217892 48 30755 ... 9.550221 49 30756 ... 10.142497 50 30757 ... 10.430239 51 30758 ... 10.068516 52 30759 ... 10.002805 53 30760 ... 10.005158 54 30761 ... 8.552078 55 30762 ... 9.498129 56 30763 ... 10.014200 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1s257vao wandb: Agent Starting Run: gdwm1mi5 with config: batch_size: 2 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: gdwm1mi5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 61.71031776070595 The number of items in train is: 20 The loss for epoch 0 3.0855158880352973 The running loss is: 22.180610413313843 The number of items in train is: 20 The loss for epoch 1 1.109030520665692 The running loss is: 23.172951824963093 The number of items in train is: 20 The loss for epoch 2 1.1586475912481546 The running loss is: 18.153760477900505 The number of items in train is: 20 The loss for epoch 3 0.9076880238950252 The running loss is: 17.846179999411106 The number of items in train is: 20 The loss for epoch 4 0.8923089999705553 The running loss is: 16.6478939242661 The number of items in train is: 20 The loss for epoch 5 0.832394696213305 The running loss is: 22.557837568223476 The number of items in train is: 20 The loss for epoch 6 1.1278918784111738 The running loss is: 21.72391752898693 The number of items in train is: 20 The loss for epoch 7 1.0861958764493465 The running loss is: 18.882404036819935 The number of items in train is: 20 The loss for epoch 8 0.9441202018409968 The running loss is: 16.341234251856804 The number of items in train is: 20 The loss for epoch 9 0.8170617125928402 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.028555 48 30755 ... 10.223789 49 30756 ... 10.591708 50 30757 ... 12.109409 51 30758 ... 10.868167 52 30759 ... 10.671272 53 30760 ... 10.249063 54 30761 ... 9.258160 55 30762 ... 10.242380 56 30763 ... 10.538944 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gdwm1mi5 wandb: Agent Starting Run: w0lg5o37 with config: batch_size: 2 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: w0lg5o37
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 41.49641283042729 The number of items in train is: 19 The loss for epoch 0 2.1840217279172256 The running loss is: 19.970189593732357 The number of items in train is: 19 The loss for epoch 1 1.0510626101964398 The running loss is: 24.242495357990265 The number of items in train is: 19 The loss for epoch 2 1.275920808315277 The running loss is: 22.579135298728943 The number of items in train is: 19 The loss for epoch 3 1.1883755420383655 The running loss is: 20.04605047404766 The number of items in train is: 19 The loss for epoch 4 1.0550552881077717 The running loss is: 19.928060449659824 The number of items in train is: 19 The loss for epoch 5 1.0488452868242013 The running loss is: 20.826875373721123 The number of items in train is: 19 The loss for epoch 6 1.0961513354590064 The running loss is: 17.959194883704185 The number of items in train is: 19 The loss for epoch 7 0.9452207833528519 The running loss is: 19.45036144554615 The number of items in train is: 19 The loss for epoch 8 1.0237032339761132 The running loss is: 19.660989113152027 The number of items in train is: 19 The loss for epoch 9 1.034788900692212 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.188835 48 30755 ... 10.382625 49 30756 ... 10.807488 50 30757 ... 10.160336 51 30758 ... 10.386367 52 30759 ... 10.618712 53 30760 ... 10.833608 54 30761 ... 10.601640 55 30762 ... 10.604479 56 30763 ... 10.606827 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: w0lg5o37 wandb: Agent Starting Run: y5e4tm4j with config: batch_size: 2 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: y5e4tm4j
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 52.42885746061802 The number of items in train is: 19 The loss for epoch 0 2.7594135505588433 The running loss is: 24.32117458432913 The number of items in train is: 19 The loss for epoch 1 1.2800618202278489 The running loss is: 30.122551828622818 The number of items in train is: 19 The loss for epoch 2 1.585397464664359 The running loss is: 20.29300230368972 The number of items in train is: 19 The loss for epoch 3 1.0680527528257746 The running loss is: 18.420647092163563 The number of items in train is: 19 The loss for epoch 4 0.9695077416928191 The running loss is: 17.05812880396843 The number of items in train is: 19 The loss for epoch 5 0.8977962528404436 The running loss is: 17.698757626116276 The number of items in train is: 19 The loss for epoch 6 0.9315135592692777 The running loss is: 15.643727265298367 The number of items in train is: 19 The loss for epoch 7 0.8233540665946508 The running loss is: 17.527575224637985 The number of items in train is: 19 The loss for epoch 8 0.9225039591914729 The running loss is: 13.784894995391369 The number of items in train is: 19 The loss for epoch 9 0.7255207892311247 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.834595 48 30755 ... 10.046051 49 30756 ... 10.053276 50 30757 ... 9.926423 51 30758 ... 9.764924 52 30759 ... 10.050706 53 30760 ... 10.521197 54 30761 ... 10.678264 55 30762 ... 10.684898 56 30763 ... 10.683672 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: y5e4tm4j wandb: Agent Starting Run: yw3yr804 with config: batch_size: 2 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yw3yr804
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.151611974462867 The number of items in train is: 19 The loss for epoch 0 1.2185058933927824 The running loss is: 24.21296002715826 The number of items in train is: 19 The loss for epoch 1 1.2743663172188557 The running loss is: 14.147806107997894 The number of items in train is: 19 The loss for epoch 2 0.7446213741051523 The running loss is: 11.688982851803303 The number of items in train is: 19 The loss for epoch 3 0.6152096237791213 The running loss is: 11.189231188967824 The number of items in train is: 19 The loss for epoch 4 0.588906904682517 The running loss is: 10.066100733820349 The number of items in train is: 19 The loss for epoch 5 0.5297947754642289 The running loss is: 9.523541389033198 The number of items in train is: 19 The loss for epoch 6 0.5012390204754315 The running loss is: 10.919814303517342 The number of items in train is: 19 The loss for epoch 7 0.5747270686061758 The running loss is: 9.636709606507793 The number of items in train is: 19 The loss for epoch 8 0.5071952424477786 The running loss is: 10.427344053983688 The number of items in train is: 19 The loss for epoch 9 0.5488075817886152 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.963048 48 30755 ... 7.921071 49 30756 ... 7.497608 50 30757 ... 7.718255 51 30758 ... 7.543673 52 30759 ... 7.132375 53 30760 ... 6.909460 54 30761 ... 6.758762 55 30762 ... 6.579365 56 30763 ... 6.642597 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yw3yr804 wandb: Agent Starting Run: sfugzwzq with config: batch_size: 2 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sfugzwzq
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.778223261237144 The number of items in train is: 19 The loss for epoch 0 1.0409591190124814 The running loss is: 32.143462881445885 The number of items in train is: 19 The loss for epoch 1 1.6917612042866255 The running loss is: 16.04269601404667 The number of items in train is: 19 The loss for epoch 2 0.8443524217919299 The running loss is: 14.474790960550308 The number of items in train is: 19 The loss for epoch 3 0.7618311031868583 The running loss is: 12.12663073092699 The number of items in train is: 19 The loss for epoch 4 0.6382437226803679 The running loss is: 11.022467166185379 The number of items in train is: 19 The loss for epoch 5 0.5801298508518621 The running loss is: 10.14216186851263 The number of items in train is: 19 The loss for epoch 6 0.5337979930796122 The running loss is: 10.681325320154428 The number of items in train is: 19 The loss for epoch 7 0.5621750168502331 The running loss is: 11.375485748052597 The number of items in train is: 19 The loss for epoch 8 0.5987097762132946 The running loss is: 9.121527703478932 The number of items in train is: 19 The loss for epoch 9 0.4800804054462596 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.768013 48 30755 ... 10.675665 49 30756 ... 9.865327 50 30757 ... 11.112760 51 30758 ... 11.969445 52 30759 ... 13.426899 53 30760 ... 15.257719 54 30761 ... 15.186352 55 30762 ... 14.411901 56 30763 ... 15.222851 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sfugzwzq wandb: Agent Starting Run: zorqe447 with config: batch_size: 2 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: zorqe447
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.629800878465176 The number of items in train is: 18 The loss for epoch 0 1.0905444932480652 The running loss is: 25.255747854709625 The number of items in train is: 18 The loss for epoch 1 1.4030971030394237 The running loss is: 15.05001075565815 The number of items in train is: 18 The loss for epoch 2 0.836111708647675 The running loss is: 13.016271352767944 The number of items in train is: 18 The loss for epoch 3 0.7231261862648858 The running loss is: 12.27754981070757 The number of items in train is: 18 The loss for epoch 4 0.682086100594865 The running loss is: 11.391240701079369 The number of items in train is: 18 The loss for epoch 5 0.6328467056155205 The running loss is: 11.72953286767006 The number of items in train is: 18 The loss for epoch 6 0.6516407148705589 The running loss is: 11.442858997732401 The number of items in train is: 18 The loss for epoch 7 0.6357143887629112 The running loss is: 12.431051224470139 The number of items in train is: 18 The loss for epoch 8 0.6906139569150077 The running loss is: 11.048863388597965 The number of items in train is: 18 The loss for epoch 9 0.6138257438109981 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.032237 48 30755 ... 12.643246 49 30756 ... 6.603610 50 30757 ... 6.592432 51 30758 ... 4.413502 52 30759 ... 3.218659 53 30760 ... 2.618341 54 30761 ... 1.748638 55 30762 ... 1.638597 56 30763 ... 0.533958 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: zorqe447 wandb: Agent Starting Run: 3un1inbj with config: batch_size: 2 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3un1inbj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.982001293450594 The number of items in train is: 19 The loss for epoch 0 0.7885263838658207 The running loss is: 33.174809351563454 The number of items in train is: 19 The loss for epoch 1 1.7460425974507081 The running loss is: 21.882377948611975 The number of items in train is: 19 The loss for epoch 2 1.151704102558525 The running loss is: 15.876857874915004 The number of items in train is: 19 The loss for epoch 3 0.8356240986797371 The running loss is: 13.362504370510578 The number of items in train is: 19 The loss for epoch 4 0.703289703711083 The running loss is: 10.210133947432041 The number of items in train is: 19 The loss for epoch 5 0.5373754709174758 The running loss is: 10.241281794384122 The number of items in train is: 19 The loss for epoch 6 0.5390148312833748 The running loss is: 9.936604705639184 The number of items in train is: 19 The loss for epoch 7 0.5229791950336412 The running loss is: 11.438727487111464 The number of items in train is: 19 The loss for epoch 8 0.6020382887953403 The running loss is: 12.369946470251307 The number of items in train is: 19 The loss for epoch 9 0.651049814223753 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.245392 48 30755 ... 14.129043 49 30756 ... 13.174330 50 30757 ... 13.520782 51 30758 ... 14.763544 52 30759 ... 15.160839 53 30760 ... 15.549007 54 30761 ... 15.544765 55 30762 ... 15.403012 56 30763 ... 15.567816 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3un1inbj wandb: Agent Starting Run: or2ftbf5 with config: batch_size: 2 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: or2ftbf5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.938185892999172 The number of items in train is: 19 The loss for epoch 0 0.7335887312104827 The running loss is: 34.40718472003937 The number of items in train is: 19 The loss for epoch 1 1.8109044589494403 The running loss is: 27.414366364479065 The number of items in train is: 19 The loss for epoch 2 1.4428613876041614 The running loss is: 16.21256609261036 The number of items in train is: 19 The loss for epoch 3 0.8532929522426504 The running loss is: 13.721442848443985 The number of items in train is: 19 The loss for epoch 4 0.7221812025496834 The running loss is: 11.4379528388381 The number of items in train is: 19 The loss for epoch 5 0.6019975178335842 The running loss is: 9.260038580745459 The number of items in train is: 19 The loss for epoch 6 0.48737045161818204 The running loss is: 12.055675242096186 The number of items in train is: 19 The loss for epoch 7 0.6345092232682203 The running loss is: 10.1099742539227 The number of items in train is: 19 The loss for epoch 8 0.5321039081011948 The running loss is: 11.101317666471004 The number of items in train is: 19 The loss for epoch 9 0.5842798771826845 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.715038 48 30755 ... 13.290008 49 30756 ... 10.847966 50 30757 ... 12.697416 51 30758 ... 13.276269 52 30759 ... 14.771571 53 30760 ... 17.032900 54 30761 ... 16.310585 55 30762 ... 14.025554 56 30763 ... 16.796951 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: or2ftbf5 wandb: Agent Starting Run: qyjq7c0a with config: batch_size: 2 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: qyjq7c0a
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.219057638198137 The number of items in train is: 18 The loss for epoch 0 0.7899476465665631 The running loss is: 32.766083881258965 The number of items in train is: 18 The loss for epoch 1 1.8203379934032757 The running loss is: 22.88953396677971 The number of items in train is: 18 The loss for epoch 2 1.2716407759322061 The running loss is: 15.694544300436974 The number of items in train is: 18 The loss for epoch 3 0.871919127802054 The running loss is: 13.966531410813332 The number of items in train is: 18 The loss for epoch 4 0.7759184117118517 The running loss is: 11.931890279054642 The number of items in train is: 18 The loss for epoch 5 0.6628827932808135 The running loss is: 11.502507656812668 The number of items in train is: 18 The loss for epoch 6 0.6390282031562593 The running loss is: 10.604379296302795 The number of items in train is: 18 The loss for epoch 7 0.589132183127933 The running loss is: 12.21282433718443 The number of items in train is: 18 The loss for epoch 8 0.6784902409546905 The running loss is: 11.869370594620705 The number of items in train is: 18 The loss for epoch 9 0.6594094774789281 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.175922 48 30755 ... 10.767483 49 30756 ... 4.415483 50 30757 ... 6.104957 51 30758 ... 4.019737 52 30759 ... 3.290065 53 30760 ... 3.420416 54 30761 ... 1.564515 55 30762 ... -3.665913 56 30763 ... -0.584266 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qyjq7c0a wandb: Agent Starting Run: e7l2v3n1 with config: batch_size: 2 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: e7l2v3n1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.939907671883702 The number of items in train is: 19 The loss for epoch 0 0.7863109300991422 The running loss is: 27.58423702418804 The number of items in train is: 19 The loss for epoch 1 1.451801948641476 The running loss is: 21.350735876709223 The number of items in train is: 19 The loss for epoch 2 1.1237229408794327 The running loss is: 22.028746308758855 The number of items in train is: 19 The loss for epoch 3 1.1594077004609924 The running loss is: 20.440568597987294 The number of items in train is: 19 The loss for epoch 4 1.0758193998940682 The running loss is: 18.65727076679468 The number of items in train is: 19 The loss for epoch 5 0.9819616193049833 The running loss is: 19.96857689321041 The number of items in train is: 19 The loss for epoch 6 1.0509777312216007 The running loss is: 18.768428467214108 The number of items in train is: 19 The loss for epoch 7 0.9878120245902162 The running loss is: 18.98760063573718 The number of items in train is: 19 The loss for epoch 8 0.9993474018809042 The running loss is: 18.08189932629466 The number of items in train is: 19 The loss for epoch 9 0.9516789119102453 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.355700 48 30755 ... 11.807974 49 30756 ... 11.397798 50 30757 ... 11.411679 51 30758 ... 11.352333 52 30759 ... 11.283925 53 30760 ... 11.236071 54 30761 ... 11.371363 55 30762 ... 11.656288 56 30763 ... 11.443694 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: e7l2v3n1 wandb: Agent Starting Run: tzqyy8oc with config: batch_size: 2 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: tzqyy8oc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.767386704683304 The number of items in train is: 19 The loss for epoch 0 0.882494037088595 The running loss is: 23.7237149477005 The number of items in train is: 19 The loss for epoch 1 1.2486165761947632 The running loss is: 21.810965567827225 The number of items in train is: 19 The loss for epoch 2 1.147945556201433 The running loss is: 21.628697000443935 The number of items in train is: 19 The loss for epoch 3 1.1383524737075756 The running loss is: 18.608572021126747 The number of items in train is: 19 The loss for epoch 4 0.9793985274277235 The running loss is: 17.807227961719036 The number of items in train is: 19 The loss for epoch 5 0.937222524301002 The running loss is: 16.818491958081722 The number of items in train is: 19 The loss for epoch 6 0.885183787267459 The running loss is: 17.390442237257957 The number of items in train is: 19 The loss for epoch 7 0.9152864335398925 The running loss is: 16.504042580723763 The number of items in train is: 19 The loss for epoch 8 0.8686338200380928 The running loss is: 14.063714668154716 The number of items in train is: 19 The loss for epoch 9 0.7401955088502482 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 17.209160 48 30755 ... 21.750385 49 30756 ... 16.280861 50 30757 ... 16.302153 51 30758 ... 18.620329 52 30759 ... 20.607368 53 30760 ... 19.939861 54 30761 ... 21.928680 55 30762 ... 21.918089 56 30763 ... 22.155098 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tzqyy8oc wandb: Agent Starting Run: y09gepr6 with config: batch_size: 2 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: y09gepr6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.607820570468903 The number of items in train is: 18 The loss for epoch 0 0.8671011428038279 The running loss is: 21.899810507893562 The number of items in train is: 18 The loss for epoch 1 1.2166561393274202 The running loss is: 23.761934000998735 The number of items in train is: 18 The loss for epoch 2 1.3201074444999297 The running loss is: 16.91294802725315 The number of items in train is: 18 The loss for epoch 3 0.9396082237362862 The running loss is: 18.267082534730434 The number of items in train is: 18 The loss for epoch 4 1.0148379185961351 The running loss is: 17.08760144561529 The number of items in train is: 18 The loss for epoch 5 0.9493111914230717 The running loss is: 15.896970629692078 The number of items in train is: 18 The loss for epoch 6 0.8831650349828932 The running loss is: 17.839499786496162 The number of items in train is: 18 The loss for epoch 7 0.9910833214720091 The running loss is: 16.226146705448627 The number of items in train is: 18 The loss for epoch 8 0.901452594747146 The running loss is: 15.652418322861195 The number of items in train is: 18 The loss for epoch 9 0.8695787957145108 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.320057 48 30755 ... 13.447205 49 30756 ... 9.804661 50 30757 ... 9.939509 51 30758 ... 10.391244 52 30759 ... 10.271468 53 30760 ... 10.242510 54 30761 ... 9.979496 55 30762 ... 9.834205 56 30763 ... 9.926790 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: y09gepr6 wandb: Agent Starting Run: cbzex9pt with config: batch_size: 2 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: cbzex9pt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 47.5149762108922 The number of items in train is: 19 The loss for epoch 0 2.500788221625905 The running loss is: 22.905585899949074 The number of items in train is: 19 The loss for epoch 1 1.2055571526288986 The running loss is: 24.01019530929625 The number of items in train is: 19 The loss for epoch 2 1.2636944899629605 The running loss is: 23.0567737929523 The number of items in train is: 19 The loss for epoch 3 1.213514410155384 The running loss is: 26.211633875966072 The number of items in train is: 19 The loss for epoch 4 1.3795596776824248 The running loss is: 20.059789837221615 The number of items in train is: 19 The loss for epoch 5 1.0557784124853482 The running loss is: 18.259545739740133 The number of items in train is: 19 The loss for epoch 6 0.9610287231442175 The running loss is: 20.72789303958416 The number of items in train is: 19 The loss for epoch 7 1.090941738925482 The running loss is: 23.105668414384127 The number of items in train is: 19 The loss for epoch 8 1.216087811283375 The running loss is: 20.80936250090599 The number of items in train is: 19 The loss for epoch 9 1.0952296053108417 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.992377 48 30755 ... 10.127301 49 30756 ... 10.745222 50 30757 ... 10.946898 51 30758 ... 11.551901 52 30759 ... 11.699575 53 30760 ... 11.576552 54 30761 ... 11.900595 55 30762 ... 10.091677 56 30763 ... 11.018733 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cbzex9pt wandb: Agent Starting Run: y92u1zia with config: batch_size: 2 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: y92u1zia
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 60.506285328418016 The number of items in train is: 19 The loss for epoch 0 3.1845413330746326 The running loss is: 22.747136116027832 The number of items in train is: 19 The loss for epoch 1 1.1972176903172542 The running loss is: 22.141358107328415 The number of items in train is: 19 The loss for epoch 2 1.1653346372278113 The running loss is: 20.66910433769226 The number of items in train is: 19 The loss for epoch 3 1.0878475967206453 The running loss is: 21.232126966118813 The number of items in train is: 19 The loss for epoch 4 1.1174803666378323 The running loss is: 19.210107535123825 The number of items in train is: 19 The loss for epoch 5 1.0110582913223065 The running loss is: 16.590289562940598 The number of items in train is: 19 The loss for epoch 6 0.8731731348916104 The running loss is: 15.67080619931221 The number of items in train is: 19 The loss for epoch 7 0.8247792736480111 The running loss is: 14.635391503572464 The number of items in train is: 19 The loss for epoch 8 0.7702837633459192 The running loss is: 12.694482833147049 The number of items in train is: 19 The loss for epoch 9 0.668130675428792 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.763491 48 30755 ... 12.762318 49 30756 ... 10.953236 50 30757 ... 11.089784 51 30758 ... 10.986698 52 30759 ... 11.406321 53 30760 ... 12.214860 54 30761 ... 12.406092 55 30762 ... 12.407260 56 30763 ... 12.401293 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: y92u1zia wandb: Agent Starting Run: 7tyjl8ck with config: batch_size: 2 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 7tyjl8ck
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 51.1738221719861 The number of items in train is: 18 The loss for epoch 0 2.8429901206658945 The running loss is: 20.108996018767357 The number of items in train is: 18 The loss for epoch 1 1.1171664454870753 The running loss is: 20.94754420220852 The number of items in train is: 18 The loss for epoch 2 1.163752455678251 The running loss is: 19.241921558976173 The number of items in train is: 18 The loss for epoch 3 1.068995642165343 The running loss is: 19.614308521151543 The number of items in train is: 18 The loss for epoch 4 1.0896838067306414 The running loss is: 18.551492542028427 The number of items in train is: 18 The loss for epoch 5 1.0306384745571349 The running loss is: 17.22895458340645 The number of items in train is: 18 The loss for epoch 6 0.9571641435225805 The running loss is: 16.789826542139053 The number of items in train is: 18 The loss for epoch 7 0.9327681412299474 The running loss is: 15.875566244125366 The number of items in train is: 18 The loss for epoch 8 0.8819759024514092 The running loss is: 16.926526993513107 The number of items in train is: 18 The loss for epoch 9 0.9403626107507281 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.480230 48 30755 ... 13.879719 49 30756 ... 13.271286 50 30757 ... 13.021132 51 30758 ... 13.106910 52 30759 ... 13.234471 53 30760 ... 13.401170 54 30761 ... 13.149764 55 30762 ... 12.935968 56 30763 ... 13.315945 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7tyjl8ck wandb: Agent Starting Run: xtufua36 with config: batch_size: 2 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: xtufua36
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.662442736327648 The number of items in train is: 19 The loss for epoch 0 0.9822338282277709 The running loss is: 32.4536609929055 The number of items in train is: 19 The loss for epoch 1 1.7080874206792367 The running loss is: 16.78804411087185 The number of items in train is: 19 The loss for epoch 2 0.8835812689932553 The running loss is: 13.13648857921362 The number of items in train is: 19 The loss for epoch 3 0.6913941357480852 The running loss is: 11.167816616594791 The number of items in train is: 19 The loss for epoch 4 0.5877798219260416 The running loss is: 9.475702971220016 The number of items in train is: 19 The loss for epoch 5 0.4987212090115798 The running loss is: 9.611646829172969 The number of items in train is: 19 The loss for epoch 6 0.5058761489038405 The running loss is: 8.849040357898048 The number of items in train is: 19 The loss for epoch 7 0.4657389662051604 The running loss is: 10.830722641199827 The number of items in train is: 19 The loss for epoch 8 0.5700380337473593 The running loss is: 8.893724239896983 The number of items in train is: 19 The loss for epoch 9 0.46809074946826223 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.932547 48 30755 ... 13.332523 49 30756 ... 16.218235 50 30757 ... 13.282401 51 30758 ... 13.402158 52 30759 ... 13.695475 53 30760 ... 16.110184 54 30761 ... 15.520673 55 30762 ... 16.442516 56 30763 ... 18.135046 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xtufua36 wandb: Agent Starting Run: 6q31wbqt with config: batch_size: 2 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 6q31wbqt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.809781923890114 The number of items in train is: 18 The loss for epoch 0 0.9338767735494508 The running loss is: 31.100095892790705 The number of items in train is: 18 The loss for epoch 1 1.7277831051550392 The running loss is: 14.82688376866281 The number of items in train is: 18 The loss for epoch 2 0.8237157649257116 The running loss is: 12.923846289515495 The number of items in train is: 18 The loss for epoch 3 0.7179914605286386 The running loss is: 10.198259711265564 The number of items in train is: 18 The loss for epoch 4 0.566569983959198 The running loss is: 9.777777466922998 The number of items in train is: 18 The loss for epoch 5 0.5432098592735 The running loss is: 8.726226492086425 The number of items in train is: 18 The loss for epoch 6 0.4847903606714681 The running loss is: 9.029325045645237 The number of items in train is: 18 The loss for epoch 7 0.5016291692025132 The running loss is: 9.306042216718197 The number of items in train is: 18 The loss for epoch 8 0.5170023453732332 The running loss is: 9.190385576337576 The number of items in train is: 18 The loss for epoch 9 0.5105769764631987 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.777914 48 30755 ... 12.234770 49 30756 ... 12.906726 50 30757 ... 9.613279 51 30758 ... 10.035604 52 30759 ... 10.181870 53 30760 ... 11.437014 54 30761 ... 11.337413 55 30762 ... 11.397779 56 30763 ... 11.538319 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6q31wbqt wandb: Agent Starting Run: piuk49km with config: batch_size: 2 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: piuk49km
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.207939341664314 The number of items in train is: 18 The loss for epoch 0 1.067107741203573 The running loss is: 26.95139818638563 The number of items in train is: 18 The loss for epoch 1 1.4972998992436461 The running loss is: 15.8444182574749 The number of items in train is: 18 The loss for epoch 2 0.8802454587486055 The running loss is: 13.982900321483612 The number of items in train is: 18 The loss for epoch 3 0.7768277956379784 The running loss is: 12.15248690545559 The number of items in train is: 18 The loss for epoch 4 0.6751381614141994 The running loss is: 11.28390198200941 The number of items in train is: 18 The loss for epoch 5 0.6268834434449673 The running loss is: 11.802641343325377 The number of items in train is: 18 The loss for epoch 6 0.6557022968514098 The running loss is: 10.794923435896635 The number of items in train is: 18 The loss for epoch 7 0.5997179686609242 The running loss is: 11.76518764346838 The number of items in train is: 18 The loss for epoch 8 0.6536215357482433 The running loss is: 11.923004761338234 The number of items in train is: 18 The loss for epoch 9 0.6623891534076797 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.162495 48 30755 ... 7.129919 49 30756 ... 9.476668 50 30757 ... 4.542667 51 30758 ... 4.005393 52 30759 ... 0.559879 53 30760 ... -1.379381 54 30761 ... -2.445561 55 30762 ... -2.441918 56 30763 ... -2.303915 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: piuk49km wandb: Agent Starting Run: zh6e9hk0 with config: batch_size: 2 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: zh6e9hk0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.526742728427052 The number of items in train is: 19 The loss for epoch 0 0.7645654067593185 The running loss is: 30.84717154005193 The number of items in train is: 19 The loss for epoch 1 1.6235353442132596 The running loss is: 26.77706977725029 The number of items in train is: 19 The loss for epoch 2 1.4093194619605416 The running loss is: 15.642113384790719 The number of items in train is: 19 The loss for epoch 3 0.823269125515301 The running loss is: 11.526011761277914 The number of items in train is: 19 The loss for epoch 4 0.6066321979619955 The running loss is: 10.011572066694498 The number of items in train is: 19 The loss for epoch 5 0.5269248456154999 The running loss is: 10.000060603022575 The number of items in train is: 19 The loss for epoch 6 0.5263189791064513 The running loss is: 8.50434441305697 The number of items in train is: 19 The loss for epoch 7 0.44759707437141943 The running loss is: 9.07707198522985 The number of items in train is: 19 The loss for epoch 8 0.47774063080157103 The running loss is: 7.321829241234809 The number of items in train is: 19 The loss for epoch 9 0.3853594337492005 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.666120 48 30755 ... 9.921270 49 30756 ... 16.465700 50 30757 ... 12.533557 51 30758 ... 12.186483 52 30759 ... 11.201939 53 30760 ... 10.682373 54 30761 ... 9.363009 55 30762 ... 11.541510 56 30763 ... 17.120123 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: zh6e9hk0 wandb: Agent Starting Run: 2p9wj7al with config: batch_size: 2 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 2p9wj7al
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.093412643298507 The number of items in train is: 18 The loss for epoch 0 0.6718562579610281 The running loss is: 31.850913926959038 The number of items in train is: 18 The loss for epoch 1 1.769495218164391 The running loss is: 24.548495411872864 The number of items in train is: 18 The loss for epoch 2 1.3638053006596036 The running loss is: 14.259857133030891 The number of items in train is: 18 The loss for epoch 3 0.7922142851683829 The running loss is: 11.60143318399787 The number of items in train is: 18 The loss for epoch 4 0.6445240657776594 The running loss is: 10.158630147576332 The number of items in train is: 18 The loss for epoch 5 0.5643683415320184 The running loss is: 10.024041716009378 The number of items in train is: 18 The loss for epoch 6 0.5568912064449655 The running loss is: 10.450636763125658 The number of items in train is: 18 The loss for epoch 7 0.5805909312847588 The running loss is: 12.88908988237381 The number of items in train is: 18 The loss for epoch 8 0.7160605490207672 The running loss is: 9.649638891220093 The number of items in train is: 18 The loss for epoch 9 0.5360910495122274 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.349866 48 30755 ... 12.485463 49 30756 ... 14.009510 50 30757 ... 5.725533 51 30758 ... 5.484777 52 30759 ... 4.383102 53 30760 ... 4.634890 54 30761 ... 4.904810 55 30762 ... 5.281286 56 30763 ... 0.289950 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2p9wj7al wandb: Agent Starting Run: miih8z8l with config: batch_size: 2 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: miih8z8l
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.902076788246632 The number of items in train is: 18 The loss for epoch 0 0.772337599347035 The running loss is: 30.734783306717873 The number of items in train is: 18 The loss for epoch 1 1.7074879614843264 The running loss is: 24.098938152194023 The number of items in train is: 18 The loss for epoch 2 1.3388298973441124 The running loss is: 16.15599799156189 The number of items in train is: 18 The loss for epoch 3 0.8975554439756606 The running loss is: 14.88480393588543 The number of items in train is: 18 The loss for epoch 4 0.8269335519936349 The running loss is: 13.353974744677544 The number of items in train is: 18 The loss for epoch 5 0.7418874858154191 The running loss is: 13.012045174837112 The number of items in train is: 18 The loss for epoch 6 0.7228913986020618 The running loss is: 11.28533148765564 The number of items in train is: 18 The loss for epoch 7 0.6269628604253134 The running loss is: 11.091172754764557 The number of items in train is: 18 The loss for epoch 8 0.6161762641535865 The running loss is: 14.631795093417168 The number of items in train is: 18 The loss for epoch 9 0.8128775051898427 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.164349 48 30755 ... 9.647461 49 30756 ... 11.834938 50 30757 ... 8.905302 51 30758 ... 8.214365 52 30759 ... 8.132830 53 30760 ... 8.303577 54 30761 ... 7.712473 55 30762 ... 8.126958 56 30763 ... 9.033283 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: miih8z8l wandb: Agent Starting Run: 3x0ouo97 with config: batch_size: 2 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3x0ouo97
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.53110232204199 The number of items in train is: 19 The loss for epoch 0 1.080584332739052 The running loss is: 22.649866599589586 The number of items in train is: 19 The loss for epoch 1 1.1920982420836623 The running loss is: 20.07614903151989 The number of items in train is: 19 The loss for epoch 2 1.0566394227115732 The running loss is: 21.142045558430254 The number of items in train is: 19 The loss for epoch 3 1.1127392399173819 The running loss is: 14.569156531244516 The number of items in train is: 19 The loss for epoch 4 0.766797712170764 The running loss is: 13.339449528604746 The number of items in train is: 19 The loss for epoch 5 0.7020762909791971 The running loss is: 11.777572210878134 The number of items in train is: 19 The loss for epoch 6 0.619872221625165 The running loss is: 16.930491030216217 The number of items in train is: 19 The loss for epoch 7 0.8910784752745378 The running loss is: 13.112162977457047 The number of items in train is: 19 The loss for epoch 8 0.6901138409187919 The running loss is: 11.765430979430676 The number of items in train is: 19 The loss for epoch 9 0.6192332094437197 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.341544 48 30755 ... 13.739527 49 30756 ... 16.690649 50 30757 ... 11.087149 51 30758 ... 10.845184 52 30759 ... 10.669495 53 30760 ... 11.297999 54 30761 ... 10.704900 55 30762 ... 11.647568 56 30763 ... 6.396082 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3x0ouo97 wandb: Agent Starting Run: 8zvt4j88 with config: batch_size: 2 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 8zvt4j88
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.847276613116264 The number of items in train is: 18 The loss for epoch 0 0.9359598118397925 The running loss is: 22.086317025125027 The number of items in train is: 18 The loss for epoch 1 1.2270176125069459 The running loss is: 21.75656918808818 The number of items in train is: 18 The loss for epoch 2 1.208698288227121 The running loss is: 20.252290658652782 The number of items in train is: 18 The loss for epoch 3 1.1251272588140435 The running loss is: 17.040222689509392 The number of items in train is: 18 The loss for epoch 4 0.9466790383060774 The running loss is: 16.73467853665352 The number of items in train is: 18 The loss for epoch 5 0.9297043631474177 The running loss is: 15.817666858434677 The number of items in train is: 18 The loss for epoch 6 0.8787592699130377 The running loss is: 17.491646096110344 The number of items in train is: 18 The loss for epoch 7 0.9717581164505746 The running loss is: 14.300822883844376 The number of items in train is: 18 The loss for epoch 8 0.7944901602135764 The running loss is: 14.148024834692478 The number of items in train is: 18 The loss for epoch 9 0.7860013797051377 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.154796 48 30755 ... 9.414880 49 30756 ... 9.848639 50 30757 ... 7.001806 51 30758 ... 7.194446 52 30759 ... 6.755281 53 30760 ... 7.121027 54 30761 ... 6.964331 55 30762 ... 6.581292 56 30763 ... 5.964928 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8zvt4j88 wandb: Agent Starting Run: codhaw7z with config: batch_size: 2 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: codhaw7z
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.63626703619957 The number of items in train is: 18 The loss for epoch 0 0.9242370575666428 The running loss is: 21.218304097652435 The number of items in train is: 18 The loss for epoch 1 1.1787946720918019 The running loss is: 20.293749123811722 The number of items in train is: 18 The loss for epoch 2 1.127430506878429 The running loss is: 19.309033408761024 The number of items in train is: 18 The loss for epoch 3 1.0727240782645013 The running loss is: 17.63574704527855 The number of items in train is: 18 The loss for epoch 4 0.9797637247376971 The running loss is: 16.501740634441376 The number of items in train is: 18 The loss for epoch 5 0.9167633685800765 The running loss is: 16.07330948114395 The number of items in train is: 18 The loss for epoch 6 0.8929616378413306 The running loss is: 14.988985002040863 The number of items in train is: 18 The loss for epoch 7 0.8327213890022702 The running loss is: 15.27691513299942 The number of items in train is: 18 The loss for epoch 8 0.8487175073888567 The running loss is: 15.855083525180817 The number of items in train is: 18 The loss for epoch 9 0.8808379736211565 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.524234 48 30755 ... 11.504997 49 30756 ... 11.519807 50 30757 ... 11.319865 51 30758 ... 11.301481 52 30759 ... 11.427913 53 30760 ... 11.322249 54 30761 ... 11.377673 55 30762 ... 11.367601 56 30763 ... 11.353683 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: codhaw7z wandb: Agent Starting Run: 3tphqgn9 with config: batch_size: 2 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3tphqgn9
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 89.16724638454616 The number of items in train is: 19 The loss for epoch 0 4.693012967607693 The running loss is: 26.253339409828186 The number of items in train is: 19 The loss for epoch 1 1.381754705780431 The running loss is: 22.28419649042189 The number of items in train is: 19 The loss for epoch 2 1.17285244686431 The running loss is: 20.892348155379295 The number of items in train is: 19 The loss for epoch 3 1.0995972713357525 The running loss is: 16.460732923820615 The number of items in train is: 19 The loss for epoch 4 0.8663543644116113 The running loss is: 18.3472553268075 The number of items in train is: 19 The loss for epoch 5 0.9656450172003946 The running loss is: 15.07598640746437 The number of items in train is: 19 The loss for epoch 6 0.7934729688139143 The running loss is: 17.23325503244996 The number of items in train is: 19 The loss for epoch 7 0.9070134227605242 The running loss is: 16.722626268863678 The number of items in train is: 19 The loss for epoch 8 0.8801382246770357 The running loss is: 13.728390574455261 The number of items in train is: 19 The loss for epoch 9 0.7225468723397506 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.590704 48 30755 ... 13.399076 49 30756 ... 13.402116 50 30757 ... 12.507936 51 30758 ... 12.685381 52 30759 ... 12.882812 53 30760 ... 12.423203 54 30761 ... 12.690681 55 30762 ... 12.690515 56 30763 ... 12.690374 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3tphqgn9 wandb: Agent Starting Run: xuut9khr with config: batch_size: 2 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: xuut9khr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 68.00627230107784 The number of items in train is: 18 The loss for epoch 0 3.778126238948769 The running loss is: 19.79006164520979 The number of items in train is: 18 The loss for epoch 1 1.0994478691783216 The running loss is: 17.850837409496307 The number of items in train is: 18 The loss for epoch 2 0.9917131894164615 The running loss is: 24.54628086835146 The number of items in train is: 18 The loss for epoch 3 1.36368227046397 The running loss is: 21.807621747255325 The number of items in train is: 18 The loss for epoch 4 1.2115345415141847 The running loss is: 16.156769186258316 The number of items in train is: 18 The loss for epoch 5 0.897598288125462 The running loss is: 15.531101047992706 The number of items in train is: 18 The loss for epoch 6 0.8628389471107059 The running loss is: 15.293164731934667 The number of items in train is: 18 The loss for epoch 7 0.8496202628852593 The running loss is: 14.162357330322266 The number of items in train is: 18 The loss for epoch 8 0.7867976294623481 The running loss is: 13.308439128100872 The number of items in train is: 18 The loss for epoch 9 0.7393577293389373 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.417884 48 30755 ... 11.351794 49 30756 ... 11.415997 50 30757 ... 10.585990 51 30758 ... 10.834534 52 30759 ... 10.455210 53 30760 ... 10.706393 54 30761 ... 10.487299 55 30762 ... 10.475573 56 30763 ... 10.091512 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xuut9khr wandb: Agent Starting Run: opcbv3h4 with config: batch_size: 2 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: opcbv3h4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 55.38436781615019 The number of items in train is: 18 The loss for epoch 0 3.076909323119455 The running loss is: 20.806777961552143 The number of items in train is: 18 The loss for epoch 1 1.155932108975119 The running loss is: 18.307716690003872 The number of items in train is: 18 The loss for epoch 2 1.0170953716668818 The running loss is: 18.69004149734974 The number of items in train is: 18 The loss for epoch 3 1.0383356387416522 The running loss is: 19.871280409395695 The number of items in train is: 18 The loss for epoch 4 1.1039600227442052 The running loss is: 17.01835998892784 The number of items in train is: 18 The loss for epoch 5 0.9454644438293245 The running loss is: 16.486702501773834 The number of items in train is: 18 The loss for epoch 6 0.915927916765213 The running loss is: 16.326455369591713 The number of items in train is: 18 The loss for epoch 7 0.9070252983106507 The running loss is: 16.18179951608181 The number of items in train is: 18 The loss for epoch 8 0.898988862004545 The running loss is: 15.756254091858864 The number of items in train is: 18 The loss for epoch 9 0.8753474495477147 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.574912 48 30755 ... 11.343673 49 30756 ... 10.713832 50 30757 ... 9.781120 51 30758 ... 9.948353 52 30759 ... 10.150012 53 30760 ... 9.753569 54 30761 ... 9.639825 55 30762 ... 9.856399 56 30763 ... 9.539119 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: opcbv3h4 wandb: Agent Starting Run: payrwmn7 with config: batch_size: 2 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: payrwmn7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.764818392693996 The number of items in train is: 18 The loss for epoch 0 0.7091565773718886 The running loss is: 41.29002905637026 The number of items in train is: 18 The loss for epoch 1 2.293890503131681 The running loss is: 17.83612199127674 The number of items in train is: 18 The loss for epoch 2 0.9908956661820412 The running loss is: 16.420202357694507 The number of items in train is: 18 The loss for epoch 3 0.9122334643163614 The running loss is: 12.88229051977396 The number of items in train is: 18 The loss for epoch 4 0.7156828066541089 The running loss is: 11.19569367915392 The number of items in train is: 18 The loss for epoch 5 0.6219829821752177 The running loss is: 10.120619802735746 The number of items in train is: 18 The loss for epoch 6 0.5622566557075415 The running loss is: 9.58696399955079 The number of items in train is: 18 The loss for epoch 7 0.5326091110861549 The running loss is: 8.832727583125234 The number of items in train is: 18 The loss for epoch 8 0.4907070879514019 The running loss is: 8.69556760089472 The number of items in train is: 18 The loss for epoch 9 0.48308708893859553 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.861172 48 30755 ... 11.517205 49 30756 ... 11.780841 50 30757 ... 11.693560 51 30758 ... 8.127285 52 30759 ... 8.260897 53 30760 ... 8.410134 54 30761 ... 8.223893 55 30762 ... 8.788653 56 30763 ... 8.309381 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: payrwmn7 wandb: Agent Starting Run: yzkklixg with config: batch_size: 2 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: yzkklixg
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.693578988313675 The number of items in train is: 18 The loss for epoch 0 0.8163099437952042 The running loss is: 35.63161541521549 The number of items in train is: 18 The loss for epoch 1 1.979534189734194 The running loss is: 16.785623099654913 The number of items in train is: 18 The loss for epoch 2 0.9325346166474952 The running loss is: 15.402808114886284 The number of items in train is: 18 The loss for epoch 3 0.8557115619381269 The running loss is: 12.666369892656803 The number of items in train is: 18 The loss for epoch 4 0.7036872162587113 The running loss is: 11.15108098834753 The number of items in train is: 18 The loss for epoch 5 0.6195044993526406 The running loss is: 10.014611192047596 The number of items in train is: 18 The loss for epoch 6 0.5563672884470887 The running loss is: 9.563246592879295 The number of items in train is: 18 The loss for epoch 7 0.5312914773821831 The running loss is: 9.08486569300294 The number of items in train is: 18 The loss for epoch 8 0.5047147607223855 The running loss is: 9.686499211937189 The number of items in train is: 18 The loss for epoch 9 0.5381388451076217 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.070226 48 30755 ... 6.394022 49 30756 ... 7.502196 50 30757 ... 8.509747 51 30758 ... 3.066005 52 30759 ... 2.097596 53 30760 ... -1.188965 54 30761 ... -2.204936 55 30762 ... -1.965081 56 30763 ... -2.326006 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yzkklixg wandb: Agent Starting Run: qgblb6h1 with config: batch_size: 2 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: qgblb6h1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.94256365299225 The number of items in train is: 17 The loss for epoch 0 0.9966213913524852 The running loss is: 25.57343617081642 The number of items in train is: 17 The loss for epoch 1 1.5043197747539072 The running loss is: 13.54184927791357 The number of items in train is: 17 The loss for epoch 2 0.7965793692890335 The running loss is: 12.523482795804739 The number of items in train is: 17 The loss for epoch 3 0.7366754585767493 The running loss is: 10.940785882994533 The number of items in train is: 17 The loss for epoch 4 0.643575640176149 The running loss is: 10.1965466234833 The number of items in train is: 17 The loss for epoch 5 0.5997968602049 The running loss is: 9.783029923215508 The number of items in train is: 17 The loss for epoch 6 0.5754723484244417 The running loss is: 9.331181142479181 The number of items in train is: 17 The loss for epoch 7 0.5488930083811283 The running loss is: 8.621533285826445 The number of items in train is: 17 The loss for epoch 8 0.5071490168133203 The running loss is: 9.149149924516678 The number of items in train is: 17 The loss for epoch 9 0.5381852896774516 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.083263 48 30755 ... 6.330942 49 30756 ... 6.745354 50 30757 ... 6.260278 51 30758 ... 2.354475 52 30759 ... 1.357481 53 30760 ... -2.238031 54 30761 ... -3.122238 55 30762 ... -3.426826 56 30763 ... -3.572912 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qgblb6h1 wandb: Agent Starting Run: f9x7y7pi with config: batch_size: 2 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: f9x7y7pi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.917671071365476 The number of items in train is: 18 The loss for epoch 0 0.773203948409193 The running loss is: 32.96171744167805 The number of items in train is: 18 The loss for epoch 1 1.8312065245376692 The running loss is: 28.98233161121607 The number of items in train is: 18 The loss for epoch 2 1.6101295339564483 The running loss is: 15.695902362465858 The number of items in train is: 18 The loss for epoch 3 0.8719945756925477 The running loss is: 13.521882995963097 The number of items in train is: 18 The loss for epoch 4 0.7512157219979498 The running loss is: 10.357533072587103 The number of items in train is: 18 The loss for epoch 5 0.5754185040326169 The running loss is: 10.813971852883697 The number of items in train is: 18 The loss for epoch 6 0.6007762140490942 The running loss is: 9.83951736614108 The number of items in train is: 18 The loss for epoch 7 0.5466398536745045 The running loss is: 7.9957271702587605 The number of items in train is: 18 The loss for epoch 8 0.44420706501437557 The running loss is: 9.712909625843167 The number of items in train is: 18 The loss for epoch 9 0.5396060903246204 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.825358 48 30755 ... 8.746976 49 30756 ... 8.922942 50 30757 ... 9.659204 51 30758 ... 3.814860 52 30759 ... 2.959181 53 30760 ... 1.246872 54 30761 ... 2.002126 55 30762 ... 2.633024 56 30763 ... 2.873677 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: f9x7y7pi wandb: Agent Starting Run: 582syw3h with config: batch_size: 2 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 582syw3h
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.806585595011711 The number of items in train is: 18 The loss for epoch 0 0.7114769775006506 The running loss is: 30.424656696617603 The number of items in train is: 18 The loss for epoch 1 1.6902587053676446 The running loss is: 26.228094905614853 The number of items in train is: 18 The loss for epoch 2 1.4571163836452696 The running loss is: 15.915115505456924 The number of items in train is: 18 The loss for epoch 3 0.8841730836364958 The running loss is: 13.321218777447939 The number of items in train is: 18 The loss for epoch 4 0.7400677098582188 The running loss is: 12.429280959069729 The number of items in train is: 18 The loss for epoch 5 0.6905156088372072 The running loss is: 10.585802391171455 The number of items in train is: 18 The loss for epoch 6 0.5881001328428587 The running loss is: 10.051417954266071 The number of items in train is: 18 The loss for epoch 7 0.5584121085703373 The running loss is: 10.791548609733582 The number of items in train is: 18 The loss for epoch 8 0.5995304783185323 The running loss is: 10.503232896327972 The number of items in train is: 18 The loss for epoch 9 0.5835129386848874 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.806384 48 30755 ... 9.270082 49 30756 ... 9.476368 50 30757 ... 11.667879 51 30758 ... 7.077388 52 30759 ... 7.040015 53 30760 ... 6.562690 54 30761 ... 6.141752 55 30762 ... 7.215327 56 30763 ... 6.751134 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 582syw3h wandb: Agent Starting Run: rb2iuxuw with config: batch_size: 2 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: rb2iuxuw
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.165790781378746 The number of items in train is: 17 The loss for epoch 0 0.7156347518458086 The running loss is: 27.170376665890217 The number of items in train is: 17 The loss for epoch 1 1.5982574509347187 The running loss is: 21.744665786623955 The number of items in train is: 17 The loss for epoch 2 1.279097987448468 The running loss is: 13.72632198035717 The number of items in train is: 17 The loss for epoch 3 0.8074307047268924 The running loss is: 12.807656642049551 The number of items in train is: 17 The loss for epoch 4 0.7533915671793854 The running loss is: 11.399554572999477 The number of items in train is: 17 The loss for epoch 5 0.6705620337058517 The running loss is: 10.820783462375402 The number of items in train is: 17 The loss for epoch 6 0.6365166742573766 The running loss is: 10.212848238646984 The number of items in train is: 17 The loss for epoch 7 0.6007557787439403 The running loss is: 9.258121870458126 The number of items in train is: 17 The loss for epoch 8 0.5445954041445956 The running loss is: 10.42987996339798 The number of items in train is: 17 The loss for epoch 9 0.6135223507881165 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.905188 48 30755 ... 7.925228 49 30756 ... 7.197696 50 30757 ... 6.468437 51 30758 ... 3.872510 52 30759 ... 3.471162 53 30760 ... 2.644137 54 30761 ... 0.842908 55 30762 ... 1.020092 56 30763 ... 0.611532 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rb2iuxuw wandb: Agent Starting Run: q8pk37k7 with config: batch_size: 2 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: q8pk37k7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 25.0777577906847 The number of items in train is: 18 The loss for epoch 0 1.39320876614915 The running loss is: 29.13719865679741 The number of items in train is: 18 The loss for epoch 1 1.618733258710967 The running loss is: 27.344745717942715 The number of items in train is: 18 The loss for epoch 2 1.5191525398857064 The running loss is: 28.274847473949194 The number of items in train is: 18 The loss for epoch 3 1.570824859663844 The running loss is: 13.97701994329691 The number of items in train is: 18 The loss for epoch 4 0.7765011079609394 The running loss is: 12.554442692548037 The number of items in train is: 18 The loss for epoch 5 0.697469038474891 The running loss is: 13.142991535365582 The number of items in train is: 18 The loss for epoch 6 0.730166196409199 The running loss is: 14.788394697010517 The number of items in train is: 18 The loss for epoch 7 0.821577483167251 The running loss is: 14.111675955122337 The number of items in train is: 18 The loss for epoch 8 0.7839819975067965 The running loss is: 12.757243922678754 The number of items in train is: 18 The loss for epoch 9 0.708735773482153 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.673750 48 30755 ... 8.759176 49 30756 ... 11.605460 50 30757 ... 12.306805 51 30758 ... 9.116247 52 30759 ... 8.930177 53 30760 ... 8.762095 54 30761 ... 8.338878 55 30762 ... 8.324352 56 30763 ... 8.409344 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: q8pk37k7 wandb: Agent Starting Run: yuaoe3t1 with config: batch_size: 2 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: yuaoe3t1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.664488945156336 The number of items in train is: 18 The loss for epoch 0 1.092471608064241 The running loss is: 24.840459644794464 The number of items in train is: 18 The loss for epoch 1 1.3800255358219147 The running loss is: 24.18926414847374 The number of items in train is: 18 The loss for epoch 2 1.3438480082485411 The running loss is: 22.759043589234352 The number of items in train is: 18 The loss for epoch 3 1.2643913105130196 The running loss is: 18.388007149100304 The number of items in train is: 18 The loss for epoch 4 1.0215559527277946 The running loss is: 17.054414674639702 The number of items in train is: 18 The loss for epoch 5 0.9474674819244279 The running loss is: 16.19636530429125 The number of items in train is: 18 The loss for epoch 6 0.8997980724606249 The running loss is: 16.092383541166782 The number of items in train is: 18 The loss for epoch 7 0.894021307842599 The running loss is: 16.495493300259113 The number of items in train is: 18 The loss for epoch 8 0.9164162944588397 The running loss is: 14.59353306889534 The number of items in train is: 18 The loss for epoch 9 0.8107518371608522 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.460387 48 30755 ... 11.318052 49 30756 ... 11.491536 50 30757 ... 11.200739 51 30758 ... 7.772702 52 30759 ... 7.833028 53 30760 ... 8.080965 54 30761 ... 7.146588 55 30762 ... 7.603038 56 30763 ... 7.158749 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yuaoe3t1 wandb: Agent Starting Run: msnqy4jq with config: batch_size: 2 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: msnqy4jq
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.602887228131294 The number of items in train is: 17 The loss for epoch 0 0.9178168957724291 The running loss is: 20.492954045534134 The number of items in train is: 17 The loss for epoch 1 1.2054678850314196 The running loss is: 18.17607271671295 The number of items in train is: 17 The loss for epoch 2 1.0691807480419384 The running loss is: 17.942578546702862 The number of items in train is: 17 The loss for epoch 3 1.0554457968648743 The running loss is: 15.375115282833576 The number of items in train is: 17 The loss for epoch 4 0.9044185460490339 The running loss is: 14.95146494358778 The number of items in train is: 17 The loss for epoch 5 0.8794979378581047 The running loss is: 14.935466520488262 The number of items in train is: 17 The loss for epoch 6 0.8785568541463684 The running loss is: 13.655654460191727 The number of items in train is: 17 The loss for epoch 7 0.8032737917759839 The running loss is: 13.988929450511932 The number of items in train is: 17 The loss for epoch 8 0.8228782029712901 The running loss is: 12.398067966103554 The number of items in train is: 17 The loss for epoch 9 0.7292981156531502 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.182483 48 30755 ... 11.828949 49 30756 ... 9.899583 50 30757 ... 5.444458 51 30758 ... 6.187648 52 30759 ... 5.976255 53 30760 ... 5.439822 54 30761 ... 4.073036 55 30762 ... 4.531176 56 30763 ... 2.037996 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: msnqy4jq wandb: Agent Starting Run: 28zecqnv with config: batch_size: 2 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 28zecqnv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 132.11954160500318 The number of items in train is: 18 The loss for epoch 0 7.339974533611287 The running loss is: 33.18467270210385 The number of items in train is: 18 The loss for epoch 1 1.8435929278946586 The running loss is: 15.044109242036939 The number of items in train is: 18 The loss for epoch 2 0.83578384677983 The running loss is: 32.12868493422866 The number of items in train is: 18 The loss for epoch 3 1.784926940790481 The running loss is: 16.458579962607473 The number of items in train is: 18 The loss for epoch 4 0.9143655534781929 The running loss is: 16.18535217642784 The number of items in train is: 18 The loss for epoch 5 0.8991862320237689 The running loss is: 13.845332082360983 The number of items in train is: 18 The loss for epoch 6 0.7691851156867213 The running loss is: 18.111790597438812 The number of items in train is: 18 The loss for epoch 7 1.0062105887466006 The running loss is: 15.37386241927743 The number of items in train is: 18 The loss for epoch 8 0.854103467737635 The running loss is: 14.108973555266857 The number of items in train is: 18 The loss for epoch 9 0.7838318641814921 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.096198 48 30755 ... 6.123454 49 30756 ... 17.012180 50 30757 ... 18.440594 51 30758 ... 15.032338 52 30759 ... 14.862954 53 30760 ... 14.920713 54 30761 ... 14.467838 55 30762 ... 14.409379 56 30763 ... 17.330112 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 28zecqnv wandb: Agent Starting Run: wyy0ykxe with config: batch_size: 2 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: wyy0ykxe
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 92.95915368199348 The number of items in train is: 18 The loss for epoch 0 5.164397426777416 The running loss is: 22.1982841193676 The number of items in train is: 18 The loss for epoch 1 1.2332380066315334 The running loss is: 14.565131276845932 The number of items in train is: 18 The loss for epoch 2 0.809173959824774 The running loss is: 27.13835011422634 The number of items in train is: 18 The loss for epoch 3 1.5076861174570189 The running loss is: 19.970424134284258 The number of items in train is: 18 The loss for epoch 4 1.1094680074602365 The running loss is: 16.359486132860184 The number of items in train is: 18 The loss for epoch 5 0.9088603407144547 The running loss is: 15.630101136863232 The number of items in train is: 18 The loss for epoch 6 0.8683389520479573 The running loss is: 14.64559318125248 The number of items in train is: 18 The loss for epoch 7 0.8136440656251378 The running loss is: 16.040196174755692 The number of items in train is: 18 The loss for epoch 8 0.8911220097086496 The running loss is: 15.461667504161596 The number of items in train is: 18 The loss for epoch 9 0.8589815280089775 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.144684 48 30755 ... 8.574534 49 30756 ... 11.426785 50 30757 ... 10.841069 51 30758 ... 10.581007 52 30759 ... 10.608530 53 30760 ... 11.141614 54 30761 ... 10.802588 55 30762 ... 10.750504 56 30763 ... 10.328904 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wyy0ykxe wandb: Agent Starting Run: 00dey2s4 with config: batch_size: 2 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 00dey2s4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 61.90179131925106 The number of items in train is: 17 The loss for epoch 0 3.641281842308886 The running loss is: 19.271656930446625 The number of items in train is: 17 The loss for epoch 1 1.1336268782615662 The running loss is: 19.321099177002907 The number of items in train is: 17 The loss for epoch 2 1.1365352457060534 The running loss is: 15.400234825909138 The number of items in train is: 17 The loss for epoch 3 0.9058961662299493 The running loss is: 14.907342068850994 The number of items in train is: 17 The loss for epoch 4 0.8769024746382937 The running loss is: 14.489337973296642 The number of items in train is: 17 The loss for epoch 5 0.8523139984292143 The running loss is: 14.622908413410187 The number of items in train is: 17 The loss for epoch 6 0.8601710831417757 The running loss is: 13.41513104736805 The number of items in train is: 17 The loss for epoch 7 0.7891253557275323 The running loss is: 13.095239669084549 The number of items in train is: 17 The loss for epoch 8 0.7703082158285028 The running loss is: 12.160573348402977 The number of items in train is: 17 The loss for epoch 9 0.7153278440237045 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.955428 48 30755 ... 10.954730 49 30756 ... 11.092212 50 30757 ... 11.093774 51 30758 ... 8.547292 52 30759 ... 8.556589 53 30760 ... 8.530978 54 30761 ... 6.731397 55 30762 ... 6.504598 56 30763 ... 6.419131 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 00dey2s4 wandb: Agent Starting Run: l00hyprr with config: batch_size: 2 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: l00hyprr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.450659646186978 The number of items in train is: 18 The loss for epoch 0 1.1361477581214987 The running loss is: 25.368839150760323 The number of items in train is: 18 The loss for epoch 1 1.409379952820018 The running loss is: 13.926943810191005 The number of items in train is: 18 The loss for epoch 2 0.773719100566167 The running loss is: 12.035636499524117 The number of items in train is: 18 The loss for epoch 3 0.6686464721957842 The running loss is: 9.788120612502098 The number of items in train is: 18 The loss for epoch 4 0.5437844784723388 The running loss is: 10.819668479263783 The number of items in train is: 18 The loss for epoch 5 0.6010926932924323 The running loss is: 9.73928571306169 The number of items in train is: 18 The loss for epoch 6 0.5410714285034273 The running loss is: 9.011047106876504 The number of items in train is: 18 The loss for epoch 7 0.5006137281598058 The running loss is: 8.731201235204935 The number of items in train is: 18 The loss for epoch 8 0.48506673528916305 The running loss is: 7.952998843044043 The number of items in train is: 18 The loss for epoch 9 0.44183326905800235 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.977856 48 30755 ... 11.868648 49 30756 ... 17.565083 50 30757 ... 15.627804 51 30758 ... 9.883644 52 30759 ... 10.390420 53 30760 ... 11.200606 54 30761 ... 10.064157 55 30762 ... 11.100951 56 30763 ... 13.825031 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l00hyprr wandb: Agent Starting Run: 40olhm4s with config: batch_size: 2 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 40olhm4s
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.027740366756916 The number of items in train is: 17 The loss for epoch 0 1.119278845103348 The running loss is: 26.84563284367323 The number of items in train is: 17 The loss for epoch 1 1.5791548731572487 The running loss is: 14.248602889478207 The number of items in train is: 17 The loss for epoch 2 0.8381531111457768 The running loss is: 12.727784872055054 The number of items in train is: 17 The loss for epoch 3 0.7486932277679443 The running loss is: 12.753539435565472 The number of items in train is: 17 The loss for epoch 4 0.7502082020920866 The running loss is: 11.517959401011467 The number of items in train is: 17 The loss for epoch 5 0.6775270235889098 The running loss is: 11.238709852099419 The number of items in train is: 17 The loss for epoch 6 0.6611005795352599 The running loss is: 10.820317476987839 The number of items in train is: 17 The loss for epoch 7 0.6364892633522258 The running loss is: 10.896733909845352 The number of items in train is: 17 The loss for epoch 8 0.6409843476379619 The running loss is: 9.990343987941742 The number of items in train is: 17 The loss for epoch 9 0.5876672934083378 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.421764 48 30755 ... 11.356266 49 30756 ... 12.500781 50 30757 ... 12.673218 51 30758 ... 11.942869 52 30759 ... 10.421821 53 30760 ... 11.093673 54 30761 ... 11.154191 55 30762 ... 11.348830 56 30763 ... 11.964188 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 40olhm4s wandb: Agent Starting Run: qa1p7boy with config: batch_size: 2 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: qa1p7boy
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.990485712885857 The number of items in train is: 17 The loss for epoch 0 1.0582638654638739 The running loss is: 27.865905489772558 The number of items in train is: 17 The loss for epoch 1 1.6391709111630917 The running loss is: 13.985774576663971 The number of items in train is: 17 The loss for epoch 2 0.8226926221567041 The running loss is: 12.147280521690845 The number of items in train is: 17 The loss for epoch 3 0.714545913040638 The running loss is: 10.898061953485012 The number of items in train is: 17 The loss for epoch 4 0.6410624678520596 The running loss is: 10.279500223696232 The number of items in train is: 17 The loss for epoch 5 0.6046764837468371 The running loss is: 10.136913530528545 The number of items in train is: 17 The loss for epoch 6 0.5962890312075615 The running loss is: 9.784845240414143 The number of items in train is: 17 The loss for epoch 7 0.5755791317890672 The running loss is: 9.845538966357708 The number of items in train is: 17 The loss for epoch 8 0.5791493509622181 The running loss is: 9.486583903431892 The number of items in train is: 17 The loss for epoch 9 0.5580343472606996 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.509616 48 30755 ... 9.559368 49 30756 ... 11.189049 50 30757 ... 10.662446 51 30758 ... 9.135548 52 30759 ... 6.710083 53 30760 ... 6.572598 54 30761 ... 6.372887 55 30762 ... 5.868860 56 30763 ... 6.114229 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qa1p7boy wandb: Agent Starting Run: z60hhdo0 with config: batch_size: 2 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: z60hhdo0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.5401990711689 The number of items in train is: 18 The loss for epoch 0 0.8077888372871611 The running loss is: 27.375006180256605 The number of items in train is: 18 The loss for epoch 1 1.5208336766809225 The running loss is: 19.92556830495596 The number of items in train is: 18 The loss for epoch 2 1.1069760169419978 The running loss is: 12.793712127953768 The number of items in train is: 18 The loss for epoch 3 0.7107617848863205 The running loss is: 10.154001401970163 The number of items in train is: 18 The loss for epoch 4 0.5641111889983423 The running loss is: 11.277737976284698 The number of items in train is: 18 The loss for epoch 5 0.6265409986824833 The running loss is: 10.516089941374958 The number of items in train is: 18 The loss for epoch 6 0.5842272189652754 The running loss is: 10.196689029689878 The number of items in train is: 18 The loss for epoch 7 0.5664827238716599 The running loss is: 9.814422994852066 The number of items in train is: 18 The loss for epoch 8 0.5452457219362259 The running loss is: 9.361941157840192 The number of items in train is: 18 The loss for epoch 9 0.5201078421022329 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.364668 48 30755 ... 11.533773 49 30756 ... 18.344410 50 30757 ... 16.221804 51 30758 ... 10.735049 52 30759 ... 11.302640 53 30760 ... 11.773656 54 30761 ... 9.497039 55 30762 ... 11.057786 56 30763 ... 15.525364 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z60hhdo0 wandb: Agent Starting Run: r13hrd64 with config: batch_size: 2 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: r13hrd64
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.9246169552207 The number of items in train is: 17 The loss for epoch 0 0.8190951150129823 The running loss is: 27.833781890571117 The number of items in train is: 17 The loss for epoch 1 1.637281287680654 The running loss is: 20.855405513197184 The number of items in train is: 17 The loss for epoch 2 1.2267885595998342 The running loss is: 13.618450827896595 The number of items in train is: 17 The loss for epoch 3 0.8010853428174468 The running loss is: 13.988207560032606 The number of items in train is: 17 The loss for epoch 4 0.8228357388254475 The running loss is: 12.185236137360334 The number of items in train is: 17 The loss for epoch 5 0.7167785963153138 The running loss is: 12.937843896448612 The number of items in train is: 17 The loss for epoch 6 0.7610496409675654 The running loss is: 12.002348616719246 The number of items in train is: 17 The loss for epoch 7 0.706020506865838 The running loss is: 11.300229970365763 The number of items in train is: 17 The loss for epoch 8 0.6647194100215155 The running loss is: 10.760703813284636 The number of items in train is: 17 The loss for epoch 9 0.6329825772520374 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.507266 48 30755 ... 11.811560 49 30756 ... 13.621972 50 30757 ... 13.042014 51 30758 ... 11.766799 52 30759 ... 9.670241 53 30760 ... 10.042046 54 30761 ... 9.816596 55 30762 ... 9.815838 56 30763 ... 10.284580 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r13hrd64 wandb: Agent Starting Run: ylv24ywo with config: batch_size: 2 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ylv24ywo
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.265747778117657 The number of items in train is: 17 The loss for epoch 0 0.7215145751833916 The running loss is: 25.639500468969345 The number of items in train is: 17 The loss for epoch 1 1.5082059099393732 The running loss is: 21.685997530817986 The number of items in train is: 17 The loss for epoch 2 1.2756469135775286 The running loss is: 13.566235706210136 The number of items in train is: 17 The loss for epoch 3 0.7980138650711845 The running loss is: 12.054102204740047 The number of items in train is: 17 The loss for epoch 4 0.709064835572944 The running loss is: 11.060121264308691 The number of items in train is: 17 The loss for epoch 5 0.6505953684887466 The running loss is: 11.129384398460388 The number of items in train is: 17 The loss for epoch 6 0.6546696704976699 The running loss is: 10.726066958159208 The number of items in train is: 17 The loss for epoch 7 0.6309451151858357 The running loss is: 10.483027771115303 The number of items in train is: 17 The loss for epoch 8 0.6166486924185473 The running loss is: 9.922650948166847 The number of items in train is: 17 The loss for epoch 9 0.5836853498921675 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.026129 48 30755 ... 10.119618 49 30756 ... 13.747051 50 30757 ... 12.436648 51 30758 ... 9.467723 52 30759 ... 8.617616 53 30760 ... 8.754156 54 30761 ... 8.447451 55 30762 ... 8.298104 56 30763 ... 9.212432 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ylv24ywo wandb: Agent Starting Run: 202c29sd with config: batch_size: 2 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 202c29sd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.38165923114866 The number of items in train is: 18 The loss for epoch 0 0.9656477350638144 The running loss is: 22.52288119122386 The number of items in train is: 18 The loss for epoch 1 1.2512711772902145 The running loss is: 20.58570908382535 The number of items in train is: 18 The loss for epoch 2 1.1436505046569638 The running loss is: 17.03510294482112 The number of items in train is: 18 The loss for epoch 3 0.9463946080456177 The running loss is: 16.227192664518952 The number of items in train is: 18 The loss for epoch 4 0.9015107035843862 The running loss is: 15.710538178682327 The number of items in train is: 18 The loss for epoch 5 0.8728076765934626 The running loss is: 16.636069810017943 The number of items in train is: 18 The loss for epoch 6 0.9242261005565524 The running loss is: 16.63070970028639 The number of items in train is: 18 The loss for epoch 7 0.9239283166825771 The running loss is: 14.5533220928628 The number of items in train is: 18 The loss for epoch 8 0.8085178940479333 The running loss is: 12.518009976483881 The number of items in train is: 18 The loss for epoch 9 0.6954449986935489 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.864379 48 30755 ... 13.484338 49 30756 ... 13.468613 50 30757 ... 13.644678 51 30758 ... 13.640962 52 30759 ... 12.436494 53 30760 ... 12.610359 54 30761 ... 12.908359 55 30762 ... 12.950767 56 30763 ... 13.025203 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 202c29sd wandb: Agent Starting Run: u9eo4dfi with config: batch_size: 2 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: u9eo4dfi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.665514931082726 The number of items in train is: 17 The loss for epoch 0 0.9803244077107486 The running loss is: 21.98633325099945 The number of items in train is: 17 The loss for epoch 1 1.2933137206470264 The running loss is: 20.401913326233625 The number of items in train is: 17 The loss for epoch 2 1.200112548601978 The running loss is: 17.110268775373697 The number of items in train is: 17 The loss for epoch 3 1.0064863985513939 The running loss is: 15.317520216107368 The number of items in train is: 17 The loss for epoch 4 0.9010306009474922 The running loss is: 14.436367448419333 The number of items in train is: 17 The loss for epoch 5 0.8491980852011372 The running loss is: 11.61998137831688 The number of items in train is: 17 The loss for epoch 6 0.6835283163715812 The running loss is: 14.995876673609018 The number of items in train is: 17 The loss for epoch 7 0.8821103925652364 The running loss is: 12.463443532586098 The number of items in train is: 17 The loss for epoch 8 0.7331437372109469 The running loss is: 12.348684921860695 The number of items in train is: 17 The loss for epoch 9 0.7263932306976879 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.883090 48 30755 ... 11.924982 49 30756 ... 11.952619 50 30757 ... 11.935939 51 30758 ... 11.950844 52 30759 ... 7.756837 53 30760 ... 7.546932 54 30761 ... 7.714972 55 30762 ... 7.608711 56 30763 ... 7.573092 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u9eo4dfi wandb: Agent Starting Run: gfy2ld4o with config: batch_size: 2 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: gfy2ld4o
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.57657253742218 The number of items in train is: 17 The loss for epoch 0 1.0339160316130693 The running loss is: 21.085083961486816 The number of items in train is: 17 The loss for epoch 1 1.240299056558048 The running loss is: 20.510505497455597 The number of items in train is: 17 The loss for epoch 2 1.206500323379741 The running loss is: 18.18516470491886 The number of items in train is: 17 The loss for epoch 3 1.06971557087758 The running loss is: 15.011801198124886 The number of items in train is: 17 The loss for epoch 4 0.8830471293014639 The running loss is: 15.11803139001131 The number of items in train is: 17 The loss for epoch 5 0.8892959641183124 The running loss is: 14.489876501262188 The number of items in train is: 17 The loss for epoch 6 0.8523456765448346 The running loss is: 14.646412342786789 The number of items in train is: 17 The loss for epoch 7 0.8615536672227523 The running loss is: 14.810041315853596 The number of items in train is: 17 The loss for epoch 8 0.8711789009325644 The running loss is: 13.977952808141708 The number of items in train is: 17 The loss for epoch 9 0.8222325181259829 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.258494 48 30755 ... 11.628599 49 30756 ... 12.363077 50 30757 ... 12.457399 51 30758 ... 11.434335 52 30759 ... 11.597588 53 30760 ... 11.598228 54 30761 ... 11.475595 55 30762 ... 11.413112 56 30763 ... 11.466397 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gfy2ld4o wandb: Agent Starting Run: 6b6shvso with config: batch_size: 2 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 6b6shvso
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 78.06080336868763 The number of items in train is: 18 The loss for epoch 0 4.336711298260424 The running loss is: 23.151071030646563 The number of items in train is: 18 The loss for epoch 1 1.2861706128136978 The running loss is: 18.575490936636925 The number of items in train is: 18 The loss for epoch 2 1.0319717187020514 The running loss is: 23.149101957678795 The number of items in train is: 18 The loss for epoch 3 1.2860612198710442 The running loss is: 17.067200284451246 The number of items in train is: 18 The loss for epoch 4 0.9481777935806248 The running loss is: 17.59191408008337 The number of items in train is: 18 The loss for epoch 5 0.9773285600046316 The running loss is: 14.751718316227198 The number of items in train is: 18 The loss for epoch 6 0.8195399064570665 The running loss is: 17.836396224796772 The number of items in train is: 18 The loss for epoch 7 0.9909109013775984 The running loss is: 12.664922920055687 The number of items in train is: 18 The loss for epoch 8 0.7036068288919827 The running loss is: 19.829482200788334 The number of items in train is: 18 The loss for epoch 9 1.1016379000437964 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.880940 48 30755 ... 10.986598 49 30756 ... 10.924918 50 30757 ... 12.085524 51 30758 ... 11.770830 52 30759 ... 11.676743 53 30760 ... 11.817716 54 30761 ... 11.519333 55 30762 ... 11.551911 56 30763 ... 11.689872 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6b6shvso wandb: Agent Starting Run: v0ak9wcn with config: batch_size: 2 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: v0ak9wcn
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 61.02029025554657 The number of items in train is: 17 The loss for epoch 0 3.589428838561563 The running loss is: 19.11992210894823 The number of items in train is: 17 The loss for epoch 1 1.1247013005263664 The running loss is: 20.35962064191699 The number of items in train is: 17 The loss for epoch 2 1.1976247436421759 The running loss is: 17.901119500398636 The number of items in train is: 17 The loss for epoch 3 1.0530070294352138 The running loss is: 19.68121352046728 The number of items in train is: 17 The loss for epoch 4 1.1577184423804283 The running loss is: 15.582372598350048 The number of items in train is: 17 The loss for epoch 5 0.9166101528441205 The running loss is: 15.728278800845146 The number of items in train is: 17 The loss for epoch 6 0.9251928706379497 The running loss is: 15.83667142689228 The number of items in train is: 17 The loss for epoch 7 0.9315689074642518 The running loss is: 15.11179693043232 The number of items in train is: 17 The loss for epoch 8 0.8889292312019011 The running loss is: 14.601482972502708 The number of items in train is: 17 The loss for epoch 9 0.8589107630883946 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.328428 48 30755 ... 12.166418 49 30756 ... 10.337872 50 30757 ... 11.427995 51 30758 ... 12.571464 52 30759 ... 10.586956 53 30760 ... 10.826715 54 30761 ... 11.615481 55 30762 ... 10.511208 56 30763 ... 10.188934 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v0ak9wcn wandb: Agent Starting Run: v0kjygd2 with config: batch_size: 2 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: v0kjygd2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 89.38227146863937 The number of items in train is: 17 The loss for epoch 0 5.257780674625845 The running loss is: 24.08541053533554 The number of items in train is: 17 The loss for epoch 1 1.4167888550197376 The running loss is: 14.835047475993633 The number of items in train is: 17 The loss for epoch 2 0.8726498515290373 The running loss is: 17.46521347016096 The number of items in train is: 17 The loss for epoch 3 1.0273654982447624 The running loss is: 14.109677575528622 The number of items in train is: 17 The loss for epoch 4 0.8299810338546249 The running loss is: 14.43064521253109 The number of items in train is: 17 The loss for epoch 5 0.8488614830900642 The running loss is: 13.140712775290012 The number of items in train is: 17 The loss for epoch 6 0.7729831044288242 The running loss is: 12.153762593865395 The number of items in train is: 17 The loss for epoch 7 0.7149272114038467 The running loss is: 12.104884780943394 The number of items in train is: 17 The loss for epoch 8 0.7120520459378467 The running loss is: 11.55245054513216 The number of items in train is: 17 The loss for epoch 9 0.6795559144195389 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.822438 48 30755 ... 11.070477 49 30756 ... 13.553607 50 30757 ... 11.531958 51 30758 ... 12.513781 52 30759 ... 10.915012 53 30760 ... 11.354100 54 30761 ... 10.394032 55 30762 ... 10.346492 56 30763 ... 10.777813 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v0kjygd2 wandb: Agent Starting Run: 47x2i8jx with config: batch_size: 2 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 47x2i8jx
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.129226248711348 The number of items in train is: 17 The loss for epoch 0 0.9487780146300793 The running loss is: 33.76753030810505 The number of items in train is: 17 The loss for epoch 1 1.9863253122414737 The running loss is: 14.467158187180758 The number of items in train is: 17 The loss for epoch 2 0.8510093051282799 The running loss is: 12.87113780900836 The number of items in train is: 17 The loss for epoch 3 0.75712575347108 The running loss is: 9.909067310392857 The number of items in train is: 17 The loss for epoch 4 0.5828863123760504 The running loss is: 9.568089163396508 The number of items in train is: 17 The loss for epoch 5 0.5628287743174416 The running loss is: 9.66799031291157 The number of items in train is: 17 The loss for epoch 6 0.56870531252421 The running loss is: 9.636533673852682 The number of items in train is: 17 The loss for epoch 7 0.5668549219913342 The running loss is: 8.8233229694888 The number of items in train is: 17 The loss for epoch 8 0.5190189982052235 The running loss is: 7.847568524535745 The number of items in train is: 17 The loss for epoch 9 0.4616216779138674 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.663638 48 30755 ... 9.835592 49 30756 ... 11.178393 50 30757 ... 13.019385 51 30758 ... 12.181848 52 30759 ... 9.387854 53 30760 ... 8.466204 54 30761 ... 8.803273 55 30762 ... 8.617043 56 30763 ... 8.495243 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 47x2i8jx wandb: Agent Starting Run: k64zd0i7 with config: batch_size: 2 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: k64zd0i7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.11563566327095 The number of items in train is: 17 The loss for epoch 0 1.0656256272512323 The running loss is: 24.05933529138565 The number of items in train is: 17 The loss for epoch 1 1.4152550171403324 The running loss is: 12.897609576582909 The number of items in train is: 17 The loss for epoch 2 0.7586829162695828 The running loss is: 11.346729777753353 The number of items in train is: 17 The loss for epoch 3 0.6674546928090208 The running loss is: 10.032144397497177 The number of items in train is: 17 The loss for epoch 4 0.5901261410292458 The running loss is: 9.255228951573372 The number of items in train is: 17 The loss for epoch 5 0.5444252324454925 The running loss is: 8.855674020946026 The number of items in train is: 17 The loss for epoch 6 0.5209220012321192 The running loss is: 8.337467238307 The number of items in train is: 17 The loss for epoch 7 0.4904392493121764 The running loss is: 7.936403177678585 The number of items in train is: 17 The loss for epoch 8 0.4668472457457991 The running loss is: 7.299756273627281 The number of items in train is: 17 The loss for epoch 9 0.4293974278604283 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.314528 48 30755 ... 4.023320 49 30756 ... 7.303198 50 30757 ... 10.772114 51 30758 ... 8.226935 52 30759 ... 2.058505 53 30760 ... -0.580315 54 30761 ... -1.148522 55 30762 ... -3.539087 56 30763 ... -3.183217 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: k64zd0i7 wandb: Agent Starting Run: 90hzhwlz with config: batch_size: 2 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 90hzhwlz
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.229821100831032 The number of items in train is: 16 The loss for epoch 0 0.7643638188019395 The running loss is: 31.796365045011044 The number of items in train is: 16 The loss for epoch 1 1.9872728153131902 The running loss is: 15.763759694993496 The number of items in train is: 16 The loss for epoch 2 0.9852349809370935 The running loss is: 13.028775602579117 The number of items in train is: 16 The loss for epoch 3 0.8142984751611948 The running loss is: 13.04194351285696 The number of items in train is: 16 The loss for epoch 4 0.81512146955356 The running loss is: 10.17906753718853 The number of items in train is: 16 The loss for epoch 5 0.6361917210742831 The running loss is: 9.676793612539768 The number of items in train is: 16 The loss for epoch 6 0.6047996007837355 The running loss is: 9.569400377571583 The number of items in train is: 16 The loss for epoch 7 0.5980875235982239 The running loss is: 9.05061225220561 The number of items in train is: 16 The loss for epoch 8 0.5656632657628506 The running loss is: 8.944659441709518 The number of items in train is: 16 The loss for epoch 9 0.5590412151068449 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.322592 48 30755 ... 8.571899 49 30756 ... 8.965311 50 30757 ... 9.146642 51 30758 ... 9.041492 52 30759 ... 7.654950 53 30760 ... 5.084298 54 30761 ... 4.954723 55 30762 ... 4.857830 56 30763 ... 3.960097 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 90hzhwlz wandb: Agent Starting Run: v8g59dsp with config: batch_size: 2 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: v8g59dsp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.235776502639055 The number of items in train is: 17 The loss for epoch 0 0.7785750883905327 The running loss is: 26.4114770591259 The number of items in train is: 17 The loss for epoch 1 1.5536162975956411 The running loss is: 19.23542471975088 The number of items in train is: 17 The loss for epoch 2 1.1314955717500519 The running loss is: 13.774107448756695 The number of items in train is: 17 The loss for epoch 3 0.8102416146327468 The running loss is: 10.821895120665431 The number of items in train is: 17 The loss for epoch 4 0.6365820659214959 The running loss is: 10.974949937546626 The number of items in train is: 17 The loss for epoch 5 0.6455852904439192 The running loss is: 10.996416509151459 The number of items in train is: 17 The loss for epoch 6 0.6468480299500858 The running loss is: 10.585891755763441 The number of items in train is: 17 The loss for epoch 7 0.6226995150449083 The running loss is: 10.654300592839718 The number of items in train is: 17 The loss for epoch 8 0.6267235642846893 The running loss is: 9.282092098146677 The number of items in train is: 17 The loss for epoch 9 0.5460054175380398 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.044758 48 30755 ... 11.963025 49 30756 ... 12.449036 50 30757 ... 13.799903 51 30758 ... 14.154404 52 30759 ... 11.899445 53 30760 ... 11.876869 54 30761 ... 11.815728 55 30762 ... 12.099028 56 30763 ... 12.176918 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v8g59dsp wandb: Agent Starting Run: mkxr9eu3 with config: batch_size: 2 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: mkxr9eu3
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.2156822681427 The number of items in train is: 17 The loss for epoch 0 0.7773930745966294 The running loss is: 24.976793557405472 The number of items in train is: 17 The loss for epoch 1 1.469223150435616 The running loss is: 19.48406381905079 The number of items in train is: 17 The loss for epoch 2 1.1461214011206347 The running loss is: 12.607521995902061 The number of items in train is: 17 The loss for epoch 3 0.7416189409354154 The running loss is: 10.452070504426956 The number of items in train is: 17 The loss for epoch 4 0.6148276767309975 The running loss is: 10.917114395648241 The number of items in train is: 17 The loss for epoch 5 0.6421831997440142 The running loss is: 8.793405067175627 The number of items in train is: 17 The loss for epoch 6 0.5172591215985662 The running loss is: 8.538302391767502 The number of items in train is: 17 The loss for epoch 7 0.5022530818686766 The running loss is: 8.421132470248267 The number of items in train is: 17 The loss for epoch 8 0.4953607335440157 The running loss is: 9.026005014777184 The number of items in train is: 17 The loss for epoch 9 0.5309414714574814 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.012664 48 30755 ... 9.073854 49 30756 ... 9.042130 50 30757 ... 8.332397 51 30758 ... 9.797338 52 30759 ... 8.877247 53 30760 ... 4.768612 54 30761 ... 4.516591 55 30762 ... 4.144512 56 30763 ... 2.947486 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mkxr9eu3 wandb: Agent Starting Run: 1dip79bl with config: batch_size: 2 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1dip79bl
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.258202567696571 The number of items in train is: 16 The loss for epoch 0 0.8911376604810357 The running loss is: 24.629937380552292 The number of items in train is: 16 The loss for epoch 1 1.5393710862845182 The running loss is: 21.176617115736008 The number of items in train is: 16 The loss for epoch 2 1.3235385697335005 The running loss is: 15.326480709016323 The number of items in train is: 16 The loss for epoch 3 0.9579050443135202 The running loss is: 12.801851324737072 The number of items in train is: 16 The loss for epoch 4 0.800115707796067 The running loss is: 10.181393705308437 The number of items in train is: 16 The loss for epoch 5 0.6363371065817773 The running loss is: 9.973678585141897 The number of items in train is: 16 The loss for epoch 6 0.6233549115713686 The running loss is: 9.959196142852306 The number of items in train is: 16 The loss for epoch 7 0.6224497589282691 The running loss is: 9.231910694390535 The number of items in train is: 16 The loss for epoch 8 0.5769944183994085 The running loss is: 9.512702483683825 The number of items in train is: 16 The loss for epoch 9 0.594543905230239 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.897227 48 30755 ... 7.666417 49 30756 ... 7.981510 50 30757 ... 7.585426 51 30758 ... 7.403520 52 30759 ... 6.230840 53 30760 ... 2.108467 54 30761 ... 2.234306 55 30762 ... 1.988864 56 30763 ... 0.100393 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1dip79bl wandb: Agent Starting Run: frrjdi26 with config: batch_size: 2 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: frrjdi26
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.684900924563408 The number of items in train is: 17 The loss for epoch 0 1.2755824073272592 The running loss is: 21.957859233021736 The number of items in train is: 17 The loss for epoch 1 1.2916387784130432 The running loss is: 18.442369546741247 The number of items in train is: 17 The loss for epoch 2 1.0848452674553675 The running loss is: 18.312154326587915 The number of items in train is: 17 The loss for epoch 3 1.0771855486228186 The running loss is: 12.220995549112558 The number of items in train is: 17 The loss for epoch 4 0.7188820911242682 The running loss is: 12.270410992205143 The number of items in train is: 17 The loss for epoch 5 0.7217888818944201 The running loss is: 13.395324366167188 The number of items in train is: 17 The loss for epoch 6 0.787960256833364 The running loss is: 12.515632160007954 The number of items in train is: 17 The loss for epoch 7 0.7362136564710561 The running loss is: 13.149393206462264 The number of items in train is: 17 The loss for epoch 8 0.773493718027192 The running loss is: 10.945322513580322 The number of items in train is: 17 The loss for epoch 9 0.6438425007988425 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.736698 48 30755 ... 8.398017 49 30756 ... 9.863556 50 30757 ... 12.266246 51 30758 ... 11.361032 52 30759 ... 9.679527 53 30760 ... 7.219286 54 30761 ... 7.760244 55 30762 ... 7.901274 56 30763 ... 6.949949 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: frrjdi26 wandb: Agent Starting Run: 5e6yghhl with config: batch_size: 2 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 5e6yghhl
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.075793281197548 The number of items in train is: 17 The loss for epoch 0 0.9456348988939735 The running loss is: 21.148211747407913 The number of items in train is: 17 The loss for epoch 1 1.2440124557298773 The running loss is: 18.14787855744362 The number of items in train is: 17 The loss for epoch 2 1.0675222680849188 The running loss is: 17.102335512638092 The number of items in train is: 17 The loss for epoch 3 1.006019736037535 The running loss is: 16.263279542326927 The number of items in train is: 17 The loss for epoch 4 0.9566635024898192 The running loss is: 14.015104442834854 The number of items in train is: 17 The loss for epoch 5 0.8244179084020502 The running loss is: 14.513734132051468 The number of items in train is: 17 The loss for epoch 6 0.8537490665912628 The running loss is: 14.677594423294067 The number of items in train is: 17 The loss for epoch 7 0.8633879072525922 The running loss is: 13.664641842246056 The number of items in train is: 17 The loss for epoch 8 0.8038024613085915 The running loss is: 12.593484312295914 The number of items in train is: 17 The loss for epoch 9 0.7407931948409361 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.824028 48 30755 ... 11.951849 49 30756 ... 12.901361 50 30757 ... 12.866081 51 30758 ... 12.723232 52 30759 ... 12.266067 53 30760 ... 10.750948 54 30761 ... 10.552313 55 30762 ... 10.710556 56 30763 ... 10.648995 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5e6yghhl wandb: Agent Starting Run: 49t73wpr with config: batch_size: 2 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 49t73wpr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 27.19437624514103 The number of items in train is: 16 The loss for epoch 0 1.6996485153213143 The running loss is: 23.46845108270645 The number of items in train is: 16 The loss for epoch 1 1.4667781926691532 The running loss is: 23.564942955970764 The number of items in train is: 16 The loss for epoch 2 1.4728089347481728 The running loss is: 21.112747326493263 The number of items in train is: 16 The loss for epoch 3 1.319546707905829 The running loss is: 16.332939110696316 The number of items in train is: 16 The loss for epoch 4 1.0208086944185197 The running loss is: 13.240181624889374 The number of items in train is: 16 The loss for epoch 5 0.8275113515555859 The running loss is: 10.968062326312065 The number of items in train is: 16 The loss for epoch 6 0.6855038953945041 The running loss is: 9.933336228132248 The number of items in train is: 16 The loss for epoch 7 0.6208335142582655 The running loss is: 9.906222566962242 The number of items in train is: 16 The loss for epoch 8 0.6191389104351401 The running loss is: 9.35060365498066 The number of items in train is: 16 The loss for epoch 9 0.5844127284362912 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.286353 48 30755 ... 8.572885 49 30756 ... 9.695906 50 30757 ... 9.246380 51 30758 ... 9.367085 52 30759 ... 7.058271 53 30760 ... 4.291282 54 30761 ... 4.404593 55 30762 ... 4.206285 56 30763 ... 1.904286 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 49t73wpr wandb: Agent Starting Run: fg7lzlcs with config: batch_size: 2 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fg7lzlcs
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 105.85407214425504 The number of items in train is: 17 The loss for epoch 0 6.22671012613265 The running loss is: 28.3312635589391 The number of items in train is: 17 The loss for epoch 1 1.6665449152317118 The running loss is: 22.39996526762843 The number of items in train is: 17 The loss for epoch 2 1.317645015742849 The running loss is: 24.83209763467312 The number of items in train is: 17 The loss for epoch 3 1.460711625569007 The running loss is: 18.151431158185005 The number of items in train is: 17 The loss for epoch 4 1.067731244599118 The running loss is: 15.67039943113923 The number of items in train is: 17 The loss for epoch 5 0.9217882018317195 The running loss is: 16.54207806289196 The number of items in train is: 17 The loss for epoch 6 0.9730634154642329 The running loss is: 15.77171096089296 The number of items in train is: 17 The loss for epoch 7 0.9277477035819388 The running loss is: 13.84425493516028 The number of items in train is: 17 The loss for epoch 8 0.8143679373623693 The running loss is: 14.698465192690492 The number of items in train is: 17 The loss for epoch 9 0.8646155995700289 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.290987 48 30755 ... 12.374711 49 30756 ... 11.975950 50 30757 ... 10.584239 51 30758 ... 11.698794 52 30759 ... 12.389561 53 30760 ... 11.581156 54 30761 ... 11.558187 55 30762 ... 11.589575 56 30763 ... 11.612144 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fg7lzlcs wandb: Agent Starting Run: c0an2nim with config: batch_size: 2 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: c0an2nim
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 68.1619100868702 The number of items in train is: 17 The loss for epoch 0 4.00952412275707 The running loss is: 22.371742129325867 The number of items in train is: 17 The loss for epoch 1 1.3159848311368156 The running loss is: 16.736645698547363 The number of items in train is: 17 The loss for epoch 2 0.9845085705027861 The running loss is: 15.064269214868546 The number of items in train is: 17 The loss for epoch 3 0.8861334832275615 The running loss is: 15.606667906045914 The number of items in train is: 17 The loss for epoch 4 0.9180392885909361 The running loss is: 15.834020808339119 The number of items in train is: 17 The loss for epoch 5 0.9314129887258306 The running loss is: 14.995947480201721 The number of items in train is: 17 The loss for epoch 6 0.8821145576589248 The running loss is: 16.214449003338814 The number of items in train is: 17 The loss for epoch 7 0.9537911178434596 The running loss is: 13.982399955391884 The number of items in train is: 17 The loss for epoch 8 0.822494115023052 The running loss is: 13.378327805548906 The number of items in train is: 17 The loss for epoch 9 0.7869604591499356 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.399013 48 30755 ... 10.975351 49 30756 ... 10.943957 50 30757 ... 11.364924 51 30758 ... 12.050787 52 30759 ... 10.258490 53 30760 ... 11.160790 54 30761 ... 10.898850 55 30762 ... 11.130223 56 30763 ... 10.652694 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c0an2nim wandb: Agent Starting Run: ncqc46kb with config: batch_size: 2 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ncqc46kb
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 134.06062477827072 The number of items in train is: 16 The loss for epoch 0 8.37878904864192 The running loss is: 42.89721769094467 The number of items in train is: 16 The loss for epoch 1 2.681076105684042 The running loss is: 42.296622425317764 The number of items in train is: 16 The loss for epoch 2 2.6435389015823603 The running loss is: 14.58924949169159 The number of items in train is: 16 The loss for epoch 3 0.9118280932307243 The running loss is: 13.531480722129345 The number of items in train is: 16 The loss for epoch 4 0.8457175451330841 The running loss is: 11.921478353440762 The number of items in train is: 16 The loss for epoch 5 0.7450923970900476 The running loss is: 11.945398841053247 The number of items in train is: 16 The loss for epoch 6 0.746587427565828 The running loss is: 11.684036530554295 The number of items in train is: 16 The loss for epoch 7 0.7302522831596434 The running loss is: 11.216044843196869 The number of items in train is: 16 The loss for epoch 8 0.7010028026998043 The running loss is: 10.252280615270138 The number of items in train is: 16 The loss for epoch 9 0.6407675384543836 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.261765 48 30755 ... 9.229461 49 30756 ... 9.328590 50 30757 ... 9.209830 51 30758 ... 9.307390 52 30759 ... 9.452641 53 30760 ... 7.193860 54 30761 ... 7.226322 55 30762 ... 7.089177 56 30763 ... 5.841412 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ncqc46kb wandb: Agent Starting Run: yh35fkau with config: batch_size: 2 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yh35fkau
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.99254409223795 The number of items in train is: 17 The loss for epoch 0 1.117208476013997 The running loss is: 27.134451758436626 The number of items in train is: 17 The loss for epoch 1 1.5961442210845074 The running loss is: 14.144931258633733 The number of items in train is: 17 The loss for epoch 2 0.8320547799196314 The running loss is: 12.379254553001374 The number of items in train is: 17 The loss for epoch 3 0.7281914442941985 The running loss is: 10.936451382935047 The number of items in train is: 17 The loss for epoch 4 0.6433206695844146 The running loss is: 10.157983610406518 The number of items in train is: 17 The loss for epoch 5 0.5975284476709717 The running loss is: 10.516974926926196 The number of items in train is: 17 The loss for epoch 6 0.618645583936835 The running loss is: 10.19902788894251 The number of items in train is: 17 The loss for epoch 7 0.5999428169966182 The running loss is: 9.524700343608856 The number of items in train is: 17 The loss for epoch 8 0.560276490800521 The running loss is: 8.423859127797186 The number of items in train is: 17 The loss for epoch 9 0.4955211251645404 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.894247 48 30755 ... 9.785186 49 30756 ... 12.737395 50 30757 ... 12.269347 51 30758 ... 10.923274 52 30759 ... 11.233722 53 30760 ... 10.437478 54 30761 ... 6.463241 55 30762 ... 6.731721 56 30763 ... 7.264863 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yh35fkau wandb: Agent Starting Run: og55gigm with config: batch_size: 2 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: og55gigm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.133108966052532 The number of items in train is: 16 The loss for epoch 0 1.0083193103782833 The running loss is: 28.869964830577374 The number of items in train is: 16 The loss for epoch 1 1.8043728019110858 The running loss is: 12.548532001674175 The number of items in train is: 16 The loss for epoch 2 0.784283250104636 The running loss is: 11.040770269930363 The number of items in train is: 16 The loss for epoch 3 0.6900481418706477 The running loss is: 9.910119865089655 The number of items in train is: 16 The loss for epoch 4 0.6193824915681034 The running loss is: 9.276767298579216 The number of items in train is: 16 The loss for epoch 5 0.579797956161201 The running loss is: 9.77975993603468 The number of items in train is: 16 The loss for epoch 6 0.6112349960021675 The running loss is: 8.785409968346357 The number of items in train is: 16 The loss for epoch 7 0.5490881230216473 The running loss is: 8.258642934262753 The number of items in train is: 16 The loss for epoch 8 0.516165183391422 The running loss is: 8.085627540946007 The number of items in train is: 16 The loss for epoch 9 0.5053517213091254 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.732769 48 30755 ... 5.782502 49 30756 ... 7.366888 50 30757 ... 6.974564 51 30758 ... 5.465569 52 30759 ... 6.234188 53 30760 ... 6.124003 54 30761 ... -0.098097 55 30762 ... -0.405543 56 30763 ... -0.950591 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: og55gigm wandb: Agent Starting Run: lsyxrhtc with config: batch_size: 2 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: lsyxrhtc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.61077520623803 The number of items in train is: 16 The loss for epoch 0 1.038173450389877 The running loss is: 25.137400671839714 The number of items in train is: 16 The loss for epoch 1 1.5710875419899821 The running loss is: 12.270547769963741 The number of items in train is: 16 The loss for epoch 2 0.7669092356227338 The running loss is: 10.999523766338825 The number of items in train is: 16 The loss for epoch 3 0.6874702353961766 The running loss is: 9.699016734957695 The number of items in train is: 16 The loss for epoch 4 0.6061885459348559 The running loss is: 9.058913193643093 The number of items in train is: 16 The loss for epoch 5 0.5661820746026933 The running loss is: 9.072721466422081 The number of items in train is: 16 The loss for epoch 6 0.5670450916513801 The running loss is: 9.164514727890491 The number of items in train is: 16 The loss for epoch 7 0.5727821704931557 The running loss is: 8.674532353878021 The number of items in train is: 16 The loss for epoch 8 0.5421582721173763 The running loss is: 8.324480183422565 The number of items in train is: 16 The loss for epoch 9 0.5202800114639103 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.418834 48 30755 ... 7.616541 49 30756 ... 6.665627 50 30757 ... 7.502685 51 30758 ... 7.146316 52 30759 ... 7.690778 53 30760 ... 7.678141 54 30761 ... 2.797157 55 30762 ... 2.660590 56 30763 ... 2.548421 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lsyxrhtc wandb: Agent Starting Run: raan5oee with config: batch_size: 2 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: raan5oee
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.07104841247201 The number of items in train is: 17 The loss for epoch 0 0.8277087301454124 The running loss is: 22.927550297230482 The number of items in train is: 17 The loss for epoch 1 1.348679429248852 The running loss is: 18.472346489550546 The number of items in train is: 17 The loss for epoch 2 1.086608617032385 The running loss is: 12.637594176456332 The number of items in train is: 17 The loss for epoch 3 0.7433878927327254 The running loss is: 11.350484196096659 The number of items in train is: 17 The loss for epoch 4 0.6676755409468623 The running loss is: 9.470307543873787 The number of items in train is: 17 The loss for epoch 5 0.5570769143455169 The running loss is: 12.329006131738424 The number of items in train is: 17 The loss for epoch 6 0.7252356548081426 The running loss is: 10.936658833175898 The number of items in train is: 17 The loss for epoch 7 0.6433328725397587 The running loss is: 10.534783300827257 The number of items in train is: 17 The loss for epoch 8 0.6196931353427798 The running loss is: 8.076542284339666 The number of items in train is: 17 The loss for epoch 9 0.47509072260821567 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.749610 48 30755 ... 10.477225 49 30756 ... 12.733251 50 30757 ... 11.301854 51 30758 ... 10.135816 52 30759 ... 11.677883 53 30760 ... 14.390694 54 30761 ... 9.135997 55 30762 ... 8.562580 56 30763 ... 7.725478 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: raan5oee wandb: Agent Starting Run: 78dfcr0h with config: batch_size: 2 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 78dfcr0h
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.633374132215977 The number of items in train is: 16 The loss for epoch 0 0.7895858832634985 The running loss is: 24.585037760436535 The number of items in train is: 16 The loss for epoch 1 1.5365648600272834 The running loss is: 20.226487666368484 The number of items in train is: 16 The loss for epoch 2 1.2641554791480303 The running loss is: 10.598256275057793 The number of items in train is: 16 The loss for epoch 3 0.662391017191112 The running loss is: 10.891551569104195 The number of items in train is: 16 The loss for epoch 4 0.6807219730690122 The running loss is: 9.729584485292435 The number of items in train is: 16 The loss for epoch 5 0.6080990303307772 The running loss is: 10.25032301992178 The number of items in train is: 16 The loss for epoch 6 0.6406451887451112 The running loss is: 12.466548934578896 The number of items in train is: 16 The loss for epoch 7 0.779159308411181 The running loss is: 9.112505622208118 The number of items in train is: 16 The loss for epoch 8 0.5695316013880074 The running loss is: 8.59875401854515 The number of items in train is: 16 The loss for epoch 9 0.5374221261590719 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.815525 48 30755 ... 4.415236 49 30756 ... 3.473031 50 30757 ... 4.546901 51 30758 ... 4.515433 52 30759 ... 4.815760 53 30760 ... 5.747679 54 30761 ... 2.746140 55 30762 ... 1.751836 56 30763 ... 1.695187 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 78dfcr0h wandb: Agent Starting Run: hoczfgq1 with config: batch_size: 2 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: hoczfgq1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.084807999432087 The number of items in train is: 16 The loss for epoch 0 0.7553004999645054 The running loss is: 22.603727489709854 The number of items in train is: 16 The loss for epoch 1 1.4127329681068659 The running loss is: 18.862066105008125 The number of items in train is: 16 The loss for epoch 2 1.1788791315630078 The running loss is: 12.395430564880371 The number of items in train is: 16 The loss for epoch 3 0.7747144103050232 The running loss is: 11.394499212503433 The number of items in train is: 16 The loss for epoch 4 0.7121562007814646 The running loss is: 10.081028185784817 The number of items in train is: 16 The loss for epoch 5 0.630064261611551 The running loss is: 9.585860520601273 The number of items in train is: 16 The loss for epoch 6 0.5991162825375795 The running loss is: 11.116112791001797 The number of items in train is: 16 The loss for epoch 7 0.6947570494376123 The running loss is: 9.021495692431927 The number of items in train is: 16 The loss for epoch 8 0.5638434807769954 The running loss is: 8.90778385847807 The number of items in train is: 16 The loss for epoch 9 0.5567364911548793 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.413387 48 30755 ... 5.729298 49 30756 ... 4.455645 50 30757 ... 6.159957 51 30758 ... 5.956176 52 30759 ... 6.667638 53 30760 ... 7.277160 54 30761 ... 4.641956 55 30762 ... 4.200748 56 30763 ... 4.200795 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hoczfgq1 wandb: Agent Starting Run: c27e7jkt with config: batch_size: 2 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: c27e7jkt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.021860733628273 The number of items in train is: 17 The loss for epoch 0 1.118932984331075 The running loss is: 19.840141020715237 The number of items in train is: 17 The loss for epoch 1 1.167067118865602 The running loss is: 19.325562549754977 The number of items in train is: 17 The loss for epoch 2 1.1367977970444105 The running loss is: 14.916489260271192 The number of items in train is: 17 The loss for epoch 3 0.8774405447218347 The running loss is: 13.93316643126309 The number of items in train is: 17 The loss for epoch 4 0.819598025368417 The running loss is: 10.690809190273285 The number of items in train is: 17 The loss for epoch 5 0.6288711288396049 The running loss is: 13.479163165204227 The number of items in train is: 17 The loss for epoch 6 0.7928919508943663 The running loss is: 14.082069613039494 The number of items in train is: 17 The loss for epoch 7 0.8283570360611466 The running loss is: 12.653895137831569 The number of items in train is: 17 The loss for epoch 8 0.7443467728136217 The running loss is: 10.394164901226759 The number of items in train is: 17 The loss for epoch 9 0.6114214647780446 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.782250 48 30755 ... 6.847810 49 30756 ... 8.922386 50 30757 ... 9.392108 51 30758 ... 7.796653 52 30759 ... 9.359842 53 30760 ... 10.251583 54 30761 ... 9.111098 55 30762 ... 4.847028 56 30763 ... 8.793217 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c27e7jkt wandb: Agent Starting Run: rc0hdh5k with config: batch_size: 2 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: rc0hdh5k
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.67585827410221 The number of items in train is: 16 The loss for epoch 0 1.2297411421313882 The running loss is: 20.92596773058176 The number of items in train is: 16 The loss for epoch 1 1.30787298316136 The running loss is: 21.21123907715082 The number of items in train is: 16 The loss for epoch 2 1.3257024423219264 The running loss is: 13.602266885340214 The number of items in train is: 16 The loss for epoch 3 0.8501416803337634 The running loss is: 12.655046753585339 The number of items in train is: 16 The loss for epoch 4 0.7909404220990837 The running loss is: 10.041675612330437 The number of items in train is: 16 The loss for epoch 5 0.6276047257706523 The running loss is: 12.342215452343225 The number of items in train is: 16 The loss for epoch 6 0.7713884657714516 The running loss is: 14.822323441505432 The number of items in train is: 16 The loss for epoch 7 0.9263952150940895 The running loss is: 10.33838652074337 The number of items in train is: 16 The loss for epoch 8 0.6461491575464606 The running loss is: 12.166576441377401 The number of items in train is: 16 The loss for epoch 9 0.7604110275860876 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.075967 48 30755 ... 9.071111 49 30756 ... 9.542653 50 30757 ... 9.827929 51 30758 ... 10.330853 52 30759 ... 9.926955 53 30760 ... 9.483013 54 30761 ... 6.208332 55 30762 ... 5.910884 56 30763 ... 6.146338 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rc0hdh5k wandb: Agent Starting Run: 0dph3cu7 with config: batch_size: 2 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 0dph3cu7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.855378910899162 The number of items in train is: 16 The loss for epoch 0 1.0534611819311976 The running loss is: 20.029029339551926 The number of items in train is: 16 The loss for epoch 1 1.2518143337219954 The running loss is: 16.415701150894165 The number of items in train is: 16 The loss for epoch 2 1.0259813219308853 The running loss is: 15.392409943044186 The number of items in train is: 16 The loss for epoch 3 0.9620256214402616 The running loss is: 12.786209851503372 The number of items in train is: 16 The loss for epoch 4 0.7991381157189608 The running loss is: 10.640215292572975 The number of items in train is: 16 The loss for epoch 5 0.665013455785811 The running loss is: 10.768309026956558 The number of items in train is: 16 The loss for epoch 6 0.6730193141847849 The running loss is: 12.681664541363716 The number of items in train is: 16 The loss for epoch 7 0.7926040338352323 The running loss is: 10.68557322025299 The number of items in train is: 16 The loss for epoch 8 0.6678483262658119 The running loss is: 9.19628544151783 The number of items in train is: 16 The loss for epoch 9 0.5747678400948644 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.187110 48 30755 ... 8.600869 49 30756 ... 7.328359 50 30757 ... 9.198733 51 30758 ... 10.732364 52 30759 ... 10.814871 53 30760 ... 12.901135 54 30761 ... 3.767852 55 30762 ... 2.326275 56 30763 ... 3.856884 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0dph3cu7 wandb: Agent Starting Run: scb18cx2 with config: batch_size: 2 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: scb18cx2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 95.02955102175474 The number of items in train is: 17 The loss for epoch 0 5.589973589514985 The running loss is: 24.03973775357008 The number of items in train is: 17 The loss for epoch 1 1.4141022207982399 The running loss is: 15.009492529556155 The number of items in train is: 17 The loss for epoch 2 0.8829113252680091 The running loss is: 15.12568387016654 The number of items in train is: 17 The loss for epoch 3 0.8897461100097965 The running loss is: 14.419101245701313 The number of items in train is: 17 The loss for epoch 4 0.8481824262177243 The running loss is: 14.80416202545166 The number of items in train is: 17 The loss for epoch 5 0.8708330603206859 The running loss is: 14.07496515661478 The number of items in train is: 17 The loss for epoch 6 0.827939126859693 The running loss is: 16.150368846952915 The number of items in train is: 17 The loss for epoch 7 0.9500216968795833 The running loss is: 13.275858359294944 The number of items in train is: 17 The loss for epoch 8 0.7809328446644085 The running loss is: 10.595419317483902 The number of items in train is: 17 The loss for epoch 9 0.6232599598519942 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 15.195083 48 30755 ... 12.213925 49 30756 ... 6.223370 50 30757 ... 10.297009 51 30758 ... 10.625719 52 30759 ... 12.546183 53 30760 ... 13.704164 54 30761 ... 12.491216 55 30762 ... 12.667259 56 30763 ... 12.886582 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: scb18cx2 wandb: Agent Starting Run: wzhv9dbd with config: batch_size: 2 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: wzhv9dbd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 95.46283769607544 The number of items in train is: 16 The loss for epoch 0 5.966427356004715 The running loss is: 27.861441023647785 The number of items in train is: 16 The loss for epoch 1 1.7413400639779866 The running loss is: 13.78494793176651 The number of items in train is: 16 The loss for epoch 2 0.8615592457354069 The running loss is: 21.267036229372025 The number of items in train is: 16 The loss for epoch 3 1.3291897643357515 The running loss is: 19.88978810235858 The number of items in train is: 16 The loss for epoch 4 1.2431117563974112 The running loss is: 15.775068141520023 The number of items in train is: 16 The loss for epoch 5 0.9859417588450015 The running loss is: 14.655570544302464 The number of items in train is: 16 The loss for epoch 6 0.915973159018904 The running loss is: 14.580344870686531 The number of items in train is: 16 The loss for epoch 7 0.9112715544179082 The running loss is: 12.412341699004173 The number of items in train is: 16 The loss for epoch 8 0.7757713561877608 The running loss is: 12.429722763597965 The number of items in train is: 16 The loss for epoch 9 0.7768576727248728 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.551174 48 30755 ... 10.476337 49 30756 ... 8.249887 50 30757 ... 6.252807 51 30758 ... 11.140751 52 30759 ... 10.062581 53 30760 ... 13.128551 54 30761 ... 8.388356 55 30762 ... 8.294368 56 30763 ... 8.297700 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wzhv9dbd wandb: Agent Starting Run: g6lldpjl with config: batch_size: 2 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: g6lldpjl
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 74.41158412396908 The number of items in train is: 16 The loss for epoch 0 4.650724007748067 The running loss is: 21.020324990153313 The number of items in train is: 16 The loss for epoch 1 1.313770311884582 The running loss is: 16.04583202302456 The number of items in train is: 16 The loss for epoch 2 1.002864501439035 The running loss is: 17.90377826243639 The number of items in train is: 16 The loss for epoch 3 1.1189861414022744 The running loss is: 14.566076338291168 The number of items in train is: 16 The loss for epoch 4 0.910379771143198 The running loss is: 14.132137462496758 The number of items in train is: 16 The loss for epoch 5 0.8832585914060473 The running loss is: 13.948560565710068 The number of items in train is: 16 The loss for epoch 6 0.8717850353568792 The running loss is: 13.438048601150513 The number of items in train is: 16 The loss for epoch 7 0.839878037571907 The running loss is: 13.514577560126781 The number of items in train is: 16 The loss for epoch 8 0.8446610975079238 The running loss is: 12.867796912789345 The number of items in train is: 16 The loss for epoch 9 0.804237307049334 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.610271 48 30755 ... 10.570126 49 30756 ... 10.616474 50 30757 ... 10.498391 51 30758 ... 11.009744 52 30759 ... 10.557771 53 30760 ... 10.617533 54 30761 ... 10.595282 55 30762 ... 10.595298 56 30763 ... 10.593192 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: g6lldpjl wandb: Agent Starting Run: 5kgpjqql with config: batch_size: 3 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5kgpjqql
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.670363292098045 The number of items in train is: 14 The loss for epoch 0 1.2621688065784318 The running loss is: 10.943816676735878 The number of items in train is: 14 The loss for epoch 1 0.7817011911954198 The running loss is: 10.41209028288722 The number of items in train is: 14 The loss for epoch 2 0.7437207344919443 The running loss is: 9.48156014829874 The number of items in train is: 14 The loss for epoch 3 0.6772542963070529 The running loss is: 9.911844491958618 The number of items in train is: 14 The loss for epoch 4 0.7079888922827584 The running loss is: 9.89071624726057 The number of items in train is: 14 The loss for epoch 5 0.7064797319471836 The running loss is: 9.785955913364887 The number of items in train is: 14 The loss for epoch 6 0.6989968509546348 The running loss is: 9.477959398645908 The number of items in train is: 14 The loss for epoch 7 0.6769970999032792 The running loss is: 10.341568265110254 The number of items in train is: 14 The loss for epoch 8 0.7386834475078753 The running loss is: 10.629889108240604 The number of items in train is: 14 The loss for epoch 9 0.7592777934457574 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 12.328932 48 30755 ... 11.992808 49 30756 ... 11.800481 50 30757 ... 11.669888 51 30758 ... 11.565799 52 30759 ... 11.473088 53 30760 ... 11.385262 54 30761 ... 11.635700 55 30762 ... 11.695193 56 30763 ... 11.672710 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5kgpjqql wandb: Agent Starting Run: 7qvksyb1 with config: batch_size: 3 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 7qvksyb1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.802268385887146 The number of items in train is: 14 The loss for epoch 0 1.6287334561347961 The running loss is: 17.569238662719727 The number of items in train is: 14 The loss for epoch 1 1.2549456187656947 The running loss is: 16.22460624575615 The number of items in train is: 14 The loss for epoch 2 1.1589004461254393 The running loss is: 14.956971347332 The number of items in train is: 14 The loss for epoch 3 1.068355096238 The running loss is: 15.105294823646545 The number of items in train is: 14 The loss for epoch 4 1.0789496302604675 The running loss is: 15.303263306617737 The number of items in train is: 14 The loss for epoch 5 1.0930902361869812 The running loss is: 15.001798063516617 The number of items in train is: 14 The loss for epoch 6 1.0715570045369012 The running loss is: 14.771975100040436 The number of items in train is: 14 The loss for epoch 7 1.055141078574317 The running loss is: 14.277655333280563 The number of items in train is: 14 The loss for epoch 8 1.0198325238057546 The running loss is: 14.258073136210442 The number of items in train is: 14 The loss for epoch 9 1.018433795443603 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 17.221895 48 30755 ... 19.612215 49 30756 ... 20.901167 50 30757 ... 21.527845 51 30758 ... 21.756281 52 30759 ... 21.745245 53 30760 ... 21.590210 54 30761 ... 22.387379 55 30762 ... 22.718334 56 30763 ... 22.768944 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7qvksyb1 wandb: Agent Starting Run: py7m8aa2 with config: batch_size: 3 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: py7m8aa2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.336795777082443 The number of items in train is: 14 The loss for epoch 0 1.5954854126487459 The running loss is: 16.64599171280861 The number of items in train is: 14 The loss for epoch 1 1.1889994080577577 The running loss is: 14.604424864053726 The number of items in train is: 14 The loss for epoch 2 1.0431732045752662 The running loss is: 14.123595744371414 The number of items in train is: 14 The loss for epoch 3 1.008828267455101 The running loss is: 14.480102002620697 The number of items in train is: 14 The loss for epoch 4 1.0342930001871926 The running loss is: 13.984807938337326 The number of items in train is: 14 The loss for epoch 5 0.9989148527383804 The running loss is: 14.12735378742218 The number of items in train is: 14 The loss for epoch 6 1.0090966991015844 The running loss is: 14.249413669109344 The number of items in train is: 14 The loss for epoch 7 1.017815262079239 The running loss is: 13.871794015169144 The number of items in train is: 14 The loss for epoch 8 0.9908424296549388 The running loss is: 13.480072140693665 The number of items in train is: 14 The loss for epoch 9 0.9628622957638332 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 7.018013 48 30755 ... 3.923897 49 30756 ... 2.033710 50 30757 ... 0.645433 51 30758 ... -0.533605 52 30759 ... -1.625411 53 30760 ... -2.680852 54 30761 ... 0.480797 55 30762 ... 1.198586 56 30763 ... 0.897552 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: py7m8aa2 wandb: Agent Starting Run: fhkws31a with config: batch_size: 3 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fhkws31a
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.473997741937637 The number of items in train is: 14 The loss for epoch 0 0.9624284101384026 The running loss is: 27.837897576391697 The number of items in train is: 14 The loss for epoch 1 1.9884212554565497 The running loss is: 11.861431896686554 The number of items in train is: 14 The loss for epoch 2 0.847245135477611 The running loss is: 10.067777810618281 The number of items in train is: 14 The loss for epoch 3 0.7191269864727344 The running loss is: 9.917817741632462 The number of items in train is: 14 The loss for epoch 4 0.7084155529737473 The running loss is: 9.74946603924036 The number of items in train is: 14 The loss for epoch 5 0.6963904313743114 The running loss is: 9.383864752948284 The number of items in train is: 14 The loss for epoch 6 0.6702760537820203 The running loss is: 9.33708634832874 The number of items in train is: 14 The loss for epoch 7 0.6669347391663385 The running loss is: 10.058764830231667 The number of items in train is: 14 The loss for epoch 8 0.7184832021594048 The running loss is: 10.721103806048632 The number of items in train is: 14 The loss for epoch 9 0.7657931290034737 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 12.203970 48 30755 ... 11.892198 49 30756 ... 11.772248 50 30757 ... 11.728283 51 30758 ... 11.714417 52 30759 ... 11.712473 53 30760 ... 11.715252 54 30761 ... 11.695059 55 30762 ... 11.690609 56 30763 ... 11.692395 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fhkws31a wandb: Agent Starting Run: o8fp0wdh with config: batch_size: 3 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: o8fp0wdh
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.880937218666077 The number of items in train is: 14 The loss for epoch 0 1.3486383727618627 The running loss is: 30.557601034641266 The number of items in train is: 14 The loss for epoch 1 2.1826857881886617 The running loss is: 16.620768785476685 The number of items in train is: 14 The loss for epoch 2 1.1871977703911918 The running loss is: 15.550219416618347 The number of items in train is: 14 The loss for epoch 3 1.110729958329882 The running loss is: 14.529386848211288 The number of items in train is: 14 The loss for epoch 4 1.0378133463008063 The running loss is: 14.709754675626755 The number of items in train is: 14 The loss for epoch 5 1.0506967625447683 The running loss is: 14.263691067695618 The number of items in train is: 14 The loss for epoch 6 1.0188350762639726 The running loss is: 13.642646819353104 The number of items in train is: 14 The loss for epoch 7 0.974474772810936 The running loss is: 13.388307765126228 The number of items in train is: 14 The loss for epoch 8 0.9563076975090163 The running loss is: 13.098741456866264 The number of items in train is: 14 The loss for epoch 9 0.9356243897761617 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 16.511818 48 30755 ... 18.479959 49 30756 ... 19.515354 50 30757 ... 19.987150 51 30758 ... 20.118399 52 30759 ... 20.043875 53 30760 ... 19.845016 54 30761 ... 20.647829 55 30762 ... 20.979090 56 30763 ... 21.025421 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: o8fp0wdh wandb: Agent Starting Run: npyvux13 with config: batch_size: 3 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: npyvux13
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.19215828180313 The number of items in train is: 14 The loss for epoch 0 1.2280113058430808 The running loss is: 35.54996246099472 The number of items in train is: 14 The loss for epoch 1 2.539283032928194 The running loss is: 16.276898205280304 The number of items in train is: 14 The loss for epoch 2 1.1626355860914503 The running loss is: 15.494183450937271 The number of items in train is: 14 The loss for epoch 3 1.1067273893526621 The running loss is: 13.394286423921585 The number of items in train is: 14 The loss for epoch 4 0.9567347445658275 The running loss is: 13.729548782110214 The number of items in train is: 14 The loss for epoch 5 0.9806820558650153 The running loss is: 13.483346164226532 The number of items in train is: 14 The loss for epoch 6 0.9630961545876094 The running loss is: 13.767163097858429 The number of items in train is: 14 The loss for epoch 7 0.9833687927041735 The running loss is: 13.156352579593658 The number of items in train is: 14 The loss for epoch 8 0.9397394699709756 The running loss is: 12.842736065387726 The number of items in train is: 14 The loss for epoch 9 0.9173382903848376 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 7.175701 48 30755 ... 4.349280 49 30756 ... 2.709584 50 30757 ... 1.539658 51 30758 ... 0.555692 52 30759 ... -0.354660 53 30760 ... -1.235872 54 30761 ... 1.540366 55 30762 ... 2.118507 56 30763 ... 1.826522 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: npyvux13 wandb: Agent Starting Run: v4j861hu with config: batch_size: 3 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: v4j861hu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.81423806399107 The number of items in train is: 14 The loss for epoch 0 1.272445575999362 The running loss is: 27.287052668631077 The number of items in train is: 14 The loss for epoch 1 1.9490751906165056 The running loss is: 23.304617062211037 The number of items in train is: 14 The loss for epoch 2 1.6646155044436455 The running loss is: 13.46847514808178 The number of items in train is: 14 The loss for epoch 3 0.9620339391486985 The running loss is: 10.77438042499125 The number of items in train is: 14 The loss for epoch 4 0.7695986017850893 The running loss is: 10.228682920336723 The number of items in train is: 14 The loss for epoch 5 0.7306202085954803 The running loss is: 9.9163583740592 The number of items in train is: 14 The loss for epoch 6 0.7083113124328 The running loss is: 9.541842748411 The number of items in train is: 14 The loss for epoch 7 0.6815601963150714 The running loss is: 10.52641460672021 The number of items in train is: 14 The loss for epoch 8 0.751886757622872 The running loss is: 10.936396487057209 The number of items in train is: 14 The loss for epoch 9 0.7811711776469435 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.996588 48 30755 ... 11.617249 49 30756 ... 11.487004 50 30757 ... 11.456182 51 30758 ... 11.465044 52 30759 ... 11.489745 53 30760 ... 11.520768 54 30761 ... 11.406167 55 30762 ... 11.381589 56 30763 ... 11.392943 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v4j861hu wandb: Agent Starting Run: pb2xg24u with config: batch_size: 3 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: pb2xg24u
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.450218737125397 The number of items in train is: 14 The loss for epoch 0 1.3178727669375283 The running loss is: 33.69246228039265 The number of items in train is: 14 The loss for epoch 1 2.4066044485994746 The running loss is: 30.424543470144272 The number of items in train is: 14 The loss for epoch 2 2.1731816764388765 The running loss is: 21.68705663084984 The number of items in train is: 14 The loss for epoch 3 1.5490754736321313 The running loss is: 15.464419141411781 The number of items in train is: 14 The loss for epoch 4 1.1046013672436987 The running loss is: 13.43197026848793 The number of items in train is: 14 The loss for epoch 5 0.9594264477491379 The running loss is: 13.450857311487198 The number of items in train is: 14 The loss for epoch 6 0.9607755222490856 The running loss is: 12.503621444106102 The number of items in train is: 14 The loss for epoch 7 0.8931158174361501 The running loss is: 12.548032850027084 The number of items in train is: 14 The loss for epoch 8 0.8962880607162204 The running loss is: 12.026508867740631 The number of items in train is: 14 The loss for epoch 9 0.8590363476957593 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 15.448249 48 30755 ... 16.847450 49 30756 ... 17.598450 50 30757 ... 17.948925 51 30758 ... 18.051918 52 30759 ... 18.001993 53 30760 ... 17.857580 54 30761 ... 18.449734 55 30762 ... 18.702061 56 30763 ... 18.744408 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pb2xg24u wandb: Agent Starting Run: w8s1lsld with config: batch_size: 3 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: w8s1lsld
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.729584485292435 The number of items in train is: 14 The loss for epoch 0 1.194970320378031 The running loss is: 31.90469980239868 The number of items in train is: 14 The loss for epoch 1 2.278907128742763 The running loss is: 26.94806531071663 The number of items in train is: 14 The loss for epoch 2 1.9248618079083306 The running loss is: 21.172048971056938 The number of items in train is: 14 The loss for epoch 3 1.5122892122183527 The running loss is: 14.548314154148102 The number of items in train is: 14 The loss for epoch 4 1.0391652967248644 The running loss is: 14.059065759181976 The number of items in train is: 14 The loss for epoch 5 1.0042189827987127 The running loss is: 13.152787834405899 The number of items in train is: 14 The loss for epoch 6 0.9394848453147071 The running loss is: 13.332339078187943 The number of items in train is: 14 The loss for epoch 7 0.9523099341562816 The running loss is: 12.577288955450058 The number of items in train is: 14 The loss for epoch 8 0.898377782532147 The running loss is: 12.499642044305801 The number of items in train is: 14 The loss for epoch 9 0.8928315745932716 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 8.248249 48 30755 ... 6.103832 49 30756 ... 4.877185 50 30757 ... 3.973589 51 30758 ... 3.183706 52 30759 ... 2.433849 53 30760 ... 1.698083 54 30761 ... 4.270024 55 30762 ... 4.703514 56 30763 ... 4.384280 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: w8s1lsld wandb: Agent Starting Run: 5rzp4ajy with config: batch_size: 3 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5rzp4ajy
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 36.93057554960251 The number of items in train is: 14 The loss for epoch 0 2.637898253543036 The running loss is: 26.37780451774597 The number of items in train is: 14 The loss for epoch 1 1.8841288941247123 The running loss is: 22.75959214195609 The number of items in train is: 14 The loss for epoch 2 1.6256851529968637 The running loss is: 30.54565773718059 The number of items in train is: 14 The loss for epoch 3 2.1818326955128993 The running loss is: 36.84430718794465 The number of items in train is: 14 The loss for epoch 4 2.631736227710332 The running loss is: 36.018092423677444 The number of items in train is: 14 The loss for epoch 5 2.5727208874055316 The running loss is: 19.373262114822865 The number of items in train is: 14 The loss for epoch 6 1.3838044367730618 The running loss is: 11.502933956682682 The number of items in train is: 14 The loss for epoch 7 0.8216381397630487 The running loss is: 10.898656576871872 The number of items in train is: 14 The loss for epoch 8 0.7784754697765622 The running loss is: 10.19880486652255 The number of items in train is: 14 The loss for epoch 9 0.7284860618944679 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 12.216917 48 30755 ... 11.971518 49 30756 ... 11.933516 50 30757 ... 11.975511 51 30758 ... 12.048363 52 30759 ... 12.133118 53 30760 ... 12.222463 54 30761 ... 11.917004 55 30762 ... 11.855834 56 30763 ... 11.888893 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5rzp4ajy wandb: Agent Starting Run: 3ek9rvyd with config: batch_size: 3 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 3ek9rvyd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 41.207330763339996 The number of items in train is: 14 The loss for epoch 0 2.9433807688099995 The running loss is: 27.082152098417282 The number of items in train is: 14 The loss for epoch 1 1.9344394356012344 The running loss is: 25.876445710659027 The number of items in train is: 14 The loss for epoch 2 1.8483175507613592 The running loss is: 33.90110743790865 The number of items in train is: 14 The loss for epoch 3 2.421507674136332 The running loss is: 44.29538279771805 The number of items in train is: 14 The loss for epoch 4 3.1639559141227176 The running loss is: 37.04779974371195 The number of items in train is: 14 The loss for epoch 5 2.6462714102651392 The running loss is: 17.184944421052933 The number of items in train is: 14 The loss for epoch 6 1.2274960300752096 The running loss is: 13.733961462974548 The number of items in train is: 14 The loss for epoch 7 0.9809972473553249 The running loss is: 14.716185823082924 The number of items in train is: 14 The loss for epoch 8 1.0511561302202088 The running loss is: 13.83261838182807 The number of items in train is: 14 The loss for epoch 9 0.9880441701305764 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 9.035178 48 30755 ... 8.766874 49 30756 ... 8.916343 50 30757 ... 9.113027 51 30758 ... 9.315046 52 30759 ... 9.517670 53 30760 ... 9.720361 54 30761 ... 8.664521 55 30762 ... 8.724984 56 30763 ... 8.911608 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3ek9rvyd wandb: Agent Starting Run: 874h0d1x with config: batch_size: 3 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 874h0d1x
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 44.45691132545471 The number of items in train is: 14 The loss for epoch 0 3.175493666103908 The running loss is: 29.342597395181656 The number of items in train is: 14 The loss for epoch 1 2.095899813941547 The running loss is: 31.56341904401779 The number of items in train is: 14 The loss for epoch 2 2.2545299317155565 The running loss is: 22.378557235002518 The number of items in train is: 14 The loss for epoch 3 1.5984683739287513 The running loss is: 29.19557212293148 The number of items in train is: 14 The loss for epoch 4 2.08539800878082 The running loss is: 19.708526015281677 The number of items in train is: 14 The loss for epoch 5 1.4077518582344055 The running loss is: 16.751707702875137 The number of items in train is: 14 The loss for epoch 6 1.196550550205367 The running loss is: 17.867665767669678 The number of items in train is: 14 The loss for epoch 7 1.276261840547834 The running loss is: 17.180501848459244 The number of items in train is: 14 The loss for epoch 8 1.2271787034613746 The running loss is: 11.488581970334053 The number of items in train is: 14 The loss for epoch 9 0.8206129978810038 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 9.363071 48 30755 ... 8.094663 49 30756 ... 7.382749 50 30757 ... 6.801587 51 30758 ... 6.251144 52 30759 ... 5.707920 53 30760 ... 5.166392 54 30761 ... 7.522529 55 30762 ... 7.662219 56 30763 ... 7.281145 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 874h0d1x wandb: Agent Starting Run: 59n65cyk with config: batch_size: 3 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 59n65cyk
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.64117774181068 The number of items in train is: 14 The loss for epoch 0 1.3315126958436199 The running loss is: 13.435925766825676 The number of items in train is: 14 The loss for epoch 1 0.9597089833446911 The running loss is: 9.767426192760468 The number of items in train is: 14 The loss for epoch 2 0.6976732994828906 The running loss is: 8.82443618774414 The number of items in train is: 14 The loss for epoch 3 0.6303168705531529 The running loss is: 8.694632604718208 The number of items in train is: 14 The loss for epoch 4 0.6210451860513005 The running loss is: 9.05456755310297 The number of items in train is: 14 The loss for epoch 5 0.6467548252216407 The running loss is: 8.356636479496956 The number of items in train is: 14 The loss for epoch 6 0.596902605678354 The running loss is: 9.370028473436832 The number of items in train is: 14 The loss for epoch 7 0.6692877481026309 The running loss is: 9.064932033419609 The number of items in train is: 14 The loss for epoch 8 0.6474951452442578 The running loss is: 7.789532475173473 The number of items in train is: 14 The loss for epoch 9 0.5563951767981052 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.928371 48 30755 ... 15.471230 49 30756 ... 15.420227 50 30757 ... 15.615501 51 30758 ... 14.940125 52 30759 ... 14.135720 53 30760 ... 12.981010 54 30761 ... 14.701076 55 30762 ... 15.958694 56 30763 ... 16.192640 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 59n65cyk wandb: Agent Starting Run: mwiqfbe8 with config: batch_size: 3 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: mwiqfbe8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.326901137828827 The number of items in train is: 14 The loss for epoch 0 1.3090643669877733 The running loss is: 15.11211396753788 The number of items in train is: 14 The loss for epoch 1 1.0794367119669914 The running loss is: 12.211668342351913 The number of items in train is: 14 The loss for epoch 2 0.8722620244537082 The running loss is: 11.787426233291626 The number of items in train is: 14 The loss for epoch 3 0.8419590166636876 The running loss is: 11.032762914896011 The number of items in train is: 14 The loss for epoch 4 0.7880544939211437 The running loss is: 10.791624754667282 The number of items in train is: 14 The loss for epoch 5 0.7708303396190915 The running loss is: 10.629769459366798 The number of items in train is: 14 The loss for epoch 6 0.7592692470976284 The running loss is: 10.726359777152538 The number of items in train is: 14 The loss for epoch 7 0.7661685555108956 The running loss is: 10.42826895415783 The number of items in train is: 14 The loss for epoch 8 0.7448763538684163 The running loss is: 10.19526007771492 The number of items in train is: 14 The loss for epoch 9 0.7282328626939228 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.490717 48 30755 ... 11.641187 49 30756 ... 9.905563 50 30757 ... 9.972510 51 30758 ... 8.155688 52 30759 ... 6.332791 53 30760 ... 3.572726 54 30761 ... 2.926773 55 30762 ... 4.603442 56 30763 ... 4.082183 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mwiqfbe8 wandb: Agent Starting Run: odk5x886 with config: batch_size: 3 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: odk5x886
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.417068786919117 The number of items in train is: 13 The loss for epoch 0 1.3397745220707014 The running loss is: 12.89317137002945 The number of items in train is: 13 The loss for epoch 1 0.9917824130791885 The running loss is: 10.928997546434402 The number of items in train is: 13 The loss for epoch 2 0.8406921189564925 The running loss is: 9.924030363559723 The number of items in train is: 13 The loss for epoch 3 0.7633869510430557 The running loss is: 9.564537711441517 The number of items in train is: 13 The loss for epoch 4 0.7357336701108859 The running loss is: 9.373335793614388 The number of items in train is: 13 The loss for epoch 5 0.7210258302780298 The running loss is: 9.464933928102255 The number of items in train is: 13 The loss for epoch 6 0.7280718406232504 The running loss is: 8.969834722578526 The number of items in train is: 13 The loss for epoch 7 0.6899872863521943 The running loss is: 9.041607558727264 The number of items in train is: 13 The loss for epoch 8 0.6955082737482511 The running loss is: 8.688183203339577 The number of items in train is: 13 The loss for epoch 9 0.6683217848722751 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.460793 48 30755 ... 12.863463 49 30756 ... 13.743500 50 30757 ... 14.807247 51 30758 ... 15.064708 52 30759 ... 14.955314 53 30760 ... 14.306695 54 30761 ... 16.493378 55 30762 ... 18.610914 56 30763 ... 19.960632 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: odk5x886 wandb: Agent Starting Run: t7774fje with config: batch_size: 3 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: t7774fje
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.82401143014431 The number of items in train is: 14 The loss for epoch 0 1.058857959296022 The running loss is: 32.10828600823879 The number of items in train is: 14 The loss for epoch 1 2.293449000588485 The running loss is: 16.21480782330036 The number of items in train is: 14 The loss for epoch 2 1.1582005588071687 The running loss is: 10.950186144560575 The number of items in train is: 14 The loss for epoch 3 0.7821561531828982 The running loss is: 9.553723186254501 The number of items in train is: 14 The loss for epoch 4 0.6824087990181786 The running loss is: 9.226969838142395 The number of items in train is: 14 The loss for epoch 5 0.6590692741530282 The running loss is: 8.455528162419796 The number of items in train is: 14 The loss for epoch 6 0.6039662973156997 The running loss is: 8.660504542291164 The number of items in train is: 14 The loss for epoch 7 0.6186074673065117 The running loss is: 9.142078697681427 The number of items in train is: 14 The loss for epoch 8 0.653005621262959 The running loss is: 7.957540884613991 The number of items in train is: 14 The loss for epoch 9 0.5683957774724279 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.434075 48 30755 ... 15.096694 49 30756 ... 14.959582 50 30757 ... 14.883185 51 30758 ... 14.149712 52 30759 ... 13.306772 53 30760 ... 12.192998 54 30761 ... 13.766081 55 30762 ... 14.880667 56 30763 ... 15.032399 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: t7774fje wandb: Agent Starting Run: hebxlk2l with config: batch_size: 3 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: hebxlk2l
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.723597005009651 The number of items in train is: 14 The loss for epoch 0 1.1231140717864037 The running loss is: 28.490644335746765 The number of items in train is: 14 The loss for epoch 1 2.035046023981912 The running loss is: 13.955412358045578 The number of items in train is: 14 The loss for epoch 2 0.996815168431827 The running loss is: 13.241860419511795 The number of items in train is: 14 The loss for epoch 3 0.945847172822271 The running loss is: 11.466906487941742 The number of items in train is: 14 The loss for epoch 4 0.8190647491386959 The running loss is: 10.924891918897629 The number of items in train is: 14 The loss for epoch 5 0.780349422778402 The running loss is: 10.513674184679985 The number of items in train is: 14 The loss for epoch 6 0.7509767274771418 The running loss is: 9.895356297492981 The number of items in train is: 14 The loss for epoch 7 0.7068111641066415 The running loss is: 9.991915211081505 The number of items in train is: 14 The loss for epoch 8 0.7137082293629646 The running loss is: 9.326003551483154 The number of items in train is: 14 The loss for epoch 9 0.6661431108202253 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.664345 48 30755 ... 13.185613 49 30756 ... 11.520662 50 30757 ... 11.929882 51 30758 ... 10.195442 52 30759 ... 8.390749 53 30760 ... 5.661302 54 30761 ... 5.480610 55 30762 ... 7.734272 56 30763 ... 7.415340 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hebxlk2l wandb: Agent Starting Run: f9q3bn5p with config: batch_size: 3 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: f9q3bn5p
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.760922595858574 The number of items in train is: 13 The loss for epoch 0 1.0585325073737364 The running loss is: 28.3547403216362 The number of items in train is: 13 The loss for epoch 1 2.1811338708950925 The running loss is: 12.500449031591415 The number of items in train is: 13 The loss for epoch 2 0.9615730024301089 The running loss is: 11.595830231904984 The number of items in train is: 13 The loss for epoch 3 0.8919869409157679 The running loss is: 9.472603611648083 The number of items in train is: 13 The loss for epoch 4 0.7286618162806218 The running loss is: 9.583042055368423 The number of items in train is: 13 The loss for epoch 5 0.7371570811821864 The running loss is: 9.448577012866735 The number of items in train is: 13 The loss for epoch 6 0.7268136163743643 The running loss is: 8.934248983860016 The number of items in train is: 13 The loss for epoch 7 0.6872499218353858 The running loss is: 8.718861654400826 The number of items in train is: 13 The loss for epoch 8 0.6706816657231405 The running loss is: 8.367036566138268 The number of items in train is: 13 The loss for epoch 9 0.6436181973952514 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.351791 48 30755 ... 13.041138 49 30756 ... 14.050688 50 30757 ... 14.945793 51 30758 ... 15.019467 52 30759 ... 14.608635 53 30760 ... 13.617412 54 30761 ... 15.745596 55 30762 ... 18.032488 56 30763 ... 19.294676 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: f9q3bn5p wandb: Agent Starting Run: mx7h8bz8 with config: batch_size: 3 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: mx7h8bz8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.776539117097855 The number of items in train is: 14 The loss for epoch 0 1.1983242226498467 The running loss is: 26.58887927979231 The number of items in train is: 14 The loss for epoch 1 1.8992056628423077 The running loss is: 24.896283831447363 The number of items in train is: 14 The loss for epoch 2 1.7783059879605259 The running loss is: 17.928823247551918 The number of items in train is: 14 The loss for epoch 3 1.280630231967994 The running loss is: 12.109752431511879 The number of items in train is: 14 The loss for epoch 4 0.8649823165365628 The running loss is: 8.675509860739112 The number of items in train is: 14 The loss for epoch 5 0.6196792757670794 The running loss is: 10.843803316354752 The number of items in train is: 14 The loss for epoch 6 0.7745573797396251 The running loss is: 9.790428780019283 The number of items in train is: 14 The loss for epoch 7 0.6993163414299488 The running loss is: 8.949594028294086 The number of items in train is: 14 The loss for epoch 8 0.6392567163067204 The running loss is: 8.564673632383347 The number of items in train is: 14 The loss for epoch 9 0.6117624023130962 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.665448 48 30755 ... 13.411776 49 30756 ... 13.063972 50 30757 ... 12.983979 51 30758 ... 12.259508 52 30759 ... 11.530276 53 30760 ... 10.420552 54 30761 ... 11.024097 55 30762 ... 12.358281 56 30763 ... 12.445353 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mx7h8bz8 wandb: Agent Starting Run: lm9loxi1 with config: batch_size: 3 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: lm9loxi1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.176710434257984 The number of items in train is: 14 The loss for epoch 0 1.155479316732713 The running loss is: 22.872309029102325 The number of items in train is: 14 The loss for epoch 1 1.6337363592215948 The running loss is: 22.13676345348358 The number of items in train is: 14 The loss for epoch 2 1.5811973895345415 The running loss is: 19.3515884578228 The number of items in train is: 14 The loss for epoch 3 1.3822563184159142 The running loss is: 12.773187398910522 The number of items in train is: 14 The loss for epoch 4 0.9123705284936088 The running loss is: 11.72696629166603 The number of items in train is: 14 The loss for epoch 5 0.8376404494047165 The running loss is: 10.596563547849655 The number of items in train is: 14 The loss for epoch 6 0.7568973962749753 The running loss is: 10.482213720679283 The number of items in train is: 14 The loss for epoch 7 0.7487295514770916 The running loss is: 10.999816179275513 The number of items in train is: 14 The loss for epoch 8 0.7857011556625366 The running loss is: 8.992802858352661 The number of items in train is: 14 The loss for epoch 9 0.6423430613109044 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.652482 48 30755 ... 11.203905 49 30756 ... 9.210129 50 30757 ... 9.121360 51 30758 ... 7.296506 52 30759 ... 5.924037 53 30760 ... 3.844475 54 30761 ... 3.221498 55 30762 ... 6.493601 56 30763 ... 6.209036 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lm9loxi1 wandb: Agent Starting Run: 3mgs8xbf with config: batch_size: 3 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 3mgs8xbf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.498512089252472 The number of items in train is: 13 The loss for epoch 0 1.0383470837886517 The running loss is: 25.564792200922966 The number of items in train is: 13 The loss for epoch 1 1.9665224769940743 The running loss is: 22.65778923034668 The number of items in train is: 13 The loss for epoch 2 1.7429068638728216 The running loss is: 14.94919142127037 The number of items in train is: 13 The loss for epoch 3 1.1499378016361823 The running loss is: 13.298549711704254 The number of items in train is: 13 The loss for epoch 4 1.0229653624387889 The running loss is: 10.945579677820206 The number of items in train is: 13 The loss for epoch 5 0.8419676675246313 The running loss is: 10.539850123226643 The number of items in train is: 13 The loss for epoch 6 0.8107577017866648 The running loss is: 10.23940223455429 The number of items in train is: 13 The loss for epoch 7 0.7876463257349454 The running loss is: 9.733535498380661 The number of items in train is: 13 The loss for epoch 8 0.7487334998754355 The running loss is: 8.944746106863022 The number of items in train is: 13 The loss for epoch 9 0.6880573928356171 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.021401 48 30755 ... 11.561892 49 30756 ... 12.308455 50 30757 ... 12.756186 51 30758 ... 12.854743 52 30759 ... 12.682150 53 30760 ... 12.287163 54 30761 ... 13.468019 55 30762 ... 14.454829 56 30763 ... 15.026141 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3mgs8xbf wandb: Agent Starting Run: nihnfer9 with config: batch_size: 3 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: nihnfer9
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 51.30401501059532 The number of items in train is: 14 The loss for epoch 0 3.6645725007568086 The running loss is: 28.13227316737175 The number of items in train is: 14 The loss for epoch 1 2.0094480833836963 The running loss is: 30.677978098392487 The number of items in train is: 14 The loss for epoch 2 2.1912841498851776 The running loss is: 25.798474550247192 The number of items in train is: 14 The loss for epoch 3 1.8427481821605138 The running loss is: 23.53739532828331 The number of items in train is: 14 The loss for epoch 4 1.6812425234488078 The running loss is: 12.46931640803814 The number of items in train is: 14 The loss for epoch 5 0.89066545771701 The running loss is: 14.836411327123642 The number of items in train is: 14 The loss for epoch 6 1.0597436662231172 The running loss is: 11.940000280737877 The number of items in train is: 14 The loss for epoch 7 0.8528571629098484 The running loss is: 9.431063748896122 The number of items in train is: 14 The loss for epoch 8 0.6736474106354373 The running loss is: 9.614306479692459 The number of items in train is: 14 The loss for epoch 9 0.68673617712089 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.500200 48 30755 ... 13.090182 49 30756 ... 12.382077 50 30757 ... 12.541276 51 30758 ... 11.883831 52 30759 ... 11.478168 53 30760 ... 10.748770 54 30761 ... 11.050783 55 30762 ... 12.022332 56 30763 ... 11.973404 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nihnfer9 wandb: Agent Starting Run: ionv873k with config: batch_size: 3 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ionv873k
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 33.80015930533409 The number of items in train is: 14 The loss for epoch 0 2.4142970932381496 The running loss is: 21.325599938631058 The number of items in train is: 14 The loss for epoch 1 1.523257138473647 The running loss is: 18.091121673583984 The number of items in train is: 14 The loss for epoch 2 1.2922229766845703 The running loss is: 27.904833287000656 The number of items in train is: 14 The loss for epoch 3 1.993202377642904 The running loss is: 19.25467175245285 The number of items in train is: 14 The loss for epoch 4 1.375333696603775 The running loss is: 17.12490466237068 The number of items in train is: 14 The loss for epoch 5 1.2232074758836202 The running loss is: 13.32920789718628 The number of items in train is: 14 The loss for epoch 6 0.9520862783704486 The running loss is: 13.500364929437637 The number of items in train is: 14 The loss for epoch 7 0.9643117806741169 The running loss is: 13.285066820681095 The number of items in train is: 14 The loss for epoch 8 0.9489333443343639 The running loss is: 12.104208245873451 The number of items in train is: 14 The loss for epoch 9 0.8645863032766751 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.968231 48 30755 ... 9.625219 49 30756 ... 9.401051 50 30757 ... 9.150497 51 30758 ... 8.870846 52 30759 ... 8.580363 53 30760 ... 8.285401 54 30761 ... 7.854644 55 30762 ... 9.419525 56 30763 ... 9.371837 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ionv873k wandb: Agent Starting Run: oe5h8j48 with config: batch_size: 3 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: oe5h8j48
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 36.88397306203842 The number of items in train is: 13 The loss for epoch 0 2.837228697079879 The running loss is: 23.387097895145416 The number of items in train is: 13 The loss for epoch 1 1.7990075303958013 The running loss is: 20.17457577586174 The number of items in train is: 13 The loss for epoch 2 1.551890444297057 The running loss is: 20.294566094875336 The number of items in train is: 13 The loss for epoch 3 1.5611204688365643 The running loss is: 18.586155623197556 The number of items in train is: 13 The loss for epoch 4 1.4297042787075043 The running loss is: 13.293670758605003 The number of items in train is: 13 The loss for epoch 5 1.0225900583542311 The running loss is: 13.621711760759354 The number of items in train is: 13 The loss for epoch 6 1.0478239815968733 The running loss is: 10.410593956708908 The number of items in train is: 13 The loss for epoch 7 0.800814919746839 The running loss is: 10.608880147337914 The number of items in train is: 13 The loss for epoch 8 0.8160677036413779 The running loss is: 9.719066202640533 The number of items in train is: 13 The loss for epoch 9 0.7476204771261948 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.146037 48 30755 ... 13.109223 49 30756 ... 13.432909 50 30757 ... 13.972692 51 30758 ... 13.988523 52 30759 ... 13.896473 53 30760 ... 13.568353 54 30761 ... 12.816897 55 30762 ... 14.419169 56 30763 ... 14.700335 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: oe5h8j48 wandb: Agent Starting Run: uz0dql7o with config: batch_size: 3 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: uz0dql7o
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.755451019853354 The number of items in train is: 14 The loss for epoch 0 0.7682465014180967 The running loss is: 38.836746633052826 The number of items in train is: 14 The loss for epoch 1 2.7740533309323445 The running loss is: 11.501722127199173 The number of items in train is: 14 The loss for epoch 2 0.8215515805142266 The running loss is: 10.499587520956993 The number of items in train is: 14 The loss for epoch 3 0.7499705372112138 The running loss is: 8.515039145946503 The number of items in train is: 14 The loss for epoch 4 0.6082170818533216 The running loss is: 8.96797063946724 The number of items in train is: 14 The loss for epoch 5 0.6405693313905171 The running loss is: 7.806724339723587 The number of items in train is: 14 The loss for epoch 6 0.5576231671231133 The running loss is: 7.387755490839481 The number of items in train is: 14 The loss for epoch 7 0.5276968207742486 The running loss is: 7.427955038845539 The number of items in train is: 14 The loss for epoch 8 0.5305682170603957 The running loss is: 7.187168009579182 The number of items in train is: 14 The loss for epoch 9 0.5133691435413701 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.769258 48 30755 ... 10.274848 49 30756 ... 17.754297 50 30757 ... 16.682022 51 30758 ... 15.986617 52 30759 ... 15.547783 53 30760 ... 12.919273 54 30761 ... 15.504961 55 30762 ... 17.572283 56 30763 ... 21.066988 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: uz0dql7o wandb: Agent Starting Run: imlwhsva with config: batch_size: 3 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: imlwhsva
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.53025685250759 The number of items in train is: 13 The loss for epoch 0 1.2715582194236608 The running loss is: 16.255148097872734 The number of items in train is: 13 The loss for epoch 1 1.2503960075286717 The running loss is: 10.766040947288275 The number of items in train is: 13 The loss for epoch 2 0.8281569959452519 The running loss is: 9.744163434952497 The number of items in train is: 13 The loss for epoch 3 0.7495510334578844 The running loss is: 9.72730216011405 The number of items in train is: 13 The loss for epoch 4 0.7482540123164654 The running loss is: 9.620016269385815 The number of items in train is: 13 The loss for epoch 5 0.7400012514912165 The running loss is: 9.431224629282951 The number of items in train is: 13 The loss for epoch 6 0.72547881763715 The running loss is: 9.202248107641935 The number of items in train is: 13 The loss for epoch 7 0.7078652390493796 The running loss is: 9.111172825098038 The number of items in train is: 13 The loss for epoch 8 0.7008594480844644 The running loss is: 7.962752666324377 The number of items in train is: 13 The loss for epoch 9 0.6125194358711059 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.158216 48 30755 ... 10.707749 49 30756 ... 15.812157 50 30757 ... 15.918945 51 30758 ... 16.698002 52 30759 ... 17.599003 53 30760 ... 16.707861 54 30761 ... 19.135910 55 30762 ... 21.531374 56 30763 ... 25.614202 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: imlwhsva wandb: Agent Starting Run: 6s6mkjgq with config: batch_size: 3 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 6s6mkjgq
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.457125097513199 The number of items in train is: 13 The loss for epoch 0 1.1120865459625537 The running loss is: 16.085287496447563 The number of items in train is: 13 The loss for epoch 1 1.2373298074190433 The running loss is: 10.15951931476593 The number of items in train is: 13 The loss for epoch 2 0.7815014857512254 The running loss is: 9.465455561876297 The number of items in train is: 13 The loss for epoch 3 0.7281119662981766 The running loss is: 9.188641458749771 The number of items in train is: 13 The loss for epoch 4 0.7068185737499824 The running loss is: 8.755524381995201 The number of items in train is: 13 The loss for epoch 5 0.6735018755380924 The running loss is: 8.427750319242477 The number of items in train is: 13 The loss for epoch 6 0.6482884860955752
wandb: Network error resolved after 0:00:11.182615, resuming normal operation.
The running loss is: 7.923837661743164 The number of items in train is: 13 The loss for epoch 7 0.6095259739802434 The running loss is: 8.0590850263834 The number of items in train is: 13 The loss for epoch 8 0.6199296174141077 The running loss is: 8.314335748553276 The number of items in train is: 13 The loss for epoch 9 0.639564288350252 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.424254 48 30755 ... 7.630701 49 30756 ... 9.997432 50 30757 ... 9.401261 51 30758 ... 8.641278 52 30759 ... 7.329124 53 30760 ... 4.651038 54 30761 ... 5.290149 55 30762 ... 4.552412 56 30763 ... 5.032251 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6s6mkjgq wandb: Agent Starting Run: l03hgmub with config: batch_size: 3 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: l03hgmub
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.75971208512783 The number of items in train is: 14 The loss for epoch 0 0.7685508632234165 The running loss is: 36.87247994542122 The number of items in train is: 14 The loss for epoch 1 2.633748567530087 The running loss is: 17.486398860812187 The number of items in train is: 14 The loss for epoch 2 1.2490284900580133 The running loss is: 15.61052069067955 The number of items in train is: 14 The loss for epoch 3 1.1150371921913964 The running loss is: 11.076192826032639 The number of items in train is: 14 The loss for epoch 4 0.7911566304309028 The running loss is: 8.441155915148556 The number of items in train is: 14 The loss for epoch 5 0.6029397082248968 The running loss is: 7.802495114505291 The number of items in train is: 14 The loss for epoch 6 0.5573210796075208 The running loss is: 7.1354983150959015 The number of items in train is: 14 The loss for epoch 7 0.5096784510782787 The running loss is: 7.774059057235718 The number of items in train is: 14 The loss for epoch 8 0.5552899326596942 The running loss is: 6.861661870032549 The number of items in train is: 14 The loss for epoch 9 0.4901187050023249 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.290727 48 30755 ... 10.207885 49 30756 ... 18.020309 50 30757 ... 17.071165 51 30758 ... 16.314606 52 30759 ... 16.627880 53 30760 ... 14.441933 54 30761 ... 18.675493 55 30762 ... 21.162457 56 30763 ... 22.604240 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l03hgmub wandb: Agent Starting Run: c9c5e13j with config: batch_size: 3 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: c9c5e13j
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.687808863818645 The number of items in train is: 13 The loss for epoch 0 0.9759852972168189 The running loss is: 30.817717105150223 The number of items in train is: 13 The loss for epoch 1 2.370593623473094 The running loss is: 15.852080255746841 The number of items in train is: 13 The loss for epoch 2 1.219390788903603 The running loss is: 13.337770016863942 The number of items in train is: 13 The loss for epoch 3 1.025982308989534 The running loss is: 11.452782481908798 The number of items in train is: 13 The loss for epoch 4 0.8809832678391383 The running loss is: 10.242657408118248 The number of items in train is: 13 The loss for epoch 5 0.7878967237014037 The running loss is: 9.236272256821394 The number of items in train is: 13 The loss for epoch 6 0.7104824812939534 The running loss is: 9.14104574918747 The number of items in train is: 13 The loss for epoch 7 0.703157365322113 The running loss is: 8.3548953384161 The number of items in train is: 13 The loss for epoch 8 0.6426842568012384 The running loss is: 8.045029904693365 The number of items in train is: 13 The loss for epoch 9 0.6188484542071819 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.374634 48 30755 ... 8.578894 49 30756 ... 12.920104 50 30757 ... 13.142343 51 30758 ... 13.096810 52 30759 ... 13.633474 53 30760 ... 12.822398 54 30761 ... 13.097551 55 30762 ... 13.966360 56 30763 ... 17.648935 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c9c5e13j wandb: Agent Starting Run: axwlbwqd with config: batch_size: 3 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: axwlbwqd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.29591067135334 The number of items in train is: 13 The loss for epoch 0 0.8689162054887185 The running loss is: 31.16746847331524 The number of items in train is: 13 The loss for epoch 1 2.397497574870403 The running loss is: 13.213620707392693 The number of items in train is: 13 The loss for epoch 2 1.0164323621071303 The running loss is: 12.236616969108582 The number of items in train is: 13 The loss for epoch 3 0.9412782283929678 The running loss is: 10.079297959804535 The number of items in train is: 13 The loss for epoch 4 0.7753306122926565 The running loss is: 9.156161159276962 The number of items in train is: 13 The loss for epoch 5 0.704320089175151 The running loss is: 8.367442056536674 The number of items in train is: 13 The loss for epoch 6 0.6436493889643595 The running loss is: 7.782520815730095 The number of items in train is: 13 The loss for epoch 7 0.5986554473638535 The running loss is: 7.92472417652607 The number of items in train is: 13 The loss for epoch 8 0.6095941674250823 The running loss is: 7.543179780244827 The number of items in train is: 13 The loss for epoch 9 0.5802445984803714 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.698154 48 30755 ... 6.577190 49 30756 ... 7.777941 50 30757 ... 7.032951 51 30758 ... 5.768365 52 30759 ... 3.849137 53 30760 ... 0.948829 54 30761 ... 1.004140 55 30762 ... 0.095635 56 30763 ... -0.856214 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: axwlbwqd wandb: Agent Starting Run: bngef59s with config: batch_size: 3 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: bngef59s
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.474827259778976 The number of items in train is: 14 The loss for epoch 0 1.605344804269927 The running loss is: 25.603744968771935 The number of items in train is: 14 The loss for epoch 1 1.8288389263408524 The running loss is: 23.369097493588924 The number of items in train is: 14 The loss for epoch 2 1.669221249542066 The running loss is: 17.44265967607498 The number of items in train is: 14 The loss for epoch 3 1.2459042625767844 The running loss is: 12.164395917207003 The number of items in train is: 14 The loss for epoch 4 0.868885422657643 The running loss is: 12.119173973798752 The number of items in train is: 14 The loss for epoch 5 0.865655283842768 The running loss is: 9.556369185447693 The number of items in train is: 14 The loss for epoch 6 0.6825977989605495 The running loss is: 9.649928107857704 The number of items in train is: 14 The loss for epoch 7 0.6892805791326931 The running loss is: 11.666721649467945 The number of items in train is: 14 The loss for epoch 8 0.8333372606762818 The running loss is: 8.00122594833374 The number of items in train is: 14 The loss for epoch 9 0.5715161391666957 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.312113 48 30755 ... 15.524620 49 30756 ... 21.541870 50 30757 ... 20.370146 51 30758 ... 19.467724 52 30759 ... 19.207888 53 30760 ... 16.430124 54 30761 ... 22.729057 55 30762 ... 23.434126 56 30763 ... 24.633392 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bngef59s wandb: Agent Starting Run: nsmc9ilv with config: batch_size: 3 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: nsmc9ilv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.707977592945099 The number of items in train is: 13 The loss for epoch 0 1.2083059686880846 The running loss is: 19.711661607492715 The number of items in train is: 13 The loss for epoch 1 1.5162816621148243 The running loss is: 20.035046309232712 The number of items in train is: 13 The loss for epoch 2 1.5411574084025164 The running loss is: 15.251697435975075 The number of items in train is: 13 The loss for epoch 3 1.1732074950750058 The running loss is: 11.459911532700062 The number of items in train is: 13 The loss for epoch 4 0.8815316563615432 The running loss is: 9.84505944699049 The number of items in train is: 13 The loss for epoch 5 0.7573122651531146 The running loss is: 9.718630462884903 The number of items in train is: 13 The loss for epoch 6 0.747586958683454 The running loss is: 8.777115888893604 The number of items in train is: 13 The loss for epoch 7 0.6751627606841234 The running loss is: 9.399527624249458 The number of items in train is: 13 The loss for epoch 8 0.7230405864807276 The running loss is: 9.292045809328556 The number of items in train is: 13 The loss for epoch 9 0.7147727545637351 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.226769 48 30755 ... 9.470608 49 30756 ... 9.915501 50 30757 ... 9.908090 51 30758 ... 9.937128 52 30759 ... 10.003601 53 30760 ... 10.060073 54 30761 ... 9.755686 55 30762 ... 9.939466 56 30763 ... 10.018828 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nsmc9ilv wandb: Agent Starting Run: ifw0p83l with config: batch_size: 3 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ifw0p83l
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.531682252883911 The number of items in train is: 13 The loss for epoch 0 0.963975557914147 The running loss is: 20.678108781576157 The number of items in train is: 13 The loss for epoch 1 1.590623752428935 The running loss is: 20.66189543902874 The number of items in train is: 13 The loss for epoch 2 1.58937657223298 The running loss is: 15.72855657339096 The number of items in train is: 13 The loss for epoch 3 1.2098889671839201 The running loss is: 11.498915523290634 The number of items in train is: 13 The loss for epoch 4 0.8845319633300488 The running loss is: 10.46013493835926 The number of items in train is: 13 The loss for epoch 5 0.8046257644891739 The running loss is: 9.681835949420929 The number of items in train is: 13 The loss for epoch 6 0.7447566114939176 The running loss is: 8.949368417263031 The number of items in train is: 13 The loss for epoch 7 0.6884129551740793 The running loss is: 8.690906845033169 The number of items in train is: 13 The loss for epoch 8 0.6685312957717822 The running loss is: 9.19144169986248 The number of items in train is: 13 The loss for epoch 9 0.7070339769124985 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.390057 48 30755 ... 9.157915 49 30756 ... 11.250272 50 30757 ... 11.213902 51 30758 ... 10.737865 52 30759 ... 10.233933 53 30760 ... 9.121439 54 30761 ... 10.235040 55 30762 ... 9.953352 56 30763 ... 10.905466 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ifw0p83l wandb: Agent Starting Run: ipvidfam with config: batch_size: 3 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ipvidfam
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 119.7130461782217 The number of items in train is: 14 The loss for epoch 0 8.55093186987298 The running loss is: 55.55126856267452 The number of items in train is: 14 The loss for epoch 1 3.9679477544767514 The running loss is: 24.79954195022583 The number of items in train is: 14 The loss for epoch 2 1.7713958535875594 The running loss is: 29.550060272216797 The number of items in train is: 14 The loss for epoch 3 2.1107185908726285 The running loss is: 34.141096126288176 The number of items in train is: 14 The loss for epoch 4 2.4386497233062983 The running loss is: 19.86576085537672 The number of items in train is: 14 The loss for epoch 5 1.4189829182411944 The running loss is: 12.140714094042778 The number of items in train is: 14 The loss for epoch 6 0.8671938638601985 The running loss is: 10.807734534144402 The number of items in train is: 14 The loss for epoch 7 0.7719810381531715 The running loss is: 8.74726428091526 The number of items in train is: 14 The loss for epoch 8 0.6248045914939472 The running loss is: 8.744693741202354 The number of items in train is: 14 The loss for epoch 9 0.6246209815144539 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.098480 48 30755 ... 11.234056 49 30756 ... 16.740345 50 30757 ... 15.662832 51 30758 ... 13.948870 52 30759 ... 13.708152 53 30760 ... 11.351399 54 30761 ... 11.689322 55 30762 ... 11.627025 56 30763 ... 16.219433 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ipvidfam wandb: Agent Starting Run: vol92wf7 with config: batch_size: 3 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: vol92wf7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 60.953131318092346 The number of items in train is: 13 The loss for epoch 0 4.688702409084026 The running loss is: 35.30423188209534 The number of items in train is: 13 The loss for epoch 1 2.7157101447765646 The running loss is: 17.126852050423622 The number of items in train is: 13 The loss for epoch 2 1.317450157724894 The running loss is: 29.961639672517776 The number of items in train is: 13 The loss for epoch 3 2.3047415132705984 The running loss is: 28.83660078048706 The number of items in train is: 13 The loss for epoch 4 2.218200060037466 The running loss is: 13.997964818030596 The number of items in train is: 13 The loss for epoch 5 1.076766524463892 The running loss is: 13.703625090420246 The number of items in train is: 13 The loss for epoch 6 1.0541250069554036 The running loss is: 14.603826694190502 The number of items in train is: 13 The loss for epoch 7 1.1233712841685002 The running loss is: 12.683620244264603 The number of items in train is: 13 The loss for epoch 8 0.9756630957126617 The running loss is: 11.017892237752676 The number of items in train is: 13 The loss for epoch 9 0.8475301721348212 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.601355 48 30755 ... 8.784111 49 30756 ... 14.580492 50 30757 ... 13.166733 51 30758 ... 11.297988 52 30759 ... 10.419773 53 30760 ... 8.309337 54 30761 ... 8.855109 55 30762 ... 9.287474 56 30763 ... 13.585121 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vol92wf7 wandb: Agent Starting Run: ui1q5amn with config: batch_size: 3 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ui1q5amn
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 43.07047265768051 The number of items in train is: 13 The loss for epoch 0 3.3131132813600392 The running loss is: 24.968651235103607 The number of items in train is: 13 The loss for epoch 1 1.9206654796233544 The running loss is: 19.673025608062744 The number of items in train is: 13 The loss for epoch 2 1.5133096621586726 The running loss is: 15.400908634066582 The number of items in train is: 13 The loss for epoch 3 1.1846852795435832 The running loss is: 13.345179736614227 The number of items in train is: 13 The loss for epoch 4 1.0265522874318636 The running loss is: 12.23420536518097 The number of items in train is: 13 The loss for epoch 5 0.9410927203985361 The running loss is: 12.980785593390465 The number of items in train is: 13 The loss for epoch 6 0.9985219687223434 The running loss is: 11.168275743722916 The number of items in train is: 13 The loss for epoch 7 0.859098134132532 The running loss is: 10.740023881196976 The number of items in train is: 13 The loss for epoch 8 0.8261556831689981 The running loss is: 10.570404797792435 The number of items in train is: 13 The loss for epoch 9 0.8131080613686488 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.098559 48 30755 ... 10.974888 49 30756 ... 15.032891 50 30757 ... 14.901587 51 30758 ... 13.627957 52 30759 ... 13.362471 53 30760 ... 11.854248 54 30761 ... 13.219946 55 30762 ... 13.206392 56 30763 ... 15.721452 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ui1q5amn wandb: Agent Starting Run: 1godljqj with config: batch_size: 3 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 1godljqj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.187944933772087 The number of items in train is: 13 The loss for epoch 0 1.1683034564440067 The running loss is: 12.53387589007616 The number of items in train is: 13 The loss for epoch 1 0.9641442992366277 The running loss is: 8.774933334439993 The number of items in train is: 13 The loss for epoch 2 0.6749948718799994 The running loss is: 7.201144218444824 The number of items in train is: 13 The loss for epoch 3 0.5539341706496018 The running loss is: 7.156394409015775 The number of items in train is: 13 The loss for epoch 4 0.550491877616598 The running loss is: 6.275515090674162 The number of items in train is: 13 The loss for epoch 5 0.4827319300518586 The running loss is: 6.67833286896348 The number of items in train is: 13 The loss for epoch 6 0.5137179129971907 The running loss is: 5.711407098919153 The number of items in train is: 13 The loss for epoch 7 0.4393390076091656 The running loss is: 5.9839532896876335 The number of items in train is: 13 The loss for epoch 8 0.46030409920674104 The running loss is: 6.153777305036783 The number of items in train is: 13 The loss for epoch 9 0.4733674850028295 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.458205 48 30755 ... 7.137259 49 30756 ... 8.528614 50 30757 ... 8.608210 51 30758 ... 8.303369 52 30759 ... 7.806078 53 30760 ... 7.328808 54 30761 ... 5.026564 55 30762 ... 6.488012 56 30763 ... 8.036192 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1godljqj wandb: Agent Starting Run: ptu5e09p with config: batch_size: 3 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ptu5e09p
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.338553577661514 The number of items in train is: 13 The loss for epoch 0 1.3337348905893474 The running loss is: 12.01589360833168 The number of items in train is: 13 The loss for epoch 1 0.9242995083332062 The running loss is: 9.383199691772461 The number of items in train is: 13 The loss for epoch 2 0.7217845916748047 The running loss is: 7.883500777184963 The number of items in train is: 13 The loss for epoch 3 0.6064231367065356 The running loss is: 7.181640453636646 The number of items in train is: 13 The loss for epoch 4 0.5524338810489728 The running loss is: 7.315292157232761 The number of items in train is: 13 The loss for epoch 5 0.562714781325597 The running loss is: 6.892123244702816 The number of items in train is: 13 The loss for epoch 6 0.5301633265156013 The running loss is: 6.666610881686211 The number of items in train is: 13 The loss for epoch 7 0.5128162216681701 The running loss is: 6.246898893266916 The number of items in train is: 13 The loss for epoch 8 0.4805306840974551 The running loss is: 6.445175599306822 The number of items in train is: 13 The loss for epoch 9 0.49578273840821707 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.591523 48 30755 ... 9.032697 49 30756 ... 9.293599 50 30757 ... 9.884513 51 30758 ... 10.124650 52 30759 ... 10.684422 53 30760 ... 11.456519 54 30761 ... 12.109084 55 30762 ... 12.055717 56 30763 ... 12.309025 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ptu5e09p wandb: Agent Starting Run: 1bn7u6ek with config: batch_size: 3 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1bn7u6ek
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.496125161647797 The number of items in train is: 13 The loss for epoch 0 1.2689327047421382 The running loss is: 14.214829742908478 The number of items in train is: 13 The loss for epoch 1 1.0934484417621906 The running loss is: 10.41348597407341 The number of items in train is: 13 The loss for epoch 2 0.8010373826210315 The running loss is: 9.035328388214111 The number of items in train is: 13 The loss for epoch 3 0.6950252606318548 The running loss is: 8.10020449757576 The number of items in train is: 13 The loss for epoch 4 0.6230926536596738 The running loss is: 8.421209901571274 The number of items in train is: 13 The loss for epoch 5 0.6477853770439441 The running loss is: 7.663483992218971 The number of items in train is: 13 The loss for epoch 6 0.5894987686322286 The running loss is: 8.22572796791792 The number of items in train is: 13 The loss for epoch 7 0.6327483052244554 The running loss is: 7.9032817631959915 The number of items in train is: 13 The loss for epoch 8 0.6079447510150763 The running loss is: 7.974031358957291 The number of items in train is: 13 The loss for epoch 9 0.6133870276120993 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.992487 48 30755 ... 12.461034 49 30756 ... 13.230320 50 30757 ... 13.786767 51 30758 ... 14.966878 52 30759 ... 16.526970 53 30760 ... 18.361691 54 30761 ... 18.917545 55 30762 ... 19.258251 56 30763 ... 19.971638 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1bn7u6ek wandb: Agent Starting Run: utturoc5 with config: batch_size: 3 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: utturoc5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.249525194987655 The number of items in train is: 13 The loss for epoch 0 0.8653480919221272 The running loss is: 30.46081379801035 The number of items in train is: 13 The loss for epoch 1 2.343139522923873 The running loss is: 9.777215026319027 The number of items in train is: 13 The loss for epoch 2 0.7520934635630021 The running loss is: 10.099652647972107 The number of items in train is: 13 The loss for epoch 3 0.7768963575363159 The running loss is: 7.714620653539896 The number of items in train is: 13 The loss for epoch 4 0.5934323579646074 The running loss is: 6.230708753690124 The number of items in train is: 13 The loss for epoch 5 0.4792852887453941 The running loss is: 6.548743784427643 The number of items in train is: 13 The loss for epoch 6 0.5037495218790494 The running loss is: 5.332755489274859 The number of items in train is: 13 The loss for epoch 7 0.41021196071345073 The running loss is: 5.4890450509265065 The number of items in train is: 13 The loss for epoch 8 0.42223423468665433 The running loss is: 6.13737740367651 The number of items in train is: 13 The loss for epoch 9 0.4721059541289623 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.758069 48 30755 ... 10.323517 49 30756 ... 11.307789 50 30757 ... 10.594126 51 30758 ... 10.666987 52 30759 ... 11.087155 53 30760 ... 11.666491 54 30761 ... 10.458287 55 30762 ... 12.071755 56 30763 ... 13.168046 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: utturoc5 wandb: Agent Starting Run: nvxoca53 with config: batch_size: 3 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: nvxoca53
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.307263173162937 The number of items in train is: 13 The loss for epoch 0 1.1005587056279182 The running loss is: 26.481370121240616 The number of items in train is: 13 The loss for epoch 1 2.0370284708646627 The running loss is: 10.21297961473465 The number of items in train is: 13 The loss for epoch 2 0.78561381651805 The running loss is: 9.383397921919823 The number of items in train is: 13 The loss for epoch 3 0.7217998401476786 The running loss is: 7.646930389106274 The number of items in train is: 13 The loss for epoch 4 0.5882254145466365 The running loss is: 7.441839635372162 The number of items in train is: 13 The loss for epoch 5 0.5724492027209356 The running loss is: 7.128525517880917 The number of items in train is: 13 The loss for epoch 6 0.5483481167600706 The running loss is: 6.7704630345106125 The number of items in train is: 13 The loss for epoch 7 0.5208048488085086 The running loss is: 6.290463771671057 The number of items in train is: 13 The loss for epoch 8 0.4838818285900813 The running loss is: 6.040915712714195 The number of items in train is: 13 The loss for epoch 9 0.4646858240549381 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.632046 48 30755 ... 10.507959 49 30756 ... 9.999850 50 30757 ... 11.279503 51 30758 ... 11.918778 52 30759 ... 12.729056 53 30760 ... 13.610320 54 30761 ... 15.292119 55 30762 ... 14.556417 56 30763 ... 14.570903 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nvxoca53 wandb: Agent Starting Run: bqts5xmo with config: batch_size: 3 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: bqts5xmo
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.725847855210304 The number of items in train is: 13 The loss for epoch 0 0.9789113734777157 The running loss is: 30.892170883715153 The number of items in train is: 13 The loss for epoch 1 2.376320837208858 The running loss is: 13.146855235099792 The number of items in train is: 13 The loss for epoch 2 1.0112965565461378 The running loss is: 12.148904085159302 The number of items in train is: 13 The loss for epoch 3 0.9345310834737924 The running loss is: 9.722107946872711 The number of items in train is: 13 The loss for epoch 4 0.7478544574517471 The running loss is: 9.249086931347847 The number of items in train is: 13 The loss for epoch 5 0.7114682254882959 The running loss is: 8.29569448530674 The number of items in train is: 13 The loss for epoch 6 0.6381303450235953 The running loss is: 8.795628726482391 The number of items in train is: 13 The loss for epoch 7 0.6765868251140301 The running loss is: 8.55500802397728 The number of items in train is: 13 The loss for epoch 8 0.6580775403059446 The running loss is: 8.533968634903431 The number of items in train is: 13 The loss for epoch 9 0.6564591257618024 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.248339 48 30755 ... 11.703672 49 30756 ... 12.366732 50 30757 ... 12.580591 51 30758 ... 13.153063 52 30759 ... 13.921073 53 30760 ... 14.727524 54 30761 ... 14.668133 55 30762 ... 15.302679 56 30763 ... 15.801561 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bqts5xmo wandb: Agent Starting Run: 97en7jps with config: batch_size: 3 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 97en7jps
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.382418245077133 The number of items in train is: 13 The loss for epoch 0 0.8755706342367026 The running loss is: 23.412592843174934 The number of items in train is: 13 The loss for epoch 1 1.8009686802442257 The running loss is: 17.038911778479815 The number of items in train is: 13 The loss for epoch 2 1.3106855214215243 The running loss is: 10.114607397466898 The number of items in train is: 13 The loss for epoch 3 0.7780467228820691 The running loss is: 9.873054258525372 The number of items in train is: 13 The loss for epoch 4 0.7594657121942594 The running loss is: 6.991059593856335 The number of items in train is: 13 The loss for epoch 5 0.5377738149120257 The running loss is: 7.195119507610798 The number of items in train is: 13 The loss for epoch 6 0.5534707313546767 The running loss is: 8.087266314774752 The number of items in train is: 13 The loss for epoch 7 0.622097408828827 The running loss is: 6.980310961604118 The number of items in train is: 13 The loss for epoch 8 0.5369469970464706 The running loss is: 8.746676992624998 The number of items in train is: 13 The loss for epoch 9 0.6728213071249999 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.572081 48 30755 ... 10.249009 49 30756 ... 9.171862 50 30757 ... 8.501332 51 30758 ... 8.400084 52 30759 ... 8.862746 53 30760 ... 8.692664 54 30761 ... 9.124661 55 30762 ... 9.978867 56 30763 ... 9.774427 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 97en7jps wandb: Agent Starting Run: mqseoc3o with config: batch_size: 3 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: mqseoc3o
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.85589762032032 The number of items in train is: 13 The loss for epoch 0 0.9119921246400247 The running loss is: 23.438958287239075 The number of items in train is: 13 The loss for epoch 1 1.8029967913260827 The running loss is: 16.074821338057518 The number of items in train is: 13 The loss for epoch 2 1.2365247183121169 The running loss is: 10.657343104481697 The number of items in train is: 13 The loss for epoch 3 0.819795623421669 The running loss is: 11.378557436168194 The number of items in train is: 13 The loss for epoch 4 0.8752736489360149 The running loss is: 10.08240570127964 The number of items in train is: 13 The loss for epoch 5 0.7755696693292031 The running loss is: 9.281341701745987 The number of items in train is: 13 The loss for epoch 6 0.7139493616727682 The running loss is: 9.217081643640995 The number of items in train is: 13 The loss for epoch 7 0.7090062802800765 The running loss is: 8.837434470653534 The number of items in train is: 13 The loss for epoch 8 0.6798026515887334 The running loss is: 8.208003804087639 The number of items in train is: 13 The loss for epoch 9 0.6313849080067414 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.769919 48 30755 ... 11.215531 49 30756 ... 11.267628 50 30757 ... 12.318272 51 30758 ... 12.608529 52 30759 ... 13.034577 53 30760 ... 13.474689 54 30761 ... 14.320210 55 30762 ... 14.396397 56 30763 ... 14.574674 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mqseoc3o wandb: Agent Starting Run: pfd9jj82 with config: batch_size: 3 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: pfd9jj82
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.825587838888168 The number of items in train is: 13 The loss for epoch 0 0.8327375260683206 The running loss is: 28.150420397520065 The number of items in train is: 13 The loss for epoch 1 2.1654169536553898 The running loss is: 20.6149685382843 The number of items in train is: 13 The loss for epoch 2 1.585766810637254 The running loss is: 11.813875526189804 The number of items in train is: 13 The loss for epoch 3 0.9087596558607541 The running loss is: 12.213937133550644 The number of items in train is: 13 The loss for epoch 4 0.9395336256577418 The running loss is: 11.47781416773796 The number of items in train is: 13 The loss for epoch 5 0.8829087821336893 The running loss is: 10.867890685796738 The number of items in train is: 13 The loss for epoch 6 0.8359915912151337 The running loss is: 10.418911457061768 The number of items in train is: 13 The loss for epoch 7 0.8014547274662898 The running loss is: 9.896387428045273 The number of items in train is: 13 The loss for epoch 8 0.7612605713880979 The running loss is: 9.135141223669052 The number of items in train is: 13 The loss for epoch 9 0.7027031710514655 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 15.415048 48 30755 ... 9.452928 49 30756 ... 10.730062 50 30757 ... 10.066430 51 30758 ... 9.313263 52 30759 ... 9.942549 53 30760 ... 10.416265 54 30761 ... 6.991664 55 30762 ... 10.831858 56 30763 ... 9.746800 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pfd9jj82 wandb: Agent Starting Run: vz7xqs63 with config: batch_size: 3 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: vz7xqs63
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 46.30128153041005 The number of items in train is: 13 The loss for epoch 0 3.561637040800773 The running loss is: 24.802572248037905 The number of items in train is: 13 The loss for epoch 1 1.9078901729259927 The running loss is: 13.231589883565903 The number of items in train is: 13 The loss for epoch 2 1.0178146064281464 The running loss is: 7.9983332976698875 The number of items in train is: 13 The loss for epoch 3 0.6152564075130683 The running loss is: 10.238236993551254 The number of items in train is: 13 The loss for epoch 4 0.7875566918116349 The running loss is: 9.1368916220963 The number of items in train is: 13 The loss for epoch 5 0.7028378170843308 The running loss is: 8.546009212732315 The number of items in train is: 13 The loss for epoch 6 0.6573853240563319 The running loss is: 8.557626497000456 The number of items in train is: 13 The loss for epoch 7 0.6582789613077273 The running loss is: 8.405014142394066 The number of items in train is: 13 The loss for epoch 8 0.6465395494149282 The running loss is: 8.690803073346615 The number of items in train is: 13 The loss for epoch 9 0.668523313334355 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.108495 48 30755 ... 10.607700 49 30756 ... 10.552139 50 30757 ... 11.810363 51 30758 ... 11.965808 52 30759 ... 11.572226 53 30760 ... 11.432143 54 30761 ... 11.407201 55 30762 ... 11.625036 56 30763 ... 11.583269 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vz7xqs63 wandb: Agent Starting Run: vat0wthg with config: batch_size: 3 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: vat0wthg
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 38.69787164032459 The number of items in train is: 13 The loss for epoch 0 2.9767593569480457 The running loss is: 20.345289036631584 The number of items in train is: 13 The loss for epoch 1 1.565022233587045 The running loss is: 14.763616390526295 The number of items in train is: 13 The loss for epoch 2 1.1356627992712534 The running loss is: 10.519289702177048 The number of items in train is: 13 The loss for epoch 3 0.8091761309366959 The running loss is: 12.006632789969444 The number of items in train is: 13 The loss for epoch 4 0.9235871376899573 The running loss is: 10.068530097603798 The number of items in train is: 13 The loss for epoch 5 0.7745023152002921 The running loss is: 10.892198204994202 The number of items in train is: 13 The loss for epoch 6 0.8378614003841693 The running loss is: 9.449286311864853 The number of items in train is: 13 The loss for epoch 7 0.726868177835758 The running loss is: 8.240423366427422 The number of items in train is: 13 The loss for epoch 8 0.6338787204944171 The running loss is: 8.944622784852982 The number of items in train is: 13 The loss for epoch 9 0.6880479065271524 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.047753 48 30755 ... 11.163092 49 30756 ... 11.282596 50 30757 ... 12.519486 51 30758 ... 13.338696 52 30759 ... 14.516523 53 30760 ... 15.342272 54 30761 ... 15.626085 55 30762 ... 15.729576 56 30763 ... 15.897081 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vat0wthg wandb: Agent Starting Run: 7ympyi75 with config: batch_size: 3 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 7ympyi75
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 42.751119792461395 The number of items in train is: 13 The loss for epoch 0 3.2885476763431845 The running loss is: 22.814359664916992 The number of items in train is: 13 The loss for epoch 1 1.7549507434551532 The running loss is: 17.861228555440903 The number of items in train is: 13 The loss for epoch 2 1.3739406581108387 The running loss is: 13.160692304372787 The number of items in train is: 13 The loss for epoch 3 1.0123609464902144 The running loss is: 12.061859995126724 The number of items in train is: 13 The loss for epoch 4 0.9278353842405173 The running loss is: 11.913350507616997 The number of items in train is: 13 The loss for epoch 5 0.9164115775089997 The running loss is: 10.849895969033241 The number of items in train is: 13 The loss for epoch 6 0.8346073822333262 The running loss is: 11.268224865198135 The number of items in train is: 13 The loss for epoch 7 0.8667865280921643 The running loss is: 10.611917436122894 The number of items in train is: 13 The loss for epoch 8 0.8163013412402227 The running loss is: 9.465873330831528 The number of items in train is: 13 The loss for epoch 9 0.7281441023716559 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.687474 48 30755 ... 8.196827 49 30756 ... 8.605579 50 30757 ... 8.132575 51 30758 ... 7.834826 52 30759 ... 7.821600 53 30760 ... 8.354590 54 30761 ... 8.151829 55 30762 ... 8.153378 56 30763 ... 8.345223 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7ympyi75 wandb: Agent Starting Run: wlmcvsr7 with config: batch_size: 3 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: wlmcvsr7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.07284878194332 The number of items in train is: 13 The loss for epoch 0 1.2363729832264094 The running loss is: 11.393546909093857 The number of items in train is: 13 The loss for epoch 1 0.8764266853149121 The running loss is: 9.211045920848846 The number of items in train is: 13 The loss for epoch 2 0.7085419939114497 The running loss is: 8.046417102217674 The number of items in train is: 13 The loss for epoch 3 0.6189551617090518 The running loss is: 8.130555003881454 The number of items in train is: 13 The loss for epoch 4 0.6254273079908811 The running loss is: 7.790109492838383 The number of items in train is: 13 The loss for epoch 5 0.5992391917567986 The running loss is: 7.453979782760143 The number of items in train is: 13 The loss for epoch 6 0.5733830602123187 The running loss is: 7.104567661881447 The number of items in train is: 13 The loss for epoch 7 0.5465052047601113 The running loss is: 6.915351435542107 The number of items in train is: 13 The loss for epoch 8 0.5319501104263159 The running loss is: 7.459764987230301 The number of items in train is: 13 The loss for epoch 9 0.5738280759407923 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.308602 48 30755 ... 8.039572 49 30756 ... 8.126947 50 30757 ... 8.647640 51 30758 ... 8.920097 52 30759 ... 8.672168 53 30760 ... 8.654925 54 30761 ... 8.377190 55 30762 ... 7.938785 56 30763 ... 8.490222 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wlmcvsr7 wandb: Agent Starting Run: 4usoutte with config: batch_size: 3 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4usoutte
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.015090629458427 The number of items in train is: 13 The loss for epoch 0 1.308853125342956 The running loss is: 14.904403626918793 The number of items in train is: 13 The loss for epoch 1 1.146492586686061 The running loss is: 9.877731040120125 The number of items in train is: 13 The loss for epoch 2 0.759825464624625 The running loss is: 8.914640828967094 The number of items in train is: 13 The loss for epoch 3 0.685741602228238 The running loss is: 8.24161709845066 The number of items in train is: 13 The loss for epoch 4 0.6339705460346662 The running loss is: 7.48406345397234 The number of items in train is: 13 The loss for epoch 5 0.5756971887671031 The running loss is: 7.502739422023296 The number of items in train is: 13 The loss for epoch 6 0.5771338016940997 The running loss is: 7.524602979421616 The number of items in train is: 13 The loss for epoch 7 0.5788156138016627 The running loss is: 7.4196352288126945 The number of items in train is: 13 The loss for epoch 8 0.5707411714471303 The running loss is: 8.976969480514526 The number of items in train is: 13 The loss for epoch 9 0.6905361138857328 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.343148 48 30755 ... 7.248403 49 30756 ... 6.399437 50 30757 ... 6.592106 51 30758 ... 4.307819 52 30759 ... 3.254845 53 30760 ... 2.614995 54 30761 ... 2.333879 55 30762 ... 1.141000 56 30763 ... 0.928883 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4usoutte wandb: Agent Starting Run: qnbzxb65 with config: batch_size: 3 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: qnbzxb65
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.061375049874187 The number of items in train is: 12 The loss for epoch 0 1.3384479208228488 The running loss is: 11.802918165922165 The number of items in train is: 12 The loss for epoch 1 0.9835765138268471 The running loss is: 9.635548263788223 The number of items in train is: 12 The loss for epoch 2 0.8029623553156853 The running loss is: 7.900071606040001 The number of items in train is: 12 The loss for epoch 3 0.6583393005033334 The running loss is: 7.308927018195391 The number of items in train is: 12 The loss for epoch 4 0.6090772515162826 The running loss is: 7.408294729888439 The number of items in train is: 12 The loss for epoch 5 0.61735789415737 The running loss is: 7.30912384018302 The number of items in train is: 12 The loss for epoch 6 0.609093653348585 The running loss is: 8.098075211048126 The number of items in train is: 12 The loss for epoch 7 0.6748396009206772 The running loss is: 8.676205836236477 The number of items in train is: 12 The loss for epoch 8 0.7230171530197064 The running loss is: 8.98013935610652 The number of items in train is: 12 The loss for epoch 9 0.7483449463422099 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.317636 48 30755 ... 8.713526 49 30756 ... 7.261724 50 30757 ... 7.391668 51 30758 ... 6.424718 52 30759 ... 6.508060 53 30760 ... 6.848399 54 30761 ... 6.814502 55 30762 ... 6.458637 56 30763 ... 6.546707 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qnbzxb65 wandb: Agent Starting Run: 6u98nj7v with config: batch_size: 3 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 6u98nj7v
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.765893511474133 The number of items in train is: 13 The loss for epoch 0 1.0589148854980102 The running loss is: 23.43887052498758 The number of items in train is: 13 The loss for epoch 1 1.8029900403836598 The running loss is: 10.36953791975975 The number of items in train is: 13 The loss for epoch 2 0.7976567630584424 The running loss is: 8.904323771595955 The number of items in train is: 13 The loss for epoch 3 0.6849479824304581 The running loss is: 7.417386781424284 The number of items in train is: 13 The loss for epoch 4 0.5705682139557141 The running loss is: 7.913604368921369 The number of items in train is: 13 The loss for epoch 5 0.6087387976093361 The running loss is: 6.859258336946368 The number of items in train is: 13 The loss for epoch 6 0.5276352566881821 The running loss is: 6.282172272214666 The number of items in train is: 13 The loss for epoch 7 0.4832440209395897 The running loss is: 6.116885121911764 The number of items in train is: 13 The loss for epoch 8 0.4705296247624434 The running loss is: 7.14730378985405 The number of items in train is: 13 The loss for epoch 9 0.5497925992195423 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.736671 48 30755 ... 11.564378 49 30756 ... 9.607123 50 30757 ... 10.786201 51 30758 ... 10.428370 52 30759 ... 11.004709 53 30760 ... 11.867481 54 30761 ... 11.287722 55 30762 ... 10.306524 56 30763 ... 11.843080 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6u98nj7v wandb: Agent Starting Run: x8y2ap84 with config: batch_size: 3 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: x8y2ap84
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.553385689854622 The number of items in train is: 13 The loss for epoch 0 0.9656450530657401 The running loss is: 32.152095057070255 The number of items in train is: 13 The loss for epoch 1 2.4732380813130965 The running loss is: 13.22272926568985 The number of items in train is: 13 The loss for epoch 2 1.0171330204376807 The running loss is: 12.398492097854614 The number of items in train is: 13 The loss for epoch 3 0.9537301613734319 The running loss is: 9.956698954105377 The number of items in train is: 13 The loss for epoch 4 0.7658999195465674 The running loss is: 8.292960315942764 The number of items in train is: 13 The loss for epoch 5 0.6379200243032895 The running loss is: 7.7905485183000565 The number of items in train is: 13 The loss for epoch 6 0.5992729629461582 The running loss is: 7.017962105572224 The number of items in train is: 13 The loss for epoch 7 0.539843238890171 The running loss is: 7.154788330197334 The number of items in train is: 13 The loss for epoch 8 0.5503683330921026 The running loss is: 6.995831839740276 The number of items in train is: 13 The loss for epoch 9 0.5381409107492521 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.034538 48 30755 ... 3.927094 49 30756 ... 3.308820 50 30757 ... 3.999937 51 30758 ... 1.726190 52 30759 ... 0.882484 53 30760 ... 0.202644 54 30761 ... -2.367896 55 30762 ... -4.971350 56 30763 ... -3.257763 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: x8y2ap84 wandb: Agent Starting Run: f4nlybf9 with config: batch_size: 3 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: f4nlybf9
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.682664819061756 The number of items in train is: 12 The loss for epoch 0 1.056888734921813 The running loss is: 26.245943874120712 The number of items in train is: 12 The loss for epoch 1 2.1871619895100594 The running loss is: 10.745129108428955 The number of items in train is: 12 The loss for epoch 2 0.895427425702413 The running loss is: 10.478202775120735 The number of items in train is: 12 The loss for epoch 3 0.8731835645933946 The running loss is: 8.926227048039436 The number of items in train is: 12 The loss for epoch 4 0.7438522540032864 The running loss is: 7.637079827487469 The number of items in train is: 12 The loss for epoch 5 0.6364233189572891 The running loss is: 7.005005210638046 The number of items in train is: 12 The loss for epoch 6 0.5837504342198372 The running loss is: 6.797870747745037 The number of items in train is: 12 The loss for epoch 7 0.5664892289787531 The running loss is: 7.502613537013531 The number of items in train is: 12 The loss for epoch 8 0.6252177947511276 The running loss is: 7.621904402971268 The number of items in train is: 12 The loss for epoch 9 0.6351587002476057 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.770882 48 30755 ... 8.434825 49 30756 ... 5.860340 50 30757 ... 6.031592 51 30758 ... 3.103240 52 30759 ... 1.140361 53 30760 ... -0.055734 54 30761 ... -0.050757 55 30762 ... -0.057389 56 30763 ... -0.524463 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: f4nlybf9 wandb: Agent Starting Run: bxrcu8tu with config: batch_size: 3 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: bxrcu8tu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.525801971554756 The number of items in train is: 13 The loss for epoch 0 0.963523228581135 The running loss is: 23.895836547017097 The number of items in train is: 13 The loss for epoch 1 1.838141272847469 The running loss is: 14.084609515964985 The number of items in train is: 13 The loss for epoch 2 1.0834315012280757 The running loss is: 10.381171528249979 The number of items in train is: 13 The loss for epoch 3 0.7985516560192292 The running loss is: 10.052995964884758 The number of items in train is: 13 The loss for epoch 4 0.7733073819142121 The running loss is: 10.303962796926498 The number of items in train is: 13 The loss for epoch 5 0.7926125228404999 The running loss is: 8.726175464689732 The number of items in train is: 13 The loss for epoch 6 0.6712442665145948 The running loss is: 9.212526094168425 The number of items in train is: 13 The loss for epoch 7 0.7086558533975711 The running loss is: 10.139194697141647 The number of items in train is: 13 The loss for epoch 8 0.7799380536262805 The running loss is: 10.184998378157616 The number of items in train is: 13 The loss for epoch 9 0.783461413704432 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.354187 48 30755 ... 13.430566 49 30756 ... 10.369150 50 30757 ... 10.154779 51 30758 ... 10.079480 52 30759 ... 10.377722 53 30760 ... 11.070954 54 30761 ... 9.903352 55 30762 ... 9.985621 56 30763 ... 9.941944 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bxrcu8tu wandb: Agent Starting Run: je2yahnk with config: batch_size: 3 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: je2yahnk
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.798818975687027 The number of items in train is: 13 The loss for epoch 0 0.8306783827451559 The running loss is: 28.490219056606293 The number of items in train is: 13 The loss for epoch 1 2.191555312046638 The running loss is: 19.000672325491905 The number of items in train is: 13 The loss for epoch 2 1.4615901788839927 The running loss is: 12.530485570430756 The number of items in train is: 13 The loss for epoch 3 0.9638835054177505 The running loss is: 11.969089105725288 The number of items in train is: 13 The loss for epoch 4 0.9206991619788684 The running loss is: 10.927263751626015 The number of items in train is: 13 The loss for epoch 5 0.8405587501250781 The running loss is: 10.749707907438278 The number of items in train is: 13 The loss for epoch 6 0.826900608264483 The running loss is: 8.986315917223692 The number of items in train is: 13 The loss for epoch 7 0.6912550705556686 The running loss is: 7.793350949883461 The number of items in train is: 13 The loss for epoch 8 0.59948853460642 The running loss is: 7.86865272372961 The number of items in train is: 13 The loss for epoch 9 0.6052809787484316 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.091916 48 30755 ... 11.852512 49 30756 ... 10.316889 50 30757 ... 11.192894 51 30758 ... 12.840643 52 30759 ... 13.993360 53 30760 ... 15.278111 54 30761 ... 12.534163 55 30762 ... 9.271551 56 30763 ... 11.861491 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: je2yahnk wandb: Agent Starting Run: pv154y7u with config: batch_size: 3 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: pv154y7u
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.802732415497303 The number of items in train is: 12 The loss for epoch 0 0.8168943679581085 The running loss is: 26.21215522289276 The number of items in train is: 12 The loss for epoch 1 2.1843462685743966 The running loss is: 17.116993874311447 The number of items in train is: 12 The loss for epoch 2 1.4264161561926205 The running loss is: 10.959399312734604 The number of items in train is: 12 The loss for epoch 3 0.913283276061217 The running loss is: 10.964498907327652 The number of items in train is: 12 The loss for epoch 4 0.9137082422773043 The running loss is: 9.913394719362259 The number of items in train is: 12 The loss for epoch 5 0.8261162266135216 The running loss is: 8.57229234278202 The number of items in train is: 12 The loss for epoch 6 0.714357695231835 The running loss is: 7.871752962470055 The number of items in train is: 12 The loss for epoch 7 0.6559794135391712 The running loss is: 7.458349071443081 The number of items in train is: 12 The loss for epoch 8 0.6215290892869234 The running loss is: 8.988392800092697 The number of items in train is: 12 The loss for epoch 9 0.7490327333410581 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.390130 48 30755 ... 11.972624 49 30756 ... 8.251997 50 30757 ... 8.524872 51 30758 ... 7.873636 52 30759 ... 6.769165 53 30760 ... 5.787257 54 30761 ... 4.192029 55 30762 ... 2.647506 56 30763 ... 3.688875 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pv154y7u wandb: Agent Starting Run: tfairxgi with config: batch_size: 3 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: tfairxgi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 37.44812400639057 The number of items in train is: 13 The loss for epoch 0 2.8806249235685053 The running loss is: 22.365391314029694 The number of items in train is: 13 The loss for epoch 1 1.7204147164638226 The running loss is: 14.247072592377663 The number of items in train is: 13 The loss for epoch 2 1.095928660952128 The running loss is: 12.75909799337387 The number of items in train is: 13 The loss for epoch 3 0.9814690764133747 The running loss is: 17.026127204298973 The number of items in train is: 13 The loss for epoch 4 1.3097020926383824 The running loss is: 12.31944526731968 The number of items in train is: 13 The loss for epoch 5 0.9476496359476676 The running loss is: 13.54552149027586 The number of items in train is: 13 The loss for epoch 6 1.0419631915596814 The running loss is: 12.44608373939991 The number of items in train is: 13 The loss for epoch 7 0.9573910568769162 The running loss is: 10.811461791396141 The number of items in train is: 13 The loss for epoch 8 0.8316509070304724 The running loss is: 13.428137093782425 The number of items in train is: 13 The loss for epoch 9 1.032933622598648 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.360991 48 30755 ... 12.424065 49 30756 ... 12.174776 50 30757 ... 11.980565 51 30758 ... 11.824924 52 30759 ... 12.332734 53 30760 ... 12.714437 54 30761 ... 13.116733 55 30762 ... 13.821445 56 30763 ... 13.117739 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tfairxgi wandb: Agent Starting Run: qaitrbya with config: batch_size: 3 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: qaitrbya
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 49.11082097887993 The number of items in train is: 13 The loss for epoch 0 3.7777554599138408 The running loss is: 25.69899582862854 The number of items in train is: 13 The loss for epoch 1 1.9768458329714262 The running loss is: 17.135295033454895 The number of items in train is: 13 The loss for epoch 2 1.3180996179580688 The running loss is: 11.379485577344894 The number of items in train is: 13 The loss for epoch 3 0.8753450444111457 The running loss is: 11.188541859388351 The number of items in train is: 13 The loss for epoch 4 0.8606570661067963 The running loss is: 11.069215461611748 The number of items in train is: 13 The loss for epoch 5 0.8514781124316729 The running loss is: 10.00205671787262 The number of items in train is: 13 The loss for epoch 6 0.7693889782978938 The running loss is: 10.64719857275486 The number of items in train is: 13 The loss for epoch 7 0.819015274827297 The running loss is: 10.02389670908451 The number of items in train is: 13 The loss for epoch 8 0.7710689776218854 The running loss is: 9.106609582901001 The number of items in train is: 13 The loss for epoch 9 0.7005084294539231 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.008989 48 30755 ... 9.304375 49 30756 ... 6.913957 50 30757 ... 6.941987 51 30758 ... 6.408734 52 30759 ... 5.711936 53 30760 ... 5.180847 54 30761 ... 4.393548 55 30762 ... 4.547277 56 30763 ... 4.002431 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qaitrbya wandb: Agent Starting Run: iouf2wvs with config: batch_size: 3 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: iouf2wvs
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 39.271602153778076 The number of items in train is: 12 The loss for epoch 0 3.27263351281484 The running loss is: 20.22679728269577 The number of items in train is: 12 The loss for epoch 1 1.6855664402246475 The running loss is: 12.615855321288109 The number of items in train is: 12 The loss for epoch 2 1.051321276774009 The running loss is: 11.286904752254486 The number of items in train is: 12 The loss for epoch 3 0.9405753960212072 The running loss is: 10.426268815994263 The number of items in train is: 12 The loss for epoch 4 0.8688557346661886 The running loss is: 10.909985393285751 The number of items in train is: 12 The loss for epoch 5 0.9091654494404793 The running loss is: 9.572229564189911 The number of items in train is: 12 The loss for epoch 6 0.7976857970158259 The running loss is: 10.429155349731445 The number of items in train is: 12 The loss for epoch 7 0.8690962791442871 The running loss is: 8.921477675437927 The number of items in train is: 12 The loss for epoch 8 0.7434564729531606 The running loss is: 10.159409493207932 The number of items in train is: 12 The loss for epoch 9 0.8466174577673277 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.940737 48 30755 ... 8.700059 49 30756 ... 7.716850 50 30757 ... 7.790635 51 30758 ... 7.375722 52 30759 ... 7.020612 53 30760 ... 7.071692 54 30761 ... 7.064066 55 30762 ... 7.515588 56 30763 ... 7.197381 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: iouf2wvs wandb: Agent Starting Run: hissdac6 with config: batch_size: 3 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: hissdac6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.642247676849365 The number of items in train is: 13 The loss for epoch 0 1.280172898219182 The running loss is: 16.28763623908162 The number of items in train is: 13 The loss for epoch 1 1.2528950953139708 The running loss is: 9.172755971550941 The number of items in train is: 13 The loss for epoch 2 0.7055966131962262 The running loss is: 7.831138916313648 The number of items in train is: 13 The loss for epoch 3 0.602395301254896 The running loss is: 7.456290934234858 The number of items in train is: 13 The loss for epoch 4 0.5735608410949891 The running loss is: 7.011703036725521 The number of items in train is: 13 The loss for epoch 5 0.5393617720558093 The running loss is: 6.7462056539952755 The number of items in train is: 13 The loss for epoch 6 0.5189388964611751 The running loss is: 6.409943629056215 The number of items in train is: 13 The loss for epoch 7 0.4930725868504781 The running loss is: 6.455305725336075 The number of items in train is: 13 The loss for epoch 8 0.49656197887200576 The running loss is: 5.876091826707125 The number of items in train is: 13 The loss for epoch 9 0.45200706359285575 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.442939 48 30755 ... 14.496378 49 30756 ... 20.103035 50 30757 ... 14.229822 51 30758 ... 14.765225 52 30759 ... 15.657488 53 30760 ... 19.752836 54 30761 ... 19.353802 55 30762 ... 20.783958 56 30763 ... 22.710882 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hissdac6 wandb: Agent Starting Run: sq780sr1 with config: batch_size: 3 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sq780sr1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.69208151102066 The number of items in train is: 12 The loss for epoch 0 1.2243401259183884 The running loss is: 13.725030314177275 The number of items in train is: 12 The loss for epoch 1 1.1437525261814396 The running loss is: 8.605534479022026 The number of items in train is: 12 The loss for epoch 2 0.7171278732518355 The running loss is: 7.257033374160528 The number of items in train is: 12 The loss for epoch 3 0.604752781180044 The running loss is: 6.742498558014631 The number of items in train is: 12 The loss for epoch 4 0.5618748798345526 The running loss is: 6.170779198408127 The number of items in train is: 12 The loss for epoch 5 0.5142315998673439 The running loss is: 5.943502962589264 The number of items in train is: 12 The loss for epoch 6 0.49529191354910534 The running loss is: 6.512494046241045 The number of items in train is: 12 The loss for epoch 7 0.5427078371867537 The running loss is: 5.600046152248979 The number of items in train is: 12 The loss for epoch 8 0.4666705126874149 The running loss is: 6.0191479958593845 The number of items in train is: 12 The loss for epoch 9 0.5015956663216153 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.703872 48 30755 ... 10.141007 49 30756 ... 11.051534 50 30757 ... 5.682369 51 30758 ... 5.453309 52 30759 ... 3.219275 53 30760 ... 1.562811 54 30761 ... 1.084062 55 30762 ... 0.619162 56 30763 ... -0.067193 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sq780sr1 wandb: Agent Starting Run: 3lkpbgj0 with config: batch_size: 3 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 3lkpbgj0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.149451583623886 The number of items in train is: 12 The loss for epoch 0 1.2624542986353238 The running loss is: 12.484605565667152 The number of items in train is: 12 The loss for epoch 1 1.0403837971389294 The running loss is: 9.57485019415617 The number of items in train is: 12 The loss for epoch 2 0.7979041828463475 The running loss is: 8.463449150323868 The number of items in train is: 12 The loss for epoch 3 0.7052874291936556 The running loss is: 7.940030604600906 The number of items in train is: 12 The loss for epoch 4 0.6616692170500755 The running loss is: 7.351875007152557 The number of items in train is: 12 The loss for epoch 5 0.6126562505960464 The running loss is: 7.489130318164825 The number of items in train is: 12 The loss for epoch 6 0.6240941931804022 The running loss is: 6.787940315902233 The number of items in train is: 12 The loss for epoch 7 0.5656616929918528 The running loss is: 7.015684597194195 The number of items in train is: 12 The loss for epoch 8 0.5846403830995163 The running loss is: 6.8622966930270195 The number of items in train is: 12 The loss for epoch 9 0.5718580577522516 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.617135 48 30755 ... 8.451162 49 30756 ... 10.490123 50 30757 ... 3.936914 51 30758 ... 2.963327 52 30759 ... -1.098660 53 30760 ... -4.159821 54 30761 ... -6.189400 55 30762 ... -6.795932 56 30763 ... -6.658059 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3lkpbgj0 wandb: Agent Starting Run: 5v3ml29k with config: batch_size: 3 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5v3ml29k
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.161938413977623 The number of items in train is: 13 The loss for epoch 0 0.9355337241521249 The running loss is: 28.572343215346336 The number of items in train is: 13 The loss for epoch 1 2.1978725550266414 The running loss is: 12.400501441210508 The number of items in train is: 13 The loss for epoch 2 0.9538847262469622 The running loss is: 9.189391441643238 The number of items in train is: 13 The loss for epoch 3 0.7068762647417876 The running loss is: 7.397752322256565 The number of items in train is: 13 The loss for epoch 4 0.5690578709428127 The running loss is: 6.42874202132225 The number of items in train is: 13 The loss for epoch 5 0.4945186170247885 The running loss is: 6.827842012047768 The number of items in train is: 13 The loss for epoch 6 0.5252186163113668 The running loss is: 6.1493959575891495 The number of items in train is: 13 The loss for epoch 7 0.4730304582760884 The running loss is: 6.439127545803785 The number of items in train is: 13 The loss for epoch 8 0.4953175035233681 The running loss is: 8.07044368237257 The number of items in train is: 13 The loss for epoch 9 0.6208033601825054 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 4.922472 48 30755 ... 8.917814 49 30756 ... 18.689007 50 30757 ... 13.947339 51 30758 ... 11.741467 52 30759 ... 10.111837 53 30760 ... 11.390107 54 30761 ... 8.920159 55 30762 ... 10.996446 56 30763 ... 16.557650 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5v3ml29k wandb: Agent Starting Run: unibab00 with config: batch_size: 3 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: unibab00
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.454828664660454 The number of items in train is: 12 The loss for epoch 0 0.8712357220550379 The running loss is: 29.681454718112946 The number of items in train is: 12 The loss for epoch 1 2.4734545598427453 The running loss is: 10.859991066157818 The number of items in train is: 12 The loss for epoch 2 0.9049992555131515 The running loss is: 10.422705300152302 The number of items in train is: 12 The loss for epoch 3 0.8685587750126919 The running loss is: 8.322179265320301 The number of items in train is: 12 The loss for epoch 4 0.6935149387766918 The running loss is: 7.16530604660511 The number of items in train is: 12 The loss for epoch 5 0.5971088372170925 The running loss is: 6.654772460460663 The number of items in train is: 12 The loss for epoch 6 0.5545643717050552 The running loss is: 6.77964261546731 The number of items in train is: 12 The loss for epoch 7 0.5649702179556092 The running loss is: 6.088913932442665 The number of items in train is: 12 The loss for epoch 8 0.5074094943702221 The running loss is: 6.501669891178608 The number of items in train is: 12 The loss for epoch 9 0.541805824264884 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.519657 48 30755 ... 11.527104 49 30756 ... 14.025534 50 30757 ... 9.028507 51 30758 ... 9.338325 52 30759 ... 9.590857 53 30760 ... 10.613542 54 30761 ... 10.388042 55 30762 ... 10.484270 56 30763 ... 10.389216 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: unibab00 wandb: Agent Starting Run: ifp9eb1p with config: batch_size: 3 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ifp9eb1p
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.416129767894745 The number of items in train is: 12 The loss for epoch 0 1.0346774806578953 The running loss is: 24.20527493953705 The number of items in train is: 12 The loss for epoch 1 2.0171062449614205 The running loss is: 11.19543930888176 The number of items in train is: 12 The loss for epoch 2 0.9329532757401466 The running loss is: 10.788735710084438 The number of items in train is: 12 The loss for epoch 3 0.8990613091737032 The running loss is: 9.559967994689941 The number of items in train is: 12 The loss for epoch 4 0.7966639995574951 The running loss is: 8.618342891335487 The number of items in train is: 12 The loss for epoch 5 0.718195240944624 The running loss is: 7.969642907381058 The number of items in train is: 12 The loss for epoch 6 0.6641369089484215 The running loss is: 7.33133128285408 The number of items in train is: 12 The loss for epoch 7 0.6109442735711733 The running loss is: 6.842497617006302 The number of items in train is: 12 The loss for epoch 8 0.5702081347505251 The running loss is: 6.608101170510054 The number of items in train is: 12 The loss for epoch 9 0.5506750975425044 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.705063 48 30755 ... 9.075434 49 30756 ... 11.673032 50 30757 ... 6.914804 51 30758 ... 6.505346 52 30759 ... 4.965737 53 30760 ... 4.142810 54 30761 ... 3.150626 55 30762 ... 3.350169 56 30763 ... 4.398151 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ifp9eb1p wandb: Agent Starting Run: thts7qrs with config: batch_size: 3 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: thts7qrs
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.258691161870956 The number of items in train is: 13 The loss for epoch 0 1.0198993201439197 The running loss is: 23.489024937152863 The number of items in train is: 13 The loss for epoch 1 1.8068480720886817 The running loss is: 18.21075715869665 The number of items in train is: 13 The loss for epoch 2 1.4008274737458963 The running loss is: 10.906683094799519 The number of items in train is: 13 The loss for epoch 3 0.8389756226768861 The running loss is: 8.148265436291695 The number of items in train is: 13 The loss for epoch 4 0.6267896489455149 The running loss is: 7.965685077011585 The number of items in train is: 13 The loss for epoch 5 0.6127450059239681 The running loss is: 8.664709061384201 The number of items in train is: 13 The loss for epoch 6 0.6665160816449386 The running loss is: 7.032974503934383 The number of items in train is: 13 The loss for epoch 7 0.5409980387641833 The running loss is: 6.97207360714674 The number of items in train is: 13 The loss for epoch 8 0.5363133543959031 The running loss is: 7.017210938036442 The number of items in train is: 13 The loss for epoch 9 0.5397854567720339 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.510240 48 30755 ... 16.805296 49 30756 ... 21.841839 50 30757 ... 16.963865 51 30758 ... 17.538879 52 30759 ... 19.097288 53 30760 ... 21.089573 54 30761 ... 22.992525 55 30762 ... 22.120745 56 30763 ... 20.562706 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: thts7qrs wandb: Agent Starting Run: 47lg0nn6 with config: batch_size: 3 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 47lg0nn6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.835459772497416 The number of items in train is: 12 The loss for epoch 0 0.9029549810414513 The running loss is: 22.96461908519268 The number of items in train is: 12 The loss for epoch 1 1.91371825709939 The running loss is: 15.761415027081966 The number of items in train is: 12 The loss for epoch 2 1.3134512522568305 The running loss is: 10.180416569113731 The number of items in train is: 12 The loss for epoch 3 0.8483680474261442 The running loss is: 9.744838282465935 The number of items in train is: 12 The loss for epoch 4 0.8120698568721613 The running loss is: 8.362954512238503 The number of items in train is: 12 The loss for epoch 5 0.6969128760198752 The running loss is: 7.482268325984478 The number of items in train is: 12 The loss for epoch 6 0.6235223604987065 The running loss is: 7.62644924223423 The number of items in train is: 12 The loss for epoch 7 0.6355374368528525 The running loss is: 6.36828438937664 The number of items in train is: 12 The loss for epoch 8 0.5306903657813867 The running loss is: 6.734523329883814 The number of items in train is: 12 The loss for epoch 9 0.5612102774903178 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.622638 48 30755 ... 13.911704 49 30756 ... 16.839764 50 30757 ... 11.906046 51 30758 ... 12.192764 52 30759 ... 13.010283 53 30760 ... 14.609374 54 30761 ... 13.891782 55 30762 ... 13.932491 56 30763 ... 13.201247 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 47lg0nn6 wandb: Agent Starting Run: rf0uogu2 with config: batch_size: 3 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: rf0uogu2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.08357983827591 The number of items in train is: 12 The loss for epoch 0 0.9236316531896591 The running loss is: 22.382230758666992 The number of items in train is: 12 The loss for epoch 1 1.8651858965555828 The running loss is: 15.076354868710041 The number of items in train is: 12 The loss for epoch 2 1.2563629057258368 The running loss is: 10.64572124928236 The number of items in train is: 12 The loss for epoch 3 0.8871434374401966 The running loss is: 10.859172463417053 The number of items in train is: 12 The loss for epoch 4 0.9049310386180878 The running loss is: 9.866730868816376 The number of items in train is: 12 The loss for epoch 5 0.8222275724013647 The running loss is: 9.314311161637306 The number of items in train is: 12 The loss for epoch 6 0.7761925968031088 The running loss is: 8.16476234793663 The number of items in train is: 12 The loss for epoch 7 0.6803968623280525 The running loss is: 7.3978771567344666 The number of items in train is: 12 The loss for epoch 8 0.6164897630612055 The running loss is: 8.245596423745155 The number of items in train is: 12 The loss for epoch 9 0.6871330353120962 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.262431 48 30755 ... 7.172925 49 30756 ... 10.437560 50 30757 ... 8.788393 51 30758 ... 7.332535 52 30759 ... 4.802159 53 30760 ... 2.583888 54 30761 ... -1.306381 55 30762 ... 0.795288 56 30763 ... 2.912030 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rf0uogu2 wandb: Agent Starting Run: qeeauzm6 with config: batch_size: 3 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: qeeauzm6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 83.36189612746239 The number of items in train is: 13 The loss for epoch 0 6.412453548266337 The running loss is: 25.860291827470064 The number of items in train is: 13 The loss for epoch 1 1.9892532174976973 The running loss is: 19.907233595848083 The number of items in train is: 13 The loss for epoch 2 1.5313256612190833 The running loss is: 10.90076495707035 The number of items in train is: 13 The loss for epoch 3 0.8385203813131039 The running loss is: 10.626565247774124 The number of items in train is: 13 The loss for epoch 4 0.8174280959826249 The running loss is: 9.881012380123138 The number of items in train is: 13 The loss for epoch 5 0.7600778753940876 The running loss is: 11.910851925611496 The number of items in train is: 13 The loss for epoch 6 0.916219378893192 The running loss is: 7.531356927007437 The number of items in train is: 13 The loss for epoch 7 0.5793351482313412 The running loss is: 10.415256395936012 The number of items in train is: 13 The loss for epoch 8 0.8011735689181548 The running loss is: 9.927764600142837 The number of items in train is: 13 The loss for epoch 9 0.7636742000109874 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.916672 48 30755 ... 12.625881 49 30756 ... 12.626095 50 30757 ... 11.517555 51 30758 ... 11.598584 52 30759 ... 12.085279 53 30760 ... 12.707908 54 30761 ... 12.770116 55 30762 ... 12.778158 56 30763 ... 12.802703 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qeeauzm6 wandb: Agent Starting Run: pfx7ru7f with config: batch_size: 3 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: pfx7ru7f
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 59.03156542778015 The number of items in train is: 12 The loss for epoch 0 4.919297118981679 The running loss is: 20.912684738636017 The number of items in train is: 12 The loss for epoch 1 1.7427237282196681 The running loss is: 12.18588924407959 The number of items in train is: 12 The loss for epoch 2 1.0154907703399658 The running loss is: 10.648322485387325 The number of items in train is: 12 The loss for epoch 3 0.8873602071156105 The running loss is: 10.730297669768333 The number of items in train is: 12 The loss for epoch 4 0.8941914724806944 The running loss is: 9.87667851895094 The number of items in train is: 12 The loss for epoch 5 0.8230565432459116 The running loss is: 9.237145557999611 The number of items in train is: 12 The loss for epoch 6 0.769762129833301 The running loss is: 8.763213515281677 The number of items in train is: 12 The loss for epoch 7 0.7302677929401398 The running loss is: 9.106015630066395 The number of items in train is: 12 The loss for epoch 8 0.7588346358388662 The running loss is: 8.237487856298685 The number of items in train is: 12 The loss for epoch 9 0.6864573213582238 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.006688 48 30755 ... 10.999264 49 30756 ... 10.443715 50 30757 ... 7.849214 51 30758 ... 7.840856 52 30759 ... 7.540580 53 30760 ... 7.049789 54 30761 ... 6.162581 55 30762 ... 5.630850 56 30763 ... 5.403432 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pfx7ru7f wandb: Agent Starting Run: hf37aby9 with config: batch_size: 3 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: hf37aby9
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 48.265553653240204 The number of items in train is: 12 The loss for epoch 0 4.022129471103351 The running loss is: 17.88239400088787 The number of items in train is: 12 The loss for epoch 1 1.4901995000739892 The running loss is: 13.118484437465668 The number of items in train is: 12 The loss for epoch 2 1.0932070364554722 The running loss is: 10.311319708824158 The number of items in train is: 12 The loss for epoch 3 0.8592766424020132 The running loss is: 10.934739962220192 The number of items in train is: 12 The loss for epoch 4 0.911228330185016 The running loss is: 10.6557736992836 The number of items in train is: 12 The loss for epoch 5 0.8879811416069666 The running loss is: 10.139354795217514 The number of items in train is: 12 The loss for epoch 6 0.8449462329347929 The running loss is: 8.855517655611038 The number of items in train is: 12 The loss for epoch 7 0.7379598046342531
wandb: Network error resolved after 0:00:11.468286, resuming normal operation.
The running loss is: 9.930634662508965 The number of items in train is: 12 The loss for epoch 8 0.8275528885424137 The running loss is: 10.618825137615204 The number of items in train is: 12 The loss for epoch 9 0.884902094801267 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.986316 48 30755 ... 12.381465 49 30756 ... 12.193325 50 30757 ... 11.790490 51 30758 ... 11.937226 52 30759 ... 12.096951 53 30760 ... 11.761296 54 30761 ... 12.113394 55 30762 ... 11.901037 56 30763 ... 11.604386 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hf37aby9 wandb: Agent Starting Run: u316b39b with config: batch_size: 3 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: u316b39b
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.37902383506298 The number of items in train is: 12 The loss for epoch 0 1.0315853195885818 The running loss is: 24.790918722748756 The number of items in train is: 12 The loss for epoch 1 2.0659098935623965 The running loss is: 8.455985829234123 The number of items in train is: 12 The loss for epoch 2 0.7046654857695103 The running loss is: 7.967825371772051 The number of items in train is: 12 The loss for epoch 3 0.6639854476476709 The running loss is: 7.571539465337992 The number of items in train is: 12 The loss for epoch 4 0.6309616221114993 The running loss is: 7.022769663482904 The number of items in train is: 12 The loss for epoch 5 0.5852308052902421 The running loss is: 6.53892756998539 The number of items in train is: 12 The loss for epoch 6 0.5449106308321158 The running loss is: 6.44024109095335 The number of items in train is: 12 The loss for epoch 7 0.5366867575794458 The running loss is: 6.065792869776487 The number of items in train is: 12 The loss for epoch 8 0.5054827391480406 The running loss is: 6.28930689394474 The number of items in train is: 12 The loss for epoch 9 0.5241089078287283 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.100678 48 30755 ... 9.491867 49 30756 ... 9.838396 50 30757 ... 9.236635 51 30758 ... 6.406833 52 30759 ... 6.267855 53 30760 ... 5.421679 54 30761 ... 4.986398 55 30762 ... 4.994775 56 30763 ... 4.666442 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u316b39b wandb: Agent Starting Run: n6k80t2e with config: batch_size: 3 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: n6k80t2e
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.276512056589127 The number of items in train is: 12 The loss for epoch 0 1.1063760047157605 The running loss is: 18.049271062016487 The number of items in train is: 12 The loss for epoch 1 1.5041059218347073 The running loss is: 8.319267615675926 The number of items in train is: 12 The loss for epoch 2 0.6932723013063272 The running loss is: 7.965411841869354 The number of items in train is: 12 The loss for epoch 3 0.6637843201557795 The running loss is: 7.3311899825930595 The number of items in train is: 12 The loss for epoch 4 0.6109324985494217 The running loss is: 6.7873126193881035 The number of items in train is: 12 The loss for epoch 5 0.5656093849490086 The running loss is: 6.498296394944191 The number of items in train is: 12 The loss for epoch 6 0.5415246995786825 The running loss is: 6.533873878419399 The number of items in train is: 12 The loss for epoch 7 0.5444894898682833 The running loss is: 6.097821369767189 The number of items in train is: 12 The loss for epoch 8 0.5081517808139324 The running loss is: 6.265468001365662 The number of items in train is: 12 The loss for epoch 9 0.5221223334471384 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.011338 48 30755 ... 7.283821 49 30756 ... 8.066407 50 30757 ... 8.368803 51 30758 ... 2.633995 52 30759 ... 1.451626 53 30760 ... -2.860904 54 30761 ... -3.623986 55 30762 ... -4.194643 56 30763 ... -4.595941 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: n6k80t2e wandb: Agent Starting Run: ynqfy2li with config: batch_size: 3 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ynqfy2li
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.121348142623901 The number of items in train is: 12 The loss for epoch 0 1.1767790118853252 The running loss is: 11.962568417191505 The number of items in train is: 12 The loss for epoch 1 0.9968807014326254 The running loss is: 8.415272369980812 The number of items in train is: 12 The loss for epoch 2 0.701272697498401 The running loss is: 7.760982871055603 The number of items in train is: 12 The loss for epoch 3 0.6467485725879669 The running loss is: 7.097700580954552 The number of items in train is: 12 The loss for epoch 4 0.5914750484128793 The running loss is: 6.845601633191109 The number of items in train is: 12 The loss for epoch 5 0.5704668027659258 The running loss is: 6.674819730222225 The number of items in train is: 12 The loss for epoch 6 0.5562349775185188 The running loss is: 6.4955049604177475 The number of items in train is: 12 The loss for epoch 7 0.5412920800348123 The running loss is: 5.942568197846413 The number of items in train is: 12 The loss for epoch 8 0.49521401648720104 The running loss is: 6.2821846306324005 The number of items in train is: 12 The loss for epoch 9 0.5235153858860334 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.118464 48 30755 ... 10.848496 49 30756 ... 11.825148 50 30757 ... 13.083958 51 30758 ... 8.418689 52 30759 ... 8.725552 53 30760 ... 9.016667 54 30761 ... 8.915531 55 30762 ... 8.878509 56 30763 ... 8.781803 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ynqfy2li wandb: Agent Starting Run: z3a45bpw with config: batch_size: 3 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: z3a45bpw
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.900953810662031 The number of items in train is: 12 The loss for epoch 0 0.825079484221836 The running loss is: 30.638646006584167 The number of items in train is: 12 The loss for epoch 1 2.5532205005486808 The running loss is: 13.565400153398514 The number of items in train is: 12 The loss for epoch 2 1.1304500127832096 The running loss is: 12.18923476524651 The number of items in train is: 12 The loss for epoch 3 1.0157695637705426 The running loss is: 9.495965160429478 The number of items in train is: 12 The loss for epoch 4 0.7913304300357898 The running loss is: 8.144568987190723 The number of items in train is: 12 The loss for epoch 5 0.6787140822658936 The running loss is: 7.078736245632172 The number of items in train is: 12 The loss for epoch 6 0.5898946871360143 The running loss is: 6.726401956751943 The number of items in train is: 12 The loss for epoch 7 0.5605334963959953 The running loss is: 6.241230476647615 The number of items in train is: 12 The loss for epoch 8 0.5201025397206346 The running loss is: 6.079278342425823 The number of items in train is: 12 The loss for epoch 9 0.5066065285354853 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.471974 48 30755 ... 10.483409 49 30756 ... 10.175096 50 30757 ... 10.090322 51 30758 ... 6.847208 52 30759 ... 6.857956 53 30760 ... 6.441480 54 30761 ... 5.431954 55 30762 ... 5.906725 56 30763 ... 5.729991 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z3a45bpw wandb: Agent Starting Run: sqgiswkh with config: batch_size: 3 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sqgiswkh
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.352339945733547 The number of items in train is: 12 The loss for epoch 0 0.8626949954777956 The running loss is: 27.420582100749016 The number of items in train is: 12 The loss for epoch 1 2.2850485083957515 The running loss is: 11.992324955761433 The number of items in train is: 12 The loss for epoch 2 0.9993604129801194 The running loss is: 11.289713278412819 The number of items in train is: 12 The loss for epoch 3 0.9408094398677349 The running loss is: 8.813286826014519 The number of items in train is: 12 The loss for epoch 4 0.7344405688345432 The running loss is: 7.834414124488831 The number of items in train is: 12 The loss for epoch 5 0.6528678437074026 The running loss is: 7.225820302963257 The number of items in train is: 12 The loss for epoch 6 0.6021516919136047 The running loss is: 6.88609754294157 The number of items in train is: 12 The loss for epoch 7 0.5738414619117975 The running loss is: 6.201435163617134 The number of items in train is: 12 The loss for epoch 8 0.5167862636347612 The running loss is: 6.14191147685051 The number of items in train is: 12 The loss for epoch 9 0.5118259564042091 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.614470 48 30755 ... 8.827579 49 30756 ... 9.241714 50 30757 ... 10.226584 51 30758 ... 5.223353 52 30759 ... 4.789123 53 30760 ... 2.735260 54 30761 ... 2.197710 55 30762 ... 2.011790 56 30763 ... 2.039282 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sqgiswkh wandb: Agent Starting Run: ihyxflsp with config: batch_size: 3 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ihyxflsp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.217051550745964 The number of items in train is: 12 The loss for epoch 0 0.934754295895497 The running loss is: 23.319495856761932 The number of items in train is: 12 The loss for epoch 1 1.9432913213968277 The running loss is: 10.772423923015594 The number of items in train is: 12 The loss for epoch 2 0.8977019935846329 The running loss is: 10.515882782638073 The number of items in train is: 12 The loss for epoch 3 0.8763235652198395 The running loss is: 8.058349311351776 The number of items in train is: 12 The loss for epoch 4 0.6715291092793146 The running loss is: 7.961005441844463 The number of items in train is: 12 The loss for epoch 5 0.6634171201537052 The running loss is: 7.059004873037338 The number of items in train is: 12 The loss for epoch 6 0.5882504060864449 The running loss is: 6.685458019375801 The number of items in train is: 12 The loss for epoch 7 0.5571215016146501 The running loss is: 6.883459039032459 The number of items in train is: 12 The loss for epoch 8 0.5736215865860382 The running loss is: 7.376760378479958 The number of items in train is: 12 The loss for epoch 9 0.6147300315399965 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.814974 48 30755 ... 11.210552 49 30756 ... 11.776529 50 30757 ... 12.432104 51 30758 ... 9.630356 52 30759 ... 9.944347 53 30760 ... 10.629821 54 30761 ... 10.653158 55 30762 ... 11.109354 56 30763 ... 10.805975 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ihyxflsp wandb: Agent Starting Run: 3b2n88ri with config: batch_size: 3 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3b2n88ri
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.48319063708186 The number of items in train is: 12 The loss for epoch 0 1.5402658864234884 The running loss is: 18.761643692851067 The number of items in train is: 12 The loss for epoch 1 1.5634703077375889 The running loss is: 21.986995615065098 The number of items in train is: 12 The loss for epoch 2 1.8322496345887582 The running loss is: 9.689714223146439 The number of items in train is: 12 The loss for epoch 3 0.8074761852622032 The running loss is: 9.407272886484861 The number of items in train is: 12 The loss for epoch 4 0.7839394072070718 The running loss is: 8.005861973389983 The number of items in train is: 12 The loss for epoch 5 0.6671551644491652 The running loss is: 7.884846691042185 The number of items in train is: 12 The loss for epoch 6 0.6570705575868487 The running loss is: 7.528995893895626 The number of items in train is: 12 The loss for epoch 7 0.6274163244913021 The running loss is: 8.065547659993172 The number of items in train is: 12 The loss for epoch 8 0.6721289716660976 The running loss is: 6.982815816998482 The number of items in train is: 12 The loss for epoch 9 0.5819013180832068 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.516898 48 30755 ... 11.084952 49 30756 ... 10.106272 50 30757 ... 10.063417 51 30758 ... 8.037376 52 30759 ... 8.120486 53 30760 ... 8.132099 54 30761 ... 7.003942 55 30762 ... 6.952409 56 30763 ... 6.685895 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3b2n88ri wandb: Agent Starting Run: no85t7az with config: batch_size: 3 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: no85t7az
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.000954568386078 The number of items in train is: 12 The loss for epoch 0 1.2500795473655064 The running loss is: 21.221872463822365 The number of items in train is: 12 The loss for epoch 1 1.768489371985197 The running loss is: 19.358168706297874 The number of items in train is: 12 The loss for epoch 2 1.613180725524823 The running loss is: 9.955740116536617 The number of items in train is: 12 The loss for epoch 3 0.8296450097113848 The running loss is: 9.47061137482524 The number of items in train is: 12 The loss for epoch 4 0.7892176145687699 The running loss is: 8.324287980794907 The number of items in train is: 12 The loss for epoch 5 0.6936906650662422 The running loss is: 7.854575924575329 The number of items in train is: 12 The loss for epoch 6 0.6545479937146107 The running loss is: 7.608733028173447 The number of items in train is: 12 The loss for epoch 7 0.6340610856811205 The running loss is: 6.9321389347314835 The number of items in train is: 12 The loss for epoch 8 0.577678244560957 The running loss is: 6.323972467333078 The number of items in train is: 12 The loss for epoch 9 0.5269977056110898 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.542080 48 30755 ... 8.818997 49 30756 ... 8.390926 50 30757 ... 10.149011 51 30758 ... 5.601892 52 30759 ... 4.554304 53 30760 ... 2.250141 54 30761 ... -1.074027 55 30762 ... 1.474841 56 30763 ... -1.939803 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: no85t7az wandb: Agent Starting Run: qrike4wt with config: batch_size: 3 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: qrike4wt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.473877847194672 The number of items in train is: 12 The loss for epoch 0 0.9561564872662226 The running loss is: 17.159127980470657 The number of items in train is: 12 The loss for epoch 1 1.429927331705888 The running loss is: 13.055007100105286 The number of items in train is: 12 The loss for epoch 2 1.087917258342107 The running loss is: 9.946389883756638 The number of items in train is: 12 The loss for epoch 3 0.8288658236463865 The running loss is: 8.777176484465599 The number of items in train is: 12 The loss for epoch 4 0.7314313737054666 The running loss is: 8.020771831274033 The number of items in train is: 12 The loss for epoch 5 0.6683976526061693 The running loss is: 7.233478561043739 The number of items in train is: 12 The loss for epoch 6 0.6027898800869783 The running loss is: 6.712913706898689 The number of items in train is: 12 The loss for epoch 7 0.5594094755748907 The running loss is: 5.935887351632118 The number of items in train is: 12 The loss for epoch 8 0.4946572793026765 The running loss is: 6.456776849925518 The number of items in train is: 12 The loss for epoch 9 0.5380647374937931 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.739307 48 30755 ... 15.164424 49 30756 ... 14.982607 50 30757 ... 12.120775 51 30758 ... 6.994554 52 30759 ... 6.006286 53 30760 ... 5.992099 54 30761 ... 7.558724 55 30762 ... 7.050504 56 30763 ... 6.311695 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qrike4wt wandb: Agent Starting Run: p21rcgtl with config: batch_size: 3 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: p21rcgtl
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 106.6566134095192 The number of items in train is: 12 The loss for epoch 0 8.888051117459932 The running loss is: 24.606463849544525 The number of items in train is: 12 The loss for epoch 1 2.0505386541287103 The running loss is: 21.61753984540701 The number of items in train is: 12 The loss for epoch 2 1.8014616537839174 The running loss is: 23.79516276717186 The number of items in train is: 12 The loss for epoch 3 1.982930230597655 The running loss is: 11.609253287315369 The number of items in train is: 12 The loss for epoch 4 0.9674377739429474 The running loss is: 11.628214344382286 The number of items in train is: 12 The loss for epoch 5 0.9690178620318571 The running loss is: 9.073524564504623 The number of items in train is: 12 The loss for epoch 6 0.7561270470420519 The running loss is: 9.348070994019508 The number of items in train is: 12 The loss for epoch 7 0.7790059161682924 The running loss is: 9.628808468580246 The number of items in train is: 12 The loss for epoch 8 0.8024007057150205 The running loss is: 9.66310379654169 The number of items in train is: 12 The loss for epoch 9 0.8052586497118076 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.878821 48 30755 ... 14.621321 49 30756 ... 13.972424 50 30757 ... 12.111570 51 30758 ... 10.287642 52 30759 ... 10.387918 53 30760 ... 10.812337 54 30761 ... 9.955990 55 30762 ... 11.362534 56 30763 ... 12.467662 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: p21rcgtl wandb: Agent Starting Run: k6byrhpo with config: batch_size: 3 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: k6byrhpo
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 81.6181215941906 The number of items in train is: 12 The loss for epoch 0 6.8015101328492165 The running loss is: 22.043223172426224 The number of items in train is: 12 The loss for epoch 1 1.836935264368852 The running loss is: 14.447735771536827 The number of items in train is: 12 The loss for epoch 2 1.2039779809614022 The running loss is: 15.471910580992699 The number of items in train is: 12 The loss for epoch 3 1.2893258817493916 The running loss is: 11.04138045758009 The number of items in train is: 12 The loss for epoch 4 0.9201150381316742 The running loss is: 12.106047950685024 The number of items in train is: 12 The loss for epoch 5 1.008837329223752 The running loss is: 10.577641814947128 The number of items in train is: 12 The loss for epoch 6 0.881470151245594 The running loss is: 9.409645445644855 The number of items in train is: 12 The loss for epoch 7 0.7841371204704046 The running loss is: 8.933936536312103 The number of items in train is: 12 The loss for epoch 8 0.744494711359342 The running loss is: 8.221374459564686 The number of items in train is: 12 The loss for epoch 9 0.6851145382970572 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.061282 48 30755 ... 8.249587 49 30756 ... 9.267735 50 30757 ... 11.273976 51 30758 ... 9.497227 52 30759 ... 8.919030 53 30760 ... 7.004339 54 30761 ... 4.377275 55 30762 ... 3.087500 56 30763 ... 4.338648 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: k6byrhpo wandb: Agent Starting Run: 52seuqzl with config: batch_size: 3 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 52seuqzl
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 56.113191187381744 The number of items in train is: 12 The loss for epoch 0 4.676099265615146 The running loss is: 18.30052262544632 The number of items in train is: 12 The loss for epoch 1 1.5250435521205266 The running loss is: 11.604714661836624 The number of items in train is: 12 The loss for epoch 2 0.967059555153052 The running loss is: 14.872128278017044 The number of items in train is: 12 The loss for epoch 3 1.239344023168087 The running loss is: 10.402111932635307 The number of items in train is: 12 The loss for epoch 4 0.8668426610529423 The running loss is: 10.397299006581306 The number of items in train is: 12 The loss for epoch 5 0.8664415838817755 The running loss is: 9.851659432053566 The number of items in train is: 12 The loss for epoch 6 0.8209716193377972 The running loss is: 9.47095012664795 The number of items in train is: 12 The loss for epoch 7 0.7892458438873291 The running loss is: 8.210800468921661 The number of items in train is: 12 The loss for epoch 8 0.6842333724101385 The running loss is: 8.250100195407867 The number of items in train is: 12 The loss for epoch 9 0.6875083496173223 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.827257 48 30755 ... 13.631978 49 30756 ... 11.137757 50 30757 ... 6.047119 51 30758 ... 6.934722 52 30759 ... 6.921974 53 30760 ... 6.659066 54 30761 ... 6.745699 55 30762 ... 8.320328 56 30763 ... 4.086565 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 52seuqzl wandb: Agent Starting Run: 4i7r4tc9 with config: batch_size: 3 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 4i7r4tc9
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.96486447751522 The number of items in train is: 12 The loss for epoch 0 1.2470720397929351 The running loss is: 12.224298192188144 The number of items in train is: 12 The loss for epoch 1 1.0186915160156786 The running loss is: 8.319845624268055 The number of items in train is: 12 The loss for epoch 2 0.6933204686890045 The running loss is: 7.175463631749153 The number of items in train is: 12 The loss for epoch 3 0.5979553026457628 The running loss is: 6.868135239928961 The number of items in train is: 12 The loss for epoch 4 0.5723446033274134 The running loss is: 6.5902868285775185 The number of items in train is: 12 The loss for epoch 5 0.5491905690481266 The running loss is: 5.774220548570156 The number of items in train is: 12 The loss for epoch 6 0.4811850457141797 The running loss is: 5.966882690787315 The number of items in train is: 12 The loss for epoch 7 0.49724022423227626 The running loss is: 6.034196428954601 The number of items in train is: 12 The loss for epoch 8 0.5028497024128834 The running loss is: 5.637171816080809 The number of items in train is: 12 The loss for epoch 9 0.46976431800673407 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.883840 48 30755 ... 11.236866 49 30756 ... 15.306927 50 30757 ... 14.193745 51 30758 ... 10.605540 52 30759 ... 10.219217 53 30760 ... 11.046711 54 30761 ... 10.211071 55 30762 ... 10.935491 56 30763 ... 12.956865 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4i7r4tc9 wandb: Agent Starting Run: ik2lbrgv with config: batch_size: 3 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ik2lbrgv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.35646590590477 The number of items in train is: 12 The loss for epoch 0 1.3630388254920642 The running loss is: 13.501704521477222 The number of items in train is: 12 The loss for epoch 1 1.1251420434564352 The running loss is: 10.06986141204834 The number of items in train is: 12 The loss for epoch 2 0.839155117670695 The running loss is: 9.339474618434906 The number of items in train is: 12 The loss for epoch 3 0.7782895515362421 The running loss is: 8.55732698738575 The number of items in train is: 12 The loss for epoch 4 0.7131105822821459 The running loss is: 7.9432243257761 The number of items in train is: 12 The loss for epoch 5 0.6619353604813417 The running loss is: 7.743864074349403 The number of items in train is: 12 The loss for epoch 6 0.6453220061957836 The running loss is: 8.010289520025253 The number of items in train is: 12 The loss for epoch 7 0.6675241266687711 The running loss is: 8.142023041844368 The number of items in train is: 12 The loss for epoch 8 0.6785019201536974 The running loss is: 7.777196206152439 The number of items in train is: 12 The loss for epoch 9 0.6480996838460366 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.629007 48 30755 ... 12.902403 49 30756 ... 13.270831 50 30757 ... 14.083817 51 30758 ... 15.179794 52 30759 ... 12.242359 53 30760 ... 13.066635 54 30761 ... 13.783864 55 30762 ... 13.845278 56 30763 ... 13.984291 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ik2lbrgv wandb: Agent Starting Run: 7774hcks with config: batch_size: 3 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 7774hcks
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.757839009165764 The number of items in train is: 11 The loss for epoch 0 1.2507126371968875 The running loss is: 12.586623467504978 The number of items in train is: 11 The loss for epoch 1 1.1442384970459072 The running loss is: 7.428445756435394 The number of items in train is: 11 The loss for epoch 2 0.6753132505850359 The running loss is: 7.001081258058548 The number of items in train is: 11 The loss for epoch 3 0.6364619325507771 The running loss is: 6.894729509949684 The number of items in train is: 11 The loss for epoch 4 0.6267935918136076 The running loss is: 6.393982410430908 The number of items in train is: 11 The loss for epoch 5 0.5812711282209917 The running loss is: 6.316303074359894 The number of items in train is: 11 The loss for epoch 6 0.574209370396354 The running loss is: 6.03164541721344 The number of items in train is: 11 The loss for epoch 7 0.5483314015648582 The running loss is: 6.234783947467804 The number of items in train is: 11 The loss for epoch 8 0.5667985406788912 The running loss is: 5.846083365380764 The number of items in train is: 11 The loss for epoch 9 0.531462124125524 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.596305 48 30755 ... 8.830587 49 30756 ... 10.474157 50 30757 ... 9.988824 51 30758 ... 8.092268 52 30759 ... 5.362512 53 30760 ... 4.972435 54 30761 ... 4.711842 55 30762 ... 4.008645 56 30763 ... 4.052268 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7774hcks wandb: Agent Starting Run: fazaiyk7 with config: batch_size: 3 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fazaiyk7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.830055439844728 The number of items in train is: 12 The loss for epoch 0 1.0691712866537273 The running loss is: 24.132599594071507 The number of items in train is: 12 The loss for epoch 1 2.0110499661726258 The running loss is: 10.497571967542171 The number of items in train is: 12 The loss for epoch 2 0.8747976639618477 The running loss is: 9.687794238328934 The number of items in train is: 12 The loss for epoch 3 0.8073161865274111 The running loss is: 7.763237036764622 The number of items in train is: 12 The loss for epoch 4 0.6469364197303852 The running loss is: 6.961419679224491 The number of items in train is: 12 The loss for epoch 5 0.5801183066020409 The running loss is: 6.35853485763073 The number of items in train is: 12 The loss for epoch 6 0.5298779048025608 The running loss is: 6.827462054789066 The number of items in train is: 12 The loss for epoch 7 0.5689551712324222 The running loss is: 6.0002028569579124 The number of items in train is: 12 The loss for epoch 8 0.5000169047464927 The running loss is: 5.485427591949701 The number of items in train is: 12 The loss for epoch 9 0.4571189659958084 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.419744 48 30755 ... 10.394965 49 30756 ... 12.905848 50 30757 ... 12.309278 51 30758 ... 10.093750 52 30759 ... 9.698062 53 30760 ... 9.674794 54 30761 ... 9.306669 55 30762 ... 9.657249 56 30763 ... 11.260552 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fazaiyk7 wandb: Agent Starting Run: 1n7vdt7z with config: batch_size: 3 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 1n7vdt7z
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.794403530657291 The number of items in train is: 12 The loss for epoch 0 1.1495336275547743 The running loss is: 24.844410978257656 The number of items in train is: 12 The loss for epoch 1 2.0703675815214715 The running loss is: 12.776588022708893 The number of items in train is: 12 The loss for epoch 2 1.0647156685590744 The running loss is: 11.807799771428108 The number of items in train is: 12 The loss for epoch 3 0.9839833142856756 The running loss is: 9.790398374199867 The number of items in train is: 12 The loss for epoch 4 0.8158665311833223 The running loss is: 8.584115162491798 The number of items in train is: 12 The loss for epoch 5 0.7153429302076498 The running loss is: 8.691331028938293 The number of items in train is: 12 The loss for epoch 6 0.7242775857448578 The running loss is: 8.91648381948471 The number of items in train is: 12 The loss for epoch 7 0.7430403182903925 The running loss is: 7.640511985868216 The number of items in train is: 12 The loss for epoch 8 0.6367093321556846 The running loss is: 7.013014301657677 The number of items in train is: 12 The loss for epoch 9 0.5844178584714731 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.307647 48 30755 ... 12.129790 49 30756 ... 12.597713 50 30757 ... 13.174250 51 30758 ... 13.365698 52 30759 ... 11.487959 53 30760 ... 11.916497 54 30761 ... 11.573297 55 30762 ... 12.028158 56 30763 ... 12.942216 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1n7vdt7z wandb: Agent Starting Run: mxzlg74h with config: batch_size: 3 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: mxzlg74h
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.668571203947067 The number of items in train is: 11 The loss for epoch 0 0.9698701094497334 The running loss is: 23.13605907559395 The number of items in train is: 11 The loss for epoch 1 2.103278097781268 The running loss is: 9.648351326584816 The number of items in train is: 11 The loss for epoch 2 0.8771228478713469 The running loss is: 8.99851730465889 The number of items in train is: 11 The loss for epoch 3 0.8180470276962627 The running loss is: 7.207675918936729 The number of items in train is: 11 The loss for epoch 4 0.6552432653578845 The running loss is: 6.6272143721580505 The number of items in train is: 11 The loss for epoch 5 0.60247403383255 The running loss is: 6.662739872932434 The number of items in train is: 11 The loss for epoch 6 0.6057036248120394 The running loss is: 6.596592366695404 The number of items in train is: 11 The loss for epoch 7 0.5996902151541277 The running loss is: 6.8548741936683655 The number of items in train is: 11 The loss for epoch 8 0.6231703812425787 The running loss is: 6.773262917995453 The number of items in train is: 11 The loss for epoch 9 0.615751174363223 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.957825 48 30755 ... 12.084987 49 30756 ... 13.182026 50 30757 ... 12.881509 51 30758 ... 11.651135 52 30759 ... 11.314957 53 30760 ... 11.726182 54 30761 ... 11.451635 55 30762 ... 11.618547 56 30763 ... 12.218330 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mxzlg74h wandb: Agent Starting Run: 2n0cdb0f with config: batch_size: 3 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 2n0cdb0f
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.547422602772713 The number of items in train is: 12 The loss for epoch 0 0.9622852168977261 The running loss is: 18.635728433728218 The number of items in train is: 12 The loss for epoch 1 1.5529773694773514 The running loss is: 13.359365157783031 The number of items in train is: 12 The loss for epoch 2 1.1132804298152525 The running loss is: 8.741095915436745 The number of items in train is: 12 The loss for epoch 3 0.7284246596197287 The running loss is: 7.996406886726618 The number of items in train is: 12 The loss for epoch 4 0.6663672405605515 The running loss is: 8.061928812414408 The number of items in train is: 12 The loss for epoch 5 0.671827401034534 The running loss is: 7.5982563234865665 The number of items in train is: 12 The loss for epoch 6 0.6331880269572139 The running loss is: 9.899934113025665 The number of items in train is: 12 The loss for epoch 7 0.8249945094188055 The running loss is: 9.39713741093874 The number of items in train is: 12 The loss for epoch 8 0.783094784244895 The running loss is: 7.772306106984615 The number of items in train is: 12 The loss for epoch 9 0.6476921755820513 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.623840 48 30755 ... 13.129992 49 30756 ... 15.464817 50 30757 ... 14.150119 51 30758 ... 11.621802 52 30759 ... 11.351404 53 30760 ... 11.836058 54 30761 ... 11.804684 55 30762 ... 12.114832 56 30763 ... 12.380978 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2n0cdb0f wandb: Agent Starting Run: 2l8cqkpb with config: batch_size: 3 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 2l8cqkpb
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.721733957529068 The number of items in train is: 12 The loss for epoch 0 0.9768111631274223 The running loss is: 20.882812559604645 The number of items in train is: 12 The loss for epoch 1 1.7402343799670537 The running loss is: 15.462991893291473 The number of items in train is: 12 The loss for epoch 2 1.2885826577742894 The running loss is: 10.39606124162674 The number of items in train is: 12 The loss for epoch 3 0.8663384368022283 The running loss is: 11.118731543421745 The number of items in train is: 12 The loss for epoch 4 0.9265609619518121 The running loss is: 9.71517413854599 The number of items in train is: 12 The loss for epoch 5 0.8095978448788325 The running loss is: 9.132946863770485 The number of items in train is: 12 The loss for epoch 6 0.7610789053142071 The running loss is: 8.82024759054184 The number of items in train is: 12 The loss for epoch 7 0.7350206325451533 The running loss is: 9.627787470817566 The number of items in train is: 12 The loss for epoch 8 0.8023156225681305 The running loss is: 9.905424669384956 The number of items in train is: 12 The loss for epoch 9 0.8254520557820797 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.262950 48 30755 ... 12.280198 49 30756 ... 12.347271 50 30757 ... 12.375588 51 30758 ... 12.327335 52 30759 ... 11.542714 53 30760 ... 11.688055 54 30761 ... 11.880280 55 30762 ... 11.786964 56 30763 ... 11.815796 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2l8cqkpb wandb: Agent Starting Run: gujj856e with config: batch_size: 3 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: gujj856e
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.164023727178574 The number of items in train is: 11 The loss for epoch 0 1.0149112479253248 The running loss is: 17.79230636358261 The number of items in train is: 11 The loss for epoch 1 1.6174823966893284 The running loss is: 17.12361752986908 The number of items in train is: 11 The loss for epoch 2 1.5566925027153709 The running loss is: 9.037766844034195 The number of items in train is: 11 The loss for epoch 3 0.8216151676394723 The running loss is: 8.182956509292126 The number of items in train is: 11 The loss for epoch 4 0.743905137208375 The running loss is: 7.224704436957836 The number of items in train is: 11 The loss for epoch 5 0.6567913124507124 The running loss is: 7.649267762899399 The number of items in train is: 11 The loss for epoch 6 0.6953879784453999 The running loss is: 8.003631204366684 The number of items in train is: 11 The loss for epoch 7 0.7276028367606077 The running loss is: 6.828029468655586 The number of items in train is: 11 The loss for epoch 8 0.6207299516959623 The running loss is: 6.247038394212723 The number of items in train is: 11 The loss for epoch 9 0.5679125812920657 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.589057 48 30755 ... 8.376153 49 30756 ... 12.800483 50 30757 ... 11.489994 51 30758 ... 6.177326 52 30759 ... 5.413992 53 30760 ... 5.787818 54 30761 ... 3.973889 55 30762 ... 4.382355 56 30763 ... 7.866238 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gujj856e wandb: Agent Starting Run: g7si3dxc with config: batch_size: 3 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: g7si3dxc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 61.024581253528595 The number of items in train is: 12 The loss for epoch 0 5.085381771127383 The running loss is: 19.56476752460003 The number of items in train is: 12 The loss for epoch 1 1.630397293716669 The running loss is: 13.355403766036034 The number of items in train is: 12 The loss for epoch 2 1.1129503138363361 The running loss is: 8.840511664748192 The number of items in train is: 12 The loss for epoch 3 0.7367093053956827 The running loss is: 11.761417895555496 The number of items in train is: 12 The loss for epoch 4 0.980118157962958 The running loss is: 7.811135046184063 The number of items in train is: 12 The loss for epoch 5 0.6509279205153385 The running loss is: 10.606959201395512 The number of items in train is: 12 The loss for epoch 6 0.8839132667829593 The running loss is: 10.005793422460556 The number of items in train is: 12 The loss for epoch 7 0.8338161185383797 The running loss is: 10.245696619153023 The number of items in train is: 12 The loss for epoch 8 0.8538080515960852 The running loss is: 8.148609265685081 The number of items in train is: 12 The loss for epoch 9 0.6790507721404234 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.476348 48 30755 ... 11.340790 49 30756 ... 10.125632 50 30757 ... 11.163449 51 30758 ... 11.226076 52 30759 ... 9.715280 53 30760 ... 9.543046 54 30761 ... 9.841347 55 30762 ... 8.556845 56 30763 ... 8.463352 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: g7si3dxc wandb: Agent Starting Run: v0u99efc with config: batch_size: 3 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: v0u99efc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 51.21212914586067 The number of items in train is: 12 The loss for epoch 0 4.267677428821723 The running loss is: 17.462961047887802 The number of items in train is: 12 The loss for epoch 1 1.4552467539906502 The running loss is: 11.688251674175262 The number of items in train is: 12 The loss for epoch 2 0.9740209728479385 The running loss is: 11.13100489974022 The number of items in train is: 12 The loss for epoch 3 0.9275837416450182 The running loss is: 13.137617707252502 The number of items in train is: 12 The loss for epoch 4 1.0948014756043751 The running loss is: 11.458725690841675 The number of items in train is: 12 The loss for epoch 5 0.9548938075701395 The running loss is: 11.170249596238136 The number of items in train is: 12 The loss for epoch 6 0.9308541330198447 The running loss is: 12.042376711964607 The number of items in train is: 12 The loss for epoch 7 1.0035313926637173 The running loss is: 11.790812149643898 The number of items in train is: 12 The loss for epoch 8 0.9825676791369915 The running loss is: 10.290245652198792 The number of items in train is: 12 The loss for epoch 9 0.8575204710165659 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.570718 48 30755 ... 9.376223 49 30756 ... 10.485181 50 30757 ... 9.978682 51 30758 ... 10.126886 52 30759 ... 9.919448 53 30760 ... 9.927864 54 30761 ... 9.905344 55 30762 ... 9.926155 56 30763 ... 9.923842 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v0u99efc wandb: Agent Starting Run: 1ly9p6oz with config: batch_size: 3 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1ly9p6oz
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 72.31613194942474 The number of items in train is: 11 The loss for epoch 0 6.574193813584068 The running loss is: 14.23465946316719 The number of items in train is: 11 The loss for epoch 1 1.2940599511970172 The running loss is: 15.22510826587677 The number of items in train is: 11 The loss for epoch 2 1.3841007514433428 The running loss is: 9.192183136940002 The number of items in train is: 11 The loss for epoch 3 0.8356530124490912 The running loss is: 13.560538858175278 The number of items in train is: 11 The loss for epoch 4 1.232776259834116 The running loss is: 9.145589001476765 The number of items in train is: 11 The loss for epoch 5 0.8314171819524332 The running loss is: 9.26624071598053 The number of items in train is: 11 The loss for epoch 6 0.8423855196345936 The running loss is: 8.879170209169388 The number of items in train is: 11 The loss for epoch 7 0.8071972917426716 The running loss is: 8.084219574928284 The number of items in train is: 11 The loss for epoch 8 0.7349290522662076 The running loss is: 7.389895915985107 The number of items in train is: 11 The loss for epoch 9 0.6718087196350098 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.939209 48 30755 ... 12.250442 49 30756 ... 12.442574 50 30757 ... 12.579393 51 30758 ... 12.585279 52 30759 ... 10.368646 53 30760 ... 10.346539 54 30761 ... 9.573850 55 30762 ... 9.755535 56 30763 ... 10.039600 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1ly9p6oz wandb: Agent Starting Run: fpttgkw6 with config: batch_size: 3 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fpttgkw6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.689834764227271 The number of items in train is: 12 The loss for epoch 0 1.2241528970189393 The running loss is: 17.333957076072693 The number of items in train is: 12 The loss for epoch 1 1.4444964230060577 The running loss is: 8.697230853140354 The number of items in train is: 12 The loss for epoch 2 0.7247692377616962 The running loss is: 7.709598541259766 The number of items in train is: 12 The loss for epoch 3 0.6424665451049805 The running loss is: 7.4310178607702255 The number of items in train is: 12 The loss for epoch 4 0.6192514883975188 The running loss is: 7.121323108673096 The number of items in train is: 12 The loss for epoch 5 0.5934435923894247 The running loss is: 7.340858735144138 The number of items in train is: 12 The loss for epoch 6 0.6117382279286782 The running loss is: 6.431899104267359 The number of items in train is: 12 The loss for epoch 7 0.5359915920222799 The running loss is: 6.767576105892658 The number of items in train is: 12 The loss for epoch 8 0.5639646754910549 The running loss is: 5.908991951495409 The number of items in train is: 12 The loss for epoch 9 0.49241599595795077 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.737906 48 30755 ... 12.948818 49 30756 ... 13.574800 50 30757 ... 15.269091 51 30758 ... 14.614594 52 30759 ... 12.398319 53 30760 ... 10.582185 54 30761 ... 11.137925 55 30762 ... 11.406140 56 30763 ... 11.445395 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fpttgkw6 wandb: Agent Starting Run: 8l1gnmez with config: batch_size: 3 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 8l1gnmez
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.333956763148308 The number of items in train is: 11 The loss for epoch 0 1.212177887558937 The running loss is: 10.76390040293336 The number of items in train is: 11 The loss for epoch 1 0.978536400266669 The running loss is: 7.724426813423634 The number of items in train is: 11 The loss for epoch 2 0.7022206194021485 The running loss is: 6.70024798065424 The number of items in train is: 11 The loss for epoch 3 0.6091134527867491 The running loss is: 6.150171548128128 The number of items in train is: 11 The loss for epoch 4 0.5591065043752844 The running loss is: 5.95460768789053 The number of items in train is: 11 The loss for epoch 5 0.5413279716264118 The running loss is: 5.616045318543911 The number of items in train is: 11 The loss for epoch 6 0.5105495744130828 The running loss is: 5.45828965306282 The number of items in train is: 11 The loss for epoch 7 0.49620815027843823 The running loss is: 5.082308158278465 The number of items in train is: 11 The loss for epoch 8 0.4620280143889514 The running loss is: 5.413075998425484 The number of items in train is: 11 The loss for epoch 9 0.49209781803868036 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.038165 48 30755 ... 10.608909 49 30756 ... 11.677846 50 30757 ... 13.408486 51 30758 ... 12.285883 52 30759 ... 8.894649 53 30760 ... 6.958979 54 30761 ... 7.109767 55 30762 ... 7.204705 56 30763 ... 7.257286 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8l1gnmez wandb: Agent Starting Run: r504iyh8 with config: batch_size: 3 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: r504iyh8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.602686673402786 The number of items in train is: 11 The loss for epoch 0 1.0547896975820714 The running loss is: 22.047383695840836 The number of items in train is: 11 The loss for epoch 1 2.004307608712803 The running loss is: 8.506498038768768 The number of items in train is: 11 The loss for epoch 2 0.7733180035244335 The running loss is: 7.987618550658226 The number of items in train is: 11 The loss for epoch 3 0.7261471409689296 The running loss is: 7.208950437605381 The number of items in train is: 11 The loss for epoch 4 0.6553591306913983 The running loss is: 6.687433920800686 The number of items in train is: 11 The loss for epoch 5 0.6079485382546078 The running loss is: 6.712285548448563 The number of items in train is: 11 The loss for epoch 6 0.6102077771316875 The running loss is: 6.500350695103407 The number of items in train is: 11 The loss for epoch 7 0.5909409722821279 The running loss is: 6.381061501801014 The number of items in train is: 11 The loss for epoch 8 0.5800965001637285 The running loss is: 6.392539195716381 The number of items in train is: 11 The loss for epoch 9 0.5811399268833074 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.245036 48 30755 ... 8.228024 49 30756 ... 8.517384 50 30757 ... 8.960963 51 30758 ... 8.680799 52 30759 ... 7.213123 53 30760 ... 4.665875 54 30761 ... 4.856624 55 30762 ... 4.900586 56 30763 ... 4.092776 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r504iyh8 wandb: Agent Starting Run: aw63m4rp with config: batch_size: 3 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: aw63m4rp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.29787865281105 The number of items in train is: 12 The loss for epoch 0 1.0248232210675876 The running loss is: 19.8064456731081 The number of items in train is: 12 The loss for epoch 1 1.6505371394256751 The running loss is: 11.618107497692108 The number of items in train is: 12 The loss for epoch 2 0.9681756248076757 The running loss is: 8.902291357517242 The number of items in train is: 12 The loss for epoch 3 0.7418576131264368 The running loss is: 7.879129042848945 The number of items in train is: 12 The loss for epoch 4 0.6565940869040787 The running loss is: 6.330558676272631 The number of items in train is: 12 The loss for epoch 5 0.5275465563560525 The running loss is: 7.807648062705994 The number of items in train is: 12 The loss for epoch 6 0.6506373385588328 The running loss is: 7.306606873869896 The number of items in train is: 12 The loss for epoch 7 0.6088839061558247 The running loss is: 6.763071320950985 The number of items in train is: 12 The loss for epoch 8 0.5635892767459154 The running loss is: 6.004747994244099 The number of items in train is: 12 The loss for epoch 9 0.5003956661870083 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.441623 48 30755 ... 11.198905 49 30756 ... 13.271868 50 30757 ... 16.523909 51 30758 ... 14.391433 52 30759 ... 9.663706 53 30760 ... 12.368917 54 30761 ... 15.554323 55 30762 ... 13.051601 56 30763 ... 13.088296 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: aw63m4rp wandb: Agent Starting Run: bv5gfbfq with config: batch_size: 3 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: bv5gfbfq
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.102504268288612 The number of items in train is: 11 The loss for epoch 0 1.0093185698444194 The running loss is: 19.026846826076508 The number of items in train is: 11 The loss for epoch 1 1.729713347825137 The running loss is: 9.341200038790703 The number of items in train is: 11 The loss for epoch 2 0.8492000035264275 The running loss is: 8.422987721860409 The number of items in train is: 11 The loss for epoch 3 0.7657261565327644 The running loss is: 6.793850138783455 The number of items in train is: 11 The loss for epoch 4 0.617622739889405 The running loss is: 6.612731076776981 The number of items in train is: 11 The loss for epoch 5 0.6011573706160892 The running loss is: 6.01167730987072 The number of items in train is: 11 The loss for epoch 6 0.5465161190791563 The running loss is: 5.346388012170792 The number of items in train is: 11 The loss for epoch 7 0.4860352738337083 The running loss is: 5.20254971832037 The number of items in train is: 11 The loss for epoch 8 0.4729590653018518 The running loss is: 4.780299365520477 The number of items in train is: 11 The loss for epoch 9 0.4345726695927707 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.457406 48 30755 ... 5.955339 49 30756 ... 9.385489 50 30757 ... 12.424001 51 30758 ... 10.319823 52 30759 ... 4.360053 53 30760 ... 3.441776 54 30761 ... 3.458094 55 30762 ... 2.626965 56 30763 ... 2.748477 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bv5gfbfq wandb: Agent Starting Run: 4ui25iwt with config: batch_size: 3 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 4ui25iwt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.894896239042282 The number of items in train is: 11 The loss for epoch 0 0.9904451126402075 The running loss is: 24.960272923111916 The number of items in train is: 11 The loss for epoch 1 2.2691157202829015 The running loss is: 14.597070783376694 The number of items in train is: 11 The loss for epoch 2 1.3270064348524266 The running loss is: 10.560084193944931 The number of items in train is: 11 The loss for epoch 3 0.9600076539949938 The running loss is: 8.262078568339348 The number of items in train is: 11 The loss for epoch 4 0.7510980516672134 The running loss is: 7.327546648681164 The number of items in train is: 11 The loss for epoch 5 0.6661406044255603 The running loss is: 7.109338231384754 The number of items in train is: 11 The loss for epoch 6 0.6463034755804322 The running loss is: 6.8406630009412766 The number of items in train is: 11 The loss for epoch 7 0.6218784546310251 The running loss is: 6.650714844465256 The number of items in train is: 11 The loss for epoch 8 0.6046104404059324 The running loss is: 6.704959943890572 The number of items in train is: 11 The loss for epoch 9 0.609541813080961 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.342838 48 30755 ... 9.787096 49 30756 ... 10.617628 50 30757 ... 11.319128 51 30758 ... 11.079123 52 30759 ... 9.366017 53 30760 ... 7.191575 54 30761 ... 7.245820 55 30762 ... 7.157641 56 30763 ... 6.621591 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4ui25iwt wandb: Agent Starting Run: efkau42q with config: batch_size: 3 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: efkau42q
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.304110929369926 The number of items in train is: 12 The loss for epoch 0 1.2753425774474938 The running loss is: 19.57400969415903 The number of items in train is: 12 The loss for epoch 1 1.6311674745132525 The running loss is: 21.51656384766102 The number of items in train is: 12 The loss for epoch 2 1.793046987305085 The running loss is: 8.785913735628128 The number of items in train is: 12 The loss for epoch 3 0.7321594779690107 The running loss is: 9.513798125088215 The number of items in train is: 12 The loss for epoch 4 0.7928165104240179 The running loss is: 9.432423368096352 The number of items in train is: 12 The loss for epoch 5 0.786035280674696 The running loss is: 7.66383171826601 The number of items in train is: 12 The loss for epoch 6 0.6386526431888342 The running loss is: 7.818079452961683 The number of items in train is: 12 The loss for epoch 7 0.6515066210801402 The running loss is: 6.671020977199078 The number of items in train is: 12 The loss for epoch 8 0.5559184147665898 The running loss is: 6.739705860614777 The number of items in train is: 12 The loss for epoch 9 0.5616421550512314 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.775640 48 30755 ... 12.652183 49 30756 ... 15.949203 50 30757 ... 17.717743 51 30758 ... 16.192871 52 30759 ... 12.983944 53 30760 ... 12.847769 54 30761 ... 15.049444 55 30762 ... 13.526834 56 30763 ... 14.984063 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: efkau42q wandb: Agent Starting Run: yxy354fp with config: batch_size: 3 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: yxy354fp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.336272045969963 The number of items in train is: 11 The loss for epoch 0 0.9396610950881784 The running loss is: 18.13731163740158 The number of items in train is: 11 The loss for epoch 1 1.6488465124910527 The running loss is: 13.977685883641243 The number of items in train is: 11 The loss for epoch 2 1.2706987166946584 The running loss is: 9.119788710027933 The number of items in train is: 11 The loss for epoch 3 0.8290717009116303 The running loss is: 8.845211759209633 The number of items in train is: 11 The loss for epoch 4 0.8041101599281485 The running loss is: 7.916596710681915 The number of items in train is: 11 The loss for epoch 5 0.7196906100619923 The running loss is: 7.592547062784433 The number of items in train is: 11 The loss for epoch 6 0.6902315511622212 The running loss is: 6.01723700016737 The number of items in train is: 11 The loss for epoch 7 0.5470215454697609 The running loss is: 6.154241532087326 The number of items in train is: 11 The loss for epoch 8 0.5594765029170297 The running loss is: 6.210500963032246 The number of items in train is: 11 The loss for epoch 9 0.564590996639295 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.814771 48 30755 ... 12.536692 49 30756 ... 13.175877 50 30757 ... 12.439815 51 30758 ... 13.010987 52 30759 ... 12.134022 53 30760 ... 11.068122 54 30761 ... 12.273049 55 30762 ... 9.667723 56 30763 ... 8.891700 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yxy354fp wandb: Agent Starting Run: x068md6t with config: batch_size: 3 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: x068md6t
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.163715958595276 The number of items in train is: 11 The loss for epoch 0 1.742155996235934 The running loss is: 15.844000786542892 The number of items in train is: 11 The loss for epoch 1 1.4403637078675358 The running loss is: 27.519839078187943 The number of items in train is: 11 The loss for epoch 2 2.5018035525625404 The running loss is: 10.582634881138802 The number of items in train is: 11 The loss for epoch 3 0.9620577164671638 The running loss is: 11.661602854728699 The number of items in train is: 11 The loss for epoch 4 1.0601457140662454 The running loss is: 7.782229453325272 The number of items in train is: 11 The loss for epoch 5 0.707475404847752 The running loss is: 7.696709528565407 The number of items in train is: 11 The loss for epoch 6 0.6997008662332188 The running loss is: 7.128703862428665 The number of items in train is: 11 The loss for epoch 7 0.648063987493515 The running loss is: 6.206833004951477 The number of items in train is: 11 The loss for epoch 8 0.5642575459046797 The running loss is: 6.452411137521267 The number of items in train is: 11 The loss for epoch 9 0.5865828306837515 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.637244 48 30755 ... 10.699240 49 30756 ... 11.454589 50 30757 ... 11.937562 51 30758 ... 11.151837 52 30759 ... 8.948048 53 30760 ... 7.030075 54 30761 ... 7.186663 55 30762 ... 6.990386 56 30763 ... 6.843461 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: x068md6t wandb: Agent Starting Run: ya3scy4m with config: batch_size: 3 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ya3scy4m
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 88.53303991630673 The number of items in train is: 12 The loss for epoch 0 7.377753326358895 The running loss is: 15.117607243359089 The number of items in train is: 12 The loss for epoch 1 1.2598006036132574 The running loss is: 21.78238356113434 The number of items in train is: 12 The loss for epoch 2 1.8151986300945282 The running loss is: 9.938564524054527 The number of items in train is: 12 The loss for epoch 3 0.8282137103378773 The running loss is: 13.54171159863472 The number of items in train is: 12 The loss for epoch 4 1.1284759665528934 The running loss is: 11.289286583662033 The number of items in train is: 12 The loss for epoch 5 0.9407738819718361 The running loss is: 10.076805599033833 The number of items in train is: 12 The loss for epoch 6 0.839733799919486 The running loss is: 9.40070765465498 The number of items in train is: 12 The loss for epoch 7 0.7833923045545816 The running loss is: 9.233762472867966 The number of items in train is: 12 The loss for epoch 8 0.7694802060723305 The running loss is: 7.18392214179039 The number of items in train is: 12 The loss for epoch 9 0.5986601784825325 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 18.421427 48 30755 ... 11.026144 49 30756 ... 8.737643 50 30757 ... 17.112108 51 30758 ... 16.133114 52 30759 ... 14.757212 53 30760 ... 12.639726 54 30761 ... 13.369624 55 30762 ... 12.039531 56 30763 ... 11.453431 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ya3scy4m wandb: Agent Starting Run: fp8m3p5p with config: batch_size: 3 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: fp8m3p5p
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 56.73506325483322 The number of items in train is: 11 The loss for epoch 0 5.1577330231666565 The running loss is: 14.081439599394798 The number of items in train is: 11 The loss for epoch 1 1.2801308726722544 The running loss is: 11.768588274717331 The number of items in train is: 11 The loss for epoch 2 1.069871661337939 The running loss is: 11.529130071401596 The number of items in train is: 11 The loss for epoch 3 1.0481027337637814 The running loss is: 8.909016866236925 The number of items in train is: 11 The loss for epoch 4 0.8099106242033568 The running loss is: 8.021973967552185 The number of items in train is: 11 The loss for epoch 5 0.7292703606865623 The running loss is: 7.132795467972755 The number of items in train is: 11 The loss for epoch 6 0.6484359516338869 The running loss is: 6.869528941810131 The number of items in train is: 11 The loss for epoch 7 0.6245026310736482 The running loss is: 7.365066081285477 The number of items in train is: 11 The loss for epoch 8 0.6695514619350433 The running loss is: 7.568959094583988 The number of items in train is: 11 The loss for epoch 9 0.6880871904167262 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.777973 48 30755 ... 10.313013 49 30756 ... 10.664633 50 30757 ... 11.374364 51 30758 ... 11.230084 52 30759 ... 11.073467 53 30760 ... 10.215710 54 30761 ... 10.222840 55 30762 ... 10.195326 56 30763 ... 10.036734 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fp8m3p5p wandb: Agent Starting Run: nl9f3zyh with config: batch_size: 3 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: nl9f3zyh
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 119.16718634963036 The number of items in train is: 11 The loss for epoch 0 10.833380577239124 The running loss is: 14.289708197116852 The number of items in train is: 11 The loss for epoch 1 1.2990643815560774 The running loss is: 13.934945285320282 The number of items in train is: 11 The loss for epoch 2 1.2668132077563892 The running loss is: 16.21449938416481 The number of items in train is: 11 The loss for epoch 3 1.4740453985604374 The running loss is: 16.993614554405212 The number of items in train is: 11 The loss for epoch 4 1.5448740504004739 The running loss is: 14.635781586170197 The number of items in train is: 11 The loss for epoch 5 1.3305255987427451 The running loss is: 11.63321104645729 The number of items in train is: 11 The loss for epoch 6 1.0575646405870265 The running loss is: 8.882433205842972 The number of items in train is: 11 The loss for epoch 7 0.8074939278039065 The running loss is: 7.281253471970558 The number of items in train is: 11 The loss for epoch 8 0.6619321338155053 The running loss is: 7.735475331544876 The number of items in train is: 11 The loss for epoch 9 0.7032250301404432 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.217269 48 30755 ... 8.253767 49 30756 ... 8.526093 50 30757 ... 8.519957 51 30758 ... 8.564201 52 30759 ... 8.558195 53 30760 ... 8.048856 54 30761 ... 7.787209 55 30762 ... 7.811332 56 30763 ... 6.481368 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nl9f3zyh wandb: Agent Starting Run: egq37mix with config: batch_size: 3 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: egq37mix
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.937215354293585 The number of items in train is: 11 The loss for epoch 0 1.267019577663053 The running loss is: 12.927820309996605 The number of items in train is: 11 The loss for epoch 1 1.1752563918178731 The running loss is: 7.380629554390907 The number of items in train is: 11 The loss for epoch 2 0.6709663231264461 The running loss is: 7.143720369786024 The number of items in train is: 11 The loss for epoch 3 0.6494291245260022 The running loss is: 6.624908953905106 The number of items in train is: 11 The loss for epoch 4 0.6022644503550096 The running loss is: 6.404768772423267 The number of items in train is: 11 The loss for epoch 5 0.5822517065839334 The running loss is: 6.25363489612937 The number of items in train is: 11 The loss for epoch 6 0.5685122632844881 The running loss is: 5.978661727160215 The number of items in train is: 11 The loss for epoch 7 0.5435147024691105 The running loss is: 5.826105419546366 The number of items in train is: 11 The loss for epoch 8 0.5296459472314878 The running loss is: 5.398386839777231 The number of items in train is: 11 The loss for epoch 9 0.4907624399797483 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.602220 48 30755 ... 7.674791 49 30756 ... 9.680432 50 30757 ... 9.432722 51 30758 ... 8.631081 52 30759 ... 8.656858 53 30760 ... 7.497314 54 30761 ... 3.186903 55 30762 ... 3.427803 56 30763 ... 3.806885 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: egq37mix wandb: Agent Starting Run: 055yta4y with config: batch_size: 3 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 055yta4y
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.16464938223362 The number of items in train is: 11 The loss for epoch 0 1.1967863074757836 The running loss is: 14.236513704061508 The number of items in train is: 11 The loss for epoch 1 1.2942285185510463 The running loss is: 7.635823279619217 The number of items in train is: 11 The loss for epoch 2 0.6941657526926561 The running loss is: 6.894759684801102 The number of items in train is: 11 The loss for epoch 3 0.6267963349819183 The running loss is: 6.464241176843643 The number of items in train is: 11 The loss for epoch 4 0.5876582888039675 The running loss is: 6.639204442501068 The number of items in train is: 11 The loss for epoch 5 0.6035640402273699 The running loss is: 6.4581106305122375 The number of items in train is: 11 The loss for epoch 6 0.5871009664102034 The running loss is: 5.75249408185482 The number of items in train is: 11 The loss for epoch 7 0.5229540074413473 The running loss is: 6.132444128394127 The number of items in train is: 11 The loss for epoch 8 0.5574949207631025 The running loss is: 5.399658687412739 The number of items in train is: 11 The loss for epoch 9 0.49087806249206717 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.781346 48 30755 ... 6.443140 49 30756 ... 8.097566 50 30757 ... 7.652623 51 30758 ... 6.561896 52 30759 ... 6.862144 53 30760 ... 6.056333 54 30761 ... 1.668644 55 30762 ... 1.731342 56 30763 ... 1.537274 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 055yta4y wandb: Agent Starting Run: iybnn54g with config: batch_size: 3 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: iybnn54g
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.125202730298042 The number of items in train is: 11 The loss for epoch 0 1.193200248208913 The running loss is: 12.032076135277748 The number of items in train is: 11 The loss for epoch 1 1.093825103207068 The running loss is: 7.3690506517887115 The number of items in train is: 11 The loss for epoch 2 0.6699136956171556 The running loss is: 6.6424713134765625 The number of items in train is: 11 The loss for epoch 3 0.6038610284978693 The running loss is: 6.352311864495277 The number of items in train is: 11 The loss for epoch 4 0.5774828967722979 The running loss is: 6.089945591986179 The number of items in train is: 11 The loss for epoch 5 0.553631417453289 The running loss is: 6.11835578083992 The number of items in train is: 11 The loss for epoch 6 0.5562141618945382 The running loss is: 6.080555185675621 The number of items in train is: 11 The loss for epoch 7 0.5527777441523292 The running loss is: 5.575134560465813 The number of items in train is: 11 The loss for epoch 8 0.5068304145878012 The running loss is: 5.911937691271305 The number of items in train is: 11 The loss for epoch 9 0.5374488810246641 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.100501 48 30755 ... 6.447453 49 30756 ... 5.319932 50 30757 ... 5.754395 51 30758 ... 5.810476 52 30759 ... 5.998308 53 30760 ... 5.530815 54 30761 ... 0.845803 55 30762 ... 0.897836 56 30763 ... 0.437532 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: iybnn54g wandb: Agent Starting Run: 0c5rtc4t with config: batch_size: 3 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 0c5rtc4t
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.56395823508501 The number of items in train is: 11 The loss for epoch 0 1.0512689304622738 The running loss is: 21.39585980027914 The number of items in train is: 11 The loss for epoch 1 1.94507816366174 The running loss is: 9.437215507030487 The number of items in train is: 11 The loss for epoch 2 0.857928682457317 The running loss is: 8.832013815641403 The number of items in train is: 11 The loss for epoch 3 0.8029103468764912 The running loss is: 7.06958132237196 The number of items in train is: 11 The loss for epoch 4 0.6426892111247237 The running loss is: 6.77753984183073 The number of items in train is: 11 The loss for epoch 5 0.6161399856209755 The running loss is: 6.557316467165947 The number of items in train is: 11 The loss for epoch 6 0.5961196788332679 The running loss is: 6.02478714287281 The number of items in train is: 11 The loss for epoch 7 0.5477079220793464 The running loss is: 5.408392807468772 The number of items in train is: 11 The loss for epoch 8 0.491672073406252 The running loss is: 4.902979908511043 The number of items in train is: 11 The loss for epoch 9 0.4457254462282766 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.421265 48 30755 ... 7.484463 49 30756 ... 9.594088 50 30757 ... 9.243134 51 30758 ... 7.143751 52 30759 ... 8.632397 53 30760 ... 9.842757 54 30761 ... 5.808178 55 30762 ... 5.270340 56 30763 ... 5.360891 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0c5rtc4t wandb: Agent Starting Run: dmof87c1 with config: batch_size: 3 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: dmof87c1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.552351400256157 The number of items in train is: 11 The loss for epoch 0 1.0502137636596507 The running loss is: 22.925799906253815 The number of items in train is: 11 The loss for epoch 1 2.084163627841256 The running loss is: 10.040516801178455 The number of items in train is: 11 The loss for epoch 2 0.9127742546525869 The running loss is: 8.72734984010458 The number of items in train is: 11 The loss for epoch 3 0.7933954400095072 The running loss is: 7.016648806631565 The number of items in train is: 11 The loss for epoch 4 0.6378771642392332 The running loss is: 7.162662923336029 The number of items in train is: 11 The loss for epoch 5 0.6511511748487299 The running loss is: 6.340226337313652 The number of items in train is: 11 The loss for epoch 6 0.5763842124830593 The running loss is: 6.102388359606266 The number of items in train is: 11 The loss for epoch 7 0.5547625781460241 The running loss is: 6.945028610527515 The number of items in train is: 11 The loss for epoch 8 0.6313662373206832 The running loss is: 6.08937419205904 The number of items in train is: 11 The loss for epoch 9 0.5535794720053673 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.671848 48 30755 ... 9.396304 49 30756 ... 9.288265 50 30757 ... 9.899469 51 30758 ... 9.928300 52 30759 ... 10.266774 53 30760 ... 9.928045 54 30761 ... 7.802100 55 30762 ... 8.361746 56 30763 ... 8.434018 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: dmof87c1 wandb: Agent Starting Run: a607o3ai with config: batch_size: 3 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: a607o3ai
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.085680603981018 The number of items in train is: 11 The loss for epoch 0 1.0077891458164563 The running loss is: 20.121261298656464 The number of items in train is: 11 The loss for epoch 1 1.829205572605133 The running loss is: 9.134558081626892 The number of items in train is: 11 The loss for epoch 2 0.8304143710569902 The running loss is: 8.571861386299133 The number of items in train is: 11 The loss for epoch 3 0.779260126027194 The running loss is: 7.1886313408613205 The number of items in train is: 11 The loss for epoch 4 0.6535119400783018 The running loss is: 6.905544355511665 The number of items in train is: 11 The loss for epoch 5 0.6277767595919695 The running loss is: 6.2731651067733765 The number of items in train is: 11 The loss for epoch 6 0.5702877369793978 The running loss is: 6.410836488008499 The number of items in train is: 11 The loss for epoch 7 0.5828033170916818 The running loss is: 5.631247833371162 The number of items in train is: 11 The loss for epoch 8 0.5119316212155602 The running loss is: 5.932000920176506 The number of items in train is: 11 The loss for epoch 9 0.5392728109251369 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.579858 48 30755 ... 7.775860 49 30756 ... 6.056839 50 30757 ... 7.616488 51 30758 ... 7.260682 52 30759 ... 7.825396 53 30760 ... 6.902719 54 30761 ... 3.999594 55 30762 ... 3.916414 56 30763 ... 4.020979 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: a607o3ai wandb: Agent Starting Run: s2l615c4 with config: batch_size: 3 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: s2l615c4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.919737175107002 The number of items in train is: 11 The loss for epoch 0 1.2654306522824548 The running loss is: 14.05555833876133 The number of items in train is: 11 The loss for epoch 1 1.2777780307964846 The running loss is: 15.306061759591103 The number of items in train is: 11 The loss for epoch 2 1.3914601599628276 The running loss is: 8.069633159786463 The number of items in train is: 11 The loss for epoch 3 0.733603014526042 The running loss is: 8.077630437910557 The number of items in train is: 11 The loss for epoch 4 0.7343300398100506 The running loss is: 7.786269728094339 The number of items in train is: 11 The loss for epoch 5 0.7078427025540308 The running loss is: 7.286909453570843 The number of items in train is: 11 The loss for epoch 6 0.6624463139609857 The running loss is: 6.560916505753994 The number of items in train is: 11 The loss for epoch 7 0.596446955068545 The running loss is: 6.199817832559347 The number of items in train is: 11 The loss for epoch 8 0.5636198029599406 The running loss is: 6.044604599475861 The number of items in train is: 11 The loss for epoch 9 0.54950950904326 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.586776 48 30755 ... 8.372278 49 30756 ... 10.883894 50 30757 ... 11.080786 51 30758 ... 7.882761 52 30759 ... 10.142594 53 30760 ... 11.976085 54 30761 ... 6.001824 55 30762 ... 5.632422 56 30763 ... 5.912739 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: s2l615c4 wandb: Agent Starting Run: 684gik0b with config: batch_size: 3 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 684gik0b
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.285382837057114 The number of items in train is: 11 The loss for epoch 0 1.2986711670051923 The running loss is: 15.524043463170528 The number of items in train is: 11 The loss for epoch 1 1.4112766784700481 The running loss is: 25.67881280183792 The number of items in train is: 11 The loss for epoch 2 2.334437527439811 The running loss is: 9.272457085549831 The number of items in train is: 11 The loss for epoch 3 0.8429506441408937 The running loss is: 8.30488908290863 The number of items in train is: 11 The loss for epoch 4 0.7549899166280573 The running loss is: 7.985045664012432 The number of items in train is: 11 The loss for epoch 5 0.7259132421829484 The running loss is: 7.957685396075249 The number of items in train is: 11 The loss for epoch 6 0.7234259450977499 The running loss is: 8.26042753458023 The number of items in train is: 11 The loss for epoch 7 0.7509479576891119 The running loss is: 8.252448678016663 The number of items in train is: 11 The loss for epoch 8 0.7502226070924238 The running loss is: 5.690807230770588 The number of items in train is: 11 The loss for epoch 9 0.5173461118882353 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.783648 48 30755 ... 10.360521 49 30756 ... 5.586550 50 30757 ... 10.668744 51 30758 ... 8.042665 52 30759 ... 13.113797 53 30760 ... 9.734967 54 30761 ... 9.209267 55 30762 ... 7.848692 56 30763 ... 10.805669 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 684gik0b wandb: Agent Starting Run: e8tpi7lb with config: batch_size: 3 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: e8tpi7lb
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.106163665652275 The number of items in train is: 11 The loss for epoch 0 1.100560333241116 The running loss is: 15.11037127673626 The number of items in train is: 11 The loss for epoch 1 1.3736701160669327 The running loss is: 18.565093740820885 The number of items in train is: 11 The loss for epoch 2 1.6877357946200804 The running loss is: 8.801799945533276 The number of items in train is: 11 The loss for epoch 3 0.800163631412116 The running loss is: 8.399221360683441 The number of items in train is: 11 The loss for epoch 4 0.7635655782439492 The running loss is: 8.407545536756516 The number of items in train is: 11 The loss for epoch 5 0.7643223215233196 The running loss is: 6.584027715027332 The number of items in train is: 11 The loss for epoch 6 0.5985479740933939 The running loss is: 7.207642734050751 The number of items in train is: 11 The loss for epoch 7 0.6552402485500682 The running loss is: 6.850147262215614 The number of items in train is: 11 The loss for epoch 8 0.6227406602014195 The running loss is: 7.071139693260193 The number of items in train is: 11 The loss for epoch 9 0.642830881205472 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.616160 48 30755 ... 9.827299 49 30756 ... 3.027868 50 30757 ... 8.111265 51 30758 ... 10.138385 52 30759 ... 10.469387 53 30760 ... 8.697634 54 30761 ... 7.158179 55 30762 ... 7.428538 56 30763 ... 8.332012 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: e8tpi7lb wandb: Agent Starting Run: d3o40cfk with config: batch_size: 3 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: d3o40cfk
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 90.30369505286217 The number of items in train is: 11 The loss for epoch 0 8.209426822987469 The running loss is: 15.560469098389149 The number of items in train is: 11 The loss for epoch 1 1.414588099853559 The running loss is: 20.279406629502773 The number of items in train is: 11 The loss for epoch 2 1.8435824208638885 The running loss is: 13.721642754971981 The number of items in train is: 11 The loss for epoch 3 1.2474220686338164 The running loss is: 9.624975465238094 The number of items in train is: 11 The loss for epoch 4 0.8749977695670995 The running loss is: 9.650864725932479 The number of items in train is: 11 The loss for epoch 5 0.8773513387211345 The running loss is: 9.389308098703623 The number of items in train is: 11 The loss for epoch 6 0.8535734635185112 The running loss is: 8.569266445934772 The number of items in train is: 11 The loss for epoch 7 0.7790242223577066 The running loss is: 7.809198591858149 The number of items in train is: 11 The loss for epoch 8 0.7099271447143771 The running loss is: 9.43609918653965 The number of items in train is: 11 The loss for epoch 9 0.8578271987763318 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.029284 48 30755 ... 11.026073 49 30756 ... 11.041766 50 30757 ... 12.278847 51 30758 ... 12.294883 52 30759 ... 12.624520 53 30760 ... 13.053844 54 30761 ... 12.575034 55 30762 ... 12.675170 56 30763 ... 12.601731 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: d3o40cfk wandb: Agent Starting Run: fc1ir6hp with config: batch_size: 3 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: fc1ir6hp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 84.87001064419746 The number of items in train is: 11 The loss for epoch 0 7.715455513108861 The running loss is: 11.632207192480564 The number of items in train is: 11 The loss for epoch 1 1.0574733811345967 The running loss is: 20.81926593184471 The number of items in train is: 11 The loss for epoch 2 1.8926605392586102 The running loss is: 9.084724470973015 The number of items in train is: 11 The loss for epoch 3 0.8258840428157286 The running loss is: 10.560272850096226 The number of items in train is: 11 The loss for epoch 4 0.9600248045542024 The running loss is: 10.19235224276781 The number of items in train is: 11 The loss for epoch 5 0.9265774766152556 The running loss is: 9.287791468203068 The number of items in train is: 11 The loss for epoch 6 0.8443446789275516 The running loss is: 7.80347640812397 The number of items in train is: 11 The loss for epoch 7 0.7094069461930882 The running loss is: 9.036721609532833 The number of items in train is: 11 The loss for epoch 8 0.8215201463211667 The running loss is: 8.998482886701822 The number of items in train is: 11 The loss for epoch 9 0.8180438987910748 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.811060 48 30755 ... 11.055724 49 30756 ... 7.466121 50 30757 ... 7.228861 51 30758 ... 12.189958 52 30759 ... 11.982655 53 30760 ... 10.075672 54 30761 ... 8.466732 55 30762 ... 9.425452 56 30763 ... 11.071779 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fc1ir6hp wandb: Agent Starting Run: f1mlp38o with config: batch_size: 3 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: f1mlp38o
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 67.69290640950203 The number of items in train is: 11 The loss for epoch 0 6.153900582682002 The running loss is: 9.668513655662537 The number of items in train is: 11 The loss for epoch 1 0.8789557868784125 The running loss is: 9.981049299240112 The number of items in train is: 11 The loss for epoch 2 0.9073681181127374 The running loss is: 10.219359934329987 The number of items in train is: 11 The loss for epoch 3 0.9290327213027261 The running loss is: 11.357643961906433 The number of items in train is: 11 The loss for epoch 4 1.0325130874460393 The running loss is: 8.35865232348442 The number of items in train is: 11 The loss for epoch 5 0.7598774839531292 The running loss is: 7.621890068054199 The number of items in train is: 11 The loss for epoch 6 0.6928990970958363 The running loss is: 8.405842632055283 The number of items in train is: 11 The loss for epoch 7 0.7641675120050256 The running loss is: 7.759170785546303 The number of items in train is: 11 The loss for epoch 8 0.7053791623223912 The running loss is: 7.550814151763916 The number of items in train is: 11 The loss for epoch 9 0.686437650160356 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.754035 48 30755 ... 6.363925 49 30756 ... 6.710924 50 30757 ... 8.356108 51 30758 ... 8.733762 52 30759 ... 7.781654 53 30760 ... 7.346811 54 30761 ... 5.208549 55 30762 ... 5.471954 56 30763 ... 5.261775 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: f1mlp38o wandb: Agent Starting Run: waidlena with config: batch_size: 4 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: waidlena
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.497929081320763 The number of items in train is: 11 The loss for epoch 0 1.227084461938251 The running loss is: 8.768787369132042 The number of items in train is: 11 The loss for epoch 1 0.7971624881029129 The running loss is: 8.496358714997768 The number of items in train is: 11 The loss for epoch 2 0.7723962468179789 The running loss is: 7.1095104441046715 The number of items in train is: 11 The loss for epoch 3 0.6463191312822428 The running loss is: 8.59556758403778 The number of items in train is: 11 The loss for epoch 4 0.7814152349125255 The running loss is: 7.4800353944301605 The number of items in train is: 11 The loss for epoch 5 0.6800032176754691 The running loss is: 7.584153085947037 The number of items in train is: 11 The loss for epoch 6 0.6894684623588215 The running loss is: 8.128714382648468 The number of items in train is: 11 The loss for epoch 7 0.7389740347862244 The running loss is: 8.35108682513237 The number of items in train is: 11 The loss for epoch 8 0.75918971137567 The running loss is: 8.158496677875519 The number of items in train is: 11 The loss for epoch 9 0.7416815161705017 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 12.112806 48 30755 ... 11.882335 49 30756 ... 11.945765 50 30757 ... 12.140722 51 30758 ... 12.394543 52 30759 ... 12.674706 53 30760 ... 12.966658 54 30761 ... 12.097885 55 30762 ... 11.875657 56 30763 ... 11.942776 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: waidlena wandb: Agent Starting Run: qjfpgo60 with config: batch_size: 4 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: qjfpgo60
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.39041042327881 The number of items in train is: 11 The loss for epoch 0 1.7627645839344372 The running loss is: 14.094916045665741 The number of items in train is: 11 The loss for epoch 1 1.281356004151431 The running loss is: 13.58062994480133 The number of items in train is: 11 The loss for epoch 2 1.2346027222546665 The running loss is: 13.59209805727005 The number of items in train is: 11 The loss for epoch 3 1.2356452779336409 The running loss is: 13.201426059007645 The number of items in train is: 11 The loss for epoch 4 1.2001296417279677 The running loss is: 12.879163593053818 The number of items in train is: 11 The loss for epoch 5 1.1708330539139835 The running loss is: 12.814834147691727 The number of items in train is: 11 The loss for epoch 6 1.1649849225174298 The running loss is: 12.698356926441193 The number of items in train is: 11 The loss for epoch 7 1.1543960842219265 The running loss is: 12.411805510520935 The number of items in train is: 11 The loss for epoch 8 1.128345955501903 The running loss is: 12.614239037036896 The number of items in train is: 11 The loss for epoch 9 1.1467490033669905 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 17.735096 48 30755 ... 21.072258 49 30756 ... 23.510662 50 30757 ... 25.371246 51 30758 ... 26.860338 52 30759 ... 28.110594 53 30760 ... 29.207296 54 30761 ... 28.155012 55 30762 ... 27.771378 56 30763 ... 27.817627 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qjfpgo60 wandb: Agent Starting Run: szcbpw5m with config: batch_size: 4 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: szcbpw5m
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.532336503267288 The number of items in train is: 10 The loss for epoch 0 1.6532336503267289 The running loss is: 11.091062128543854 The number of items in train is: 10 The loss for epoch 1 1.1091062128543854 The running loss is: 10.856420874595642 The number of items in train is: 10 The loss for epoch 2 1.0856420874595643 The running loss is: 10.523346066474915 The number of items in train is: 10 The loss for epoch 3 1.0523346066474915 The running loss is: 10.397574484348297 The number of items in train is: 10 The loss for epoch 4 1.0397574484348298 The running loss is: 10.013593643903732 The number of items in train is: 10 The loss for epoch 5 1.0013593643903733 The running loss is: 9.911922216415405 The number of items in train is: 10 The loss for epoch 6 0.9911922216415405 The running loss is: 10.10109493136406 The number of items in train is: 10 The loss for epoch 7 1.0101094931364059 The running loss is: 9.99822461605072 The number of items in train is: 10 The loss for epoch 8 0.999822461605072 The running loss is: 10.047543227672577 The number of items in train is: 10 The loss for epoch 9 1.0047543227672577 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 7.451673 48 30755 ... 4.557664 49 30756 ... 2.783484 50 30757 ... 1.481748 51 30758 ... 0.379330 52 30759 ... -0.638998 53 30760 ... -1.621848 54 30761 ... 1.282873 55 30762 ... 1.955114 56 30763 ... 1.685496 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: szcbpw5m wandb: Agent Starting Run: fqtu6656 with config: batch_size: 4 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fqtu6656
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.279194861650467 The number of items in train is: 11 The loss for epoch 0 1.1162904419682242 The running loss is: 16.839398562908173 The number of items in train is: 11 The loss for epoch 1 1.530854414809834 The running loss is: 8.657114937901497 The number of items in train is: 11 The loss for epoch 2 0.787010448900136 The running loss is: 8.566754624247551 The number of items in train is: 11 The loss for epoch 3 0.7787958749315955 The running loss is: 8.194050922989845 The number of items in train is: 11 The loss for epoch 4 0.7449137202718041 The running loss is: 7.402128949761391 The number of items in train is: 11 The loss for epoch 5 0.6729208136146719 The running loss is: 7.638427227735519 The number of items in train is: 11 The loss for epoch 6 0.6944024752486836 The running loss is: 7.960539147257805 The number of items in train is: 11 The loss for epoch 7 0.7236853770234368 The running loss is: 8.493246629834175 The number of items in train is: 11 The loss for epoch 8 0.772113329984925 The running loss is: 7.924744144082069 The number of items in train is: 11 The loss for epoch 9 0.7204312858256426 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.971193 48 30755 ... 11.706475 49 30756 ... 11.781940 50 30757 ... 12.008855 51 30758 ... 12.303199 52 30759 ... 12.627563 53 30760 ... 12.965292 54 30761 ... 11.955740 55 30762 ... 11.699595 56 30763 ... 11.778876 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fqtu6656 wandb: Agent Starting Run: 44l5rduh with config: batch_size: 4 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 44l5rduh
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.85647228360176 The number of items in train is: 11 The loss for epoch 0 1.7142247530547055 The running loss is: 20.30205523967743 The number of items in train is: 11 The loss for epoch 1 1.845641385425221 The running loss is: 13.520971089601517 The number of items in train is: 11 The loss for epoch 2 1.2291791899637743 The running loss is: 13.447545528411865 The number of items in train is: 11 The loss for epoch 3 1.2225041389465332 The running loss is: 12.76877212524414 The number of items in train is: 11 The loss for epoch 4 1.1607974659312854 The running loss is: 12.522136121988297 The number of items in train is: 11 The loss for epoch 5 1.138376011089845 The running loss is: 12.232091456651688 The number of items in train is: 11 The loss for epoch 6 1.1120083142410626 The running loss is: 12.113570183515549 The number of items in train is: 11 The loss for epoch 7 1.101233653046868 The running loss is: 11.928546637296677 The number of items in train is: 11 The loss for epoch 8 1.0844133306633343 The running loss is: 11.618478044867516 The number of items in train is: 11 The loss for epoch 9 1.0562252768061378 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 16.801399 48 30755 ... 19.427036 49 30756 ... 21.332169 50 30757 ... 22.795780 51 30758 ... 23.988827 52 30759 ... 25.016071 53 30760 ... 25.941715 54 30761 ... 24.732052 55 30762 ... 24.286921 56 30763 ... 24.310295 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 44l5rduh wandb: Agent Starting Run: euxxg89q with config: batch_size: 4 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: euxxg89q
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.137496054172516 The number of items in train is: 10 The loss for epoch 0 1.5137496054172517 The running loss is: 19.171320110559464 The number of items in train is: 10 The loss for epoch 1 1.9171320110559464 The running loss is: 10.694960564374924 The number of items in train is: 10 The loss for epoch 2 1.0694960564374925 The running loss is: 10.60001027584076 The number of items in train is: 10 The loss for epoch 3 1.0600010275840759 The running loss is: 10.514416992664337 The number of items in train is: 10 The loss for epoch 4 1.0514416992664337 The running loss is: 9.992541253566742 The number of items in train is: 10 The loss for epoch 5 0.9992541253566742 The running loss is: 10.011631518602371 The number of items in train is: 10 The loss for epoch 6 1.001163151860237 The running loss is: 9.713776409626007 The number of items in train is: 10 The loss for epoch 7 0.9713776409626007 The running loss is: 9.765309482812881 The number of items in train is: 10 The loss for epoch 8 0.9765309482812882 The running loss is: 9.576499074697495 The number of items in train is: 10 The loss for epoch 9 0.9576499074697494 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 7.637028 48 30755 ... 5.024141 49 30756 ... 3.497705 50 30757 ... 2.400480 51 30758 ... 1.472821 52 30759 ... 0.612151 53 30760 ... -0.222054 54 30761 ... 2.413519 55 30762 ... 2.960541 56 30763 ... 2.682458 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: euxxg89q wandb: Agent Starting Run: 1bqhr29t with config: batch_size: 4 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 1bqhr29t
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.885171070694923 The number of items in train is: 11 The loss for epoch 0 0.9895610064268112 The running loss is: 22.15847496688366 The number of items in train is: 11 The loss for epoch 1 2.0144068151712418 The running loss is: 15.519859187304974 The number of items in train is: 11 The loss for epoch 2 1.4108962897549977 The running loss is: 9.152763716876507 11 The number of items in train is: The loss for epoch 3 0.8320694288069551 The running loss is: 8.221307665109634 The number of items in train is: 11 The loss for epoch 4 0.7473916059190576 The running loss is: 8.884836662560701 The number of items in train is: 11 The loss for epoch 5 0.8077124238691546 The running loss is: 8.030499786138535 The number of items in train is: 11 The loss for epoch 6 0.7300454351035032 The running loss is: 8.168342098593712 The number of items in train is: 11 The loss for epoch 7 0.7425765544176102 The running loss is: 8.518066614866257 The number of items in train is: 11 The loss for epoch 8 0.7743696922605688 The running loss is: 8.19113241136074 The number of items in train is: 11 The loss for epoch 9 0.7446484010327946 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.825364 48 30755 ... 11.594109 49 30756 ... 11.774220 50 30757 ... 12.133711 51 30758 ... 12.571421 52 30759 ... 13.043240 53 30760 ... 13.529931 54 30761 ... 12.056443 55 30762 ... 11.694873 56 30763 ... 11.818159 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1bqhr29t wandb: Agent Starting Run: 2mcqkbzi with config: batch_size: 4 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 2mcqkbzi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.28933358192444 The number of items in train is: 11 The loss for epoch 0 1.4808485074476763 The running loss is: 31.518853425979614 The number of items in train is: 11 The loss for epoch 1 2.8653503114526924 The running loss is: 19.339537233114243 The number of items in train is: 11 The loss for epoch 2 1.758139748464931 The running loss is: 13.648087859153748 The number of items in train is: 11 The loss for epoch 3 1.2407352599230679 The running loss is: 12.581658080220222 The number of items in train is: 11 The loss for epoch 4 1.1437870982018383 The running loss is: 13.421542048454285 The number of items in train is: 11 The loss for epoch 5 1.2201401862231167 The running loss is: 12.218509554862976 The number of items in train is: 11 The loss for epoch 6 1.1107735958966343 The running loss is: 11.046258971095085 The number of items in train is: 11 The loss for epoch 7 1.004205361008644 The running loss is: 10.9622243642807 The number of items in train is: 11 The loss for epoch 8 0.9965658512982455 The running loss is: 10.555041283369064 The number of items in train is: 11 The loss for epoch 9 0.9595492075790059 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 16.295586 48 30755 ... 18.512218 49 30756 ... 20.077642 50 30757 ... 21.250025 51 30758 ... 22.185184 52 30759 ... 22.977167 53 30760 ... 23.682737 54 30761 ... 22.743214 55 30762 ... 22.403723 56 30763 ... 22.426382 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2mcqkbzi wandb: Agent Starting Run: xv0nyvna with config: batch_size: 4 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: xv0nyvna
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.87590116262436 The number of items in train is: 10 The loss for epoch 0 1.1875901162624358 The running loss is: 28.522132337093353 The number of items in train is: 10 The loss for epoch 1 2.8522132337093353 The running loss is: 15.147392272949219 The number of items in train is: 10 The loss for epoch 2 1.5147392272949218 The running loss is: 12.158874988555908 The number of items in train is: 10 The loss for epoch 3 1.2158874988555908 The running loss is: 12.22810235619545 The number of items in train is: 10 The loss for epoch 4 1.222810235619545 The running loss is: 10.145126044750214 The number of items in train is: 10 The loss for epoch 5 1.0145126044750215 The running loss is: 10.802199751138687 The number of items in train is: 10 The loss for epoch 6 1.0802199751138688 The running loss is: 9.540551364421844 The number of items in train is: 10 The loss for epoch 7 0.9540551364421844 The running loss is: 9.32604005932808 The number of items in train is: 10 The loss for epoch 8 0.9326040059328079 The running loss is: 8.828394114971161 The number of items in train is: 10 The loss for epoch 9 0.8828394114971161 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 8.527145 48 30755 ... 6.231841 49 30756 ... 4.828226 50 30757 ... 3.789749 51 30758 ... 2.900795 52 30759 ... 2.073069 53 30760 ... 1.270414 54 30761 ... 3.723977 55 30762 ... 4.264983 56 30763 ... 4.022814 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xv0nyvna wandb: Agent Starting Run: l8weyaf1 with config: batch_size: 4 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: l8weyaf1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 31.63803505897522 The number of items in train is: 11 The loss for epoch 0 2.8761850053613838 The running loss is: 18.769451931118965 The number of items in train is: 11 The loss for epoch 1 1.706313811919906 The running loss is: 11.642233811318874 The number of items in train is: 11 The loss for epoch 2 1.0583848919380794 The running loss is: 10.180661663413048 The number of items in train is: 11 The loss for epoch 3 0.9255146966739134 The running loss is: 11.987961947917938 The number of items in train is: 11 The loss for epoch 4 1.0898147225379944 The running loss is: 9.060462906956673 The number of items in train is: 11 The loss for epoch 5 0.8236784460869703 The running loss is: 9.576754912734032 The number of items in train is: 11 The loss for epoch 6 0.8706140829758211 The running loss is: 9.787697870284319 The number of items in train is: 11 The loss for epoch 7 0.8897907154803927 The running loss is: 11.934325933456421 The number of items in train is: 11 The loss for epoch 8 1.084938721223311 The running loss is: 9.142074868083 The number of items in train is: 11 The loss for epoch 9 0.8310977152802728 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 13.001091 48 30755 ... 12.799424 49 30756 ... 12.547743 50 30757 ... 12.283724 51 30758 ... 12.016661 52 30759 ... 11.748848 53 30760 ... 11.480849 54 30761 ... 12.626358 55 30762 ... 12.706987 56 30763 ... 12.524940 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l8weyaf1 wandb: Agent Starting Run: b15ovsca with config: batch_size: 4 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: b15ovsca
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 31.673054099082947 The number of items in train is: 11 The loss for epoch 0 2.879368554462086 The running loss is: 22.425230860710144 The number of items in train is: 11 The loss for epoch 1 2.0386573509736494 The running loss is: 16.475321352481842 The number of items in train is: 11 The loss for epoch 2 1.4977564865892583 The running loss is: 13.716146633028984 The number of items in train is: 11 The loss for epoch 3 1.2469224211844532 The running loss is: 14.30988696217537 The number of items in train is: 11 The loss for epoch 4 1.3008988147432154 The running loss is: 10.958332479000092 The number of items in train is: 11 The loss for epoch 5 0.9962120435454629 The running loss is: 10.916476994752884 The number of items in train is: 11 The loss for epoch 6 0.9924069995229895 The running loss is: 9.848691046237946 The number of items in train is: 11 The loss for epoch 7 0.895335549657995 The running loss is: 10.236702859401703 The number of items in train is: 11 The loss for epoch 8 0.9306093508547003 The running loss is: 9.222264111042023 The number of items in train is: 11 The loss for epoch 9 0.8383876464583657 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 13.620722 48 30755 ... 13.905069 49 30756 ... 14.085255 50 30757 ... 14.233186 51 30758 ... 14.371129 52 30759 ... 14.505979 53 30760 ... 14.639871 54 30761 ... 14.128526 55 30762 ... 14.062317 56 30763 ... 14.133948 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: b15ovsca wandb: Agent Starting Run: 5ly0x251 with config: batch_size: 4 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 5ly0x251
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 32.99864113330841 The number of items in train is: 10 The loss for epoch 0 3.299864113330841 The running loss is: 17.60329395532608 The number of items in train is: 10 The loss for epoch 1 1.760329395532608 The running loss is: 11.215231776237488 The number of items in train is: 10 The loss for epoch 2 1.1215231776237489 The running loss is: 12.638816893100739 The number of items in train is: 10 The loss for epoch 3 1.263881689310074 The running loss is: 10.019712716341019 The number of items in train is: 10 The loss for epoch 4 1.0019712716341018 The running loss is: 9.607232719659805 The number of items in train is: 10 The loss for epoch 5 0.9607232719659805 The running loss is: 9.590596705675125 The number of items in train is: 10 The loss for epoch 6 0.9590596705675125 The running loss is: 8.71025364100933 The number of items in train is: 10 The loss for epoch 7 0.8710253641009331 The running loss is: 8.37963554263115 The number of items in train is: 10 The loss for epoch 8 0.837963554263115 The running loss is: 8.494551599025726 The number of items in train is: 10 The loss for epoch 9 0.8494551599025726 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 10.702608 48 30755 ... 9.330258 49 30756 ... 8.310846 50 30757 ... 7.426092 51 30758 ... 6.592715 52 30759 ... 5.778941 53 30760 ... 4.972645 54 30761 ... 7.639882 55 30762 ... 8.161717 56 30763 ... 7.865005 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5ly0x251 wandb: Agent Starting Run: 0atkj0td with config: batch_size: 4 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 0atkj0td
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.96093699336052 The number of items in train is: 11 The loss for epoch 0 1.3600851812145927 The running loss is: 8.476144537329674 The number of items in train is: 11 The loss for epoch 1 0.7705585943026976 The running loss is: 7.245350956916809 The number of items in train is: 11 The loss for epoch 2 0.658668268810619 The running loss is: 6.171432768926024 The number of items in train is: 11 The loss for epoch 3 0.5610393426296386 The running loss is: 6.489634156227112 The number of items in train is: 11 The loss for epoch 4 0.589966741475192 The running loss is: 6.0105889942497015 The number of items in train is: 11 The loss for epoch 5 0.5464171812954274 The running loss is: 6.208764992654324 The number of items in train is: 11 The loss for epoch 6 0.5644331811503931 The running loss is: 6.286208868026733 The number of items in train is: 11 The loss for epoch 7 0.5714735334569757 The running loss is: 5.633164703845978 The number of items in train is: 11 The loss for epoch 8 0.5121058821678162 The running loss is: 5.67748536169529 The number of items in train is: 11 The loss for epoch 9 0.51613503288139 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 16.709024 48 30755 ... 21.198261 49 30756 ... 23.084475 50 30757 ... 24.721453 51 30758 ... 25.047770 52 30759 ... 24.897585 53 30760 ... 24.002348 54 30761 ... 27.997509 55 30762 ... 29.285919 56 30763 ... 30.621237 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0atkj0td wandb: Agent Starting Run: yr3r9v0z with config: batch_size: 4 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: yr3r9v0z
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.673433274030685 The number of items in train is: 10 The loss for epoch 0 1.3673433274030686 The running loss is: 9.724617719650269 The number of items in train is: 10 The loss for epoch 1 0.9724617719650268 The running loss is: 8.894245147705078 The number of items in train is: 10 The loss for epoch 2 0.8894245147705078 The running loss is: 8.056756377220154 The number of items in train is: 10 The loss for epoch 3 0.8056756377220153 The running loss is: 7.75899001955986 The number of items in train is: 10 The loss for epoch 4 0.775899001955986 The running loss is: 7.6932626366615295 The number of items in train is: 10 The loss for epoch 5 0.769326263666153 The running loss is: 7.423785865306854 The number of items in train is: 10 The loss for epoch 6 0.7423785865306854 The running loss is: 7.368699312210083 The number of items in train is: 10 The loss for epoch 7 0.7368699312210083 The running loss is: 7.208283305168152 The number of items in train is: 10 The loss for epoch 8 0.7208283305168152 The running loss is: 6.594608038663864 The number of items in train is: 10 The loss for epoch 9 0.6594608038663864 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.148539 48 30755 ... 17.949636 49 30756 ... 19.337902 50 30757 ... 21.656553 51 30758 ... 22.667198 52 30759 ... 23.891888 53 30760 ... 24.308977 54 30761 ... 29.522865 55 30762 ... 30.020037 56 30763 ... 33.703957 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yr3r9v0z wandb: Agent Starting Run: likqeqie with config: batch_size: 4 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: likqeqie
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.458408497273922 The number of items in train is: 10 The loss for epoch 0 1.3458408497273922 The running loss is: 8.387499928474426 The number of items in train is: 10 The loss for epoch 1 0.8387499928474427 The running loss is: 8.411725208163261 The number of items in train is: 10 The loss for epoch 2 0.8411725208163261 The running loss is: 7.547767452895641 The number of items in train is: 10 The loss for epoch 3 0.7547767452895642 The running loss is: 6.945795342326164 The number of items in train is: 10 The loss for epoch 4 0.6945795342326164 The running loss is: 7.231948897242546 The number of items in train is: 10 The loss for epoch 5 0.7231948897242546 The running loss is: 6.890873074531555 The number of items in train is: 10 The loss for epoch 6 0.6890873074531555 The running loss is: 6.782497234642506 The number of items in train is: 10 The loss for epoch 7 0.6782497234642506 The running loss is: 6.886941395699978 The number of items in train is: 10 The loss for epoch 8 0.6886941395699978 The running loss is: 6.84102863073349 The number of items in train is: 10 The loss for epoch 9 0.684102863073349 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.638868 48 30755 ... 15.248178 49 30756 ... 15.990419 50 30757 ... 17.082964 51 30758 ... 17.109074 52 30759 ... 16.817831 53 30760 ... 15.879253 54 30761 ... 19.300089 55 30762 ... 20.734055 56 30763 ... 22.122990 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: likqeqie wandb: Agent Starting Run: c3htrmch with config: batch_size: 4 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: c3htrmch
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.34802322089672 The number of items in train is: 11 The loss for epoch 0 1.2134566564451565 The running loss is: 20.381017327308655 The number of items in train is: 11 The loss for epoch 1 1.8528197570280596 The running loss is: 8.48755231499672 The number of items in train is: 11 The loss for epoch 2 0.7715956649997018 The running loss is: 7.347847249358892 The number of items in train is: 11 The loss for epoch 3 0.6679861135780811 The running loss is: 6.322733700275421 The number of items in train is: 11 The loss for epoch 4 0.574793972752311 The running loss is: 6.006848055869341 The number of items in train is: 11 The loss for epoch 5 0.5460770959881219 The running loss is: 5.8742464780807495 The number of items in train is: 11 The loss for epoch 6 0.53402240709825 The running loss is: 6.040382400155067 The number of items in train is: 11 The loss for epoch 7 0.5491256727413698 The running loss is: 5.12652325630188 The number of items in train is: 11 The loss for epoch 8 0.46604756875471637 The running loss is: 5.545659691095352 The number of items in train is: 11 The loss for epoch 9 0.5041508810086683 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 18.097548 48 30755 ... 21.679401 49 30756 ... 24.068140 50 30757 ... 25.589031 51 30758 ... 26.276314 52 30759 ... 26.265314 53 30760 ... 25.590273 54 30761 ... 30.015490 55 30762 ... 31.138529 56 30763 ... 33.173641 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c3htrmch wandb: Agent Starting Run: 8knvdyia with config: batch_size: 4 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 8knvdyia
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.671709895133972 The number of items in train is: 10 The loss for epoch 0 1.2671709895133971 The running loss is: 15.58467423915863 The number of items in train is: 10 The loss for epoch 1 1.5584674239158631 The running loss is: 8.86621218919754 The number of items in train is: 10 The loss for epoch 2 0.886621218919754 The running loss is: 8.211911827325821 The number of items in train is: 10 The loss for epoch 3 0.8211911827325821 The running loss is: 7.632152855396271 The number of items in train is: 10 The loss for epoch 4 0.763215285539627 The running loss is: 7.735361754894257 The number of items in train is: 10 The loss for epoch 5 0.7735361754894257 The running loss is: 7.110246509313583 The number of items in train is: 10 The loss for epoch 6 0.7110246509313584 The running loss is: 6.713372051715851 The number of items in train is: 10 The loss for epoch 7 0.6713372051715851 The running loss is: 6.79258930683136 The number of items in train is: 10 The loss for epoch 8 0.679258930683136 The running loss is: 5.895960241556168 The number of items in train is: 10 The loss for epoch 9 0.5895960241556167 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.023550 48 30755 ... 16.671810 49 30756 ... 16.646698 50 30757 ... 19.445019 51 30758 ... 19.573132 52 30759 ... 20.310709 53 30760 ... 19.657120 54 30761 ... 24.828531 55 30762 ... 25.687960 56 30763 ... 29.360603 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8knvdyia wandb: Agent Starting Run: tpfyv5ah with config: batch_size: 4 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: tpfyv5ah
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.119704440236092 The number of items in train is: 10 The loss for epoch 0 1.311970444023609 The running loss is: 15.15892705321312 The number of items in train is: 10 The loss for epoch 1 1.515892705321312 The running loss is: 8.269845277071 The number of items in train is: 10 The loss for epoch 2 0.8269845277071 The running loss is: 7.88303779065609 The number of items in train is: 10 The loss for epoch 3 0.788303779065609 The running loss is: 6.88837806135416 The number of items in train is: 10 The loss for epoch 4 0.688837806135416 The running loss is: 7.245162636041641 The number of items in train is: 10 The loss for epoch 5 0.7245162636041641 The running loss is: 6.730993062257767 The number of items in train is: 10 The loss for epoch 6 0.6730993062257766 The running loss is: 6.451875098049641 The number of items in train is: 10 The loss for epoch 7 0.6451875098049641 The running loss is: 6.440776079893112 The number of items in train is: 10 The loss for epoch 8 0.6440776079893112 The running loss is: 6.3287926241755486 The number of items in train is: 10 The loss for epoch 9 0.6328792624175549 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.329016 48 30755 ... 18.044563 49 30756 ... 19.793707 50 30757 ... 21.237078 51 30758 ... 21.749710 52 30759 ... 21.817234 53 30760 ... 21.214640 54 30761 ... 26.224243 55 30762 ... 27.728821 56 30763 ... 30.204544 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tpfyv5ah wandb: Agent Starting Run: 069lrx0s with config: batch_size: 4 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 069lrx0s
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.412841379642487 The number of items in train is: 11 The loss for epoch 0 1.0375310345129534 The running loss is: 25.99633625149727 The number of items in train is: 11 The loss for epoch 1 2.363303295590661 The running loss is: 16.070277526974678 The number of items in train is: 11 The loss for epoch 2 1.4609343206340617 The running loss is: 9.31078253686428 The number of items in train is: 11 The loss for epoch 3 0.846434776078571 The running loss is: 9.228860840201378 The number of items in train is: 11 The loss for epoch 4 0.8389873491092161 The running loss is: 7.060334699228406 The number of items in train is: 11 The loss for epoch 5 0.6418486090207641 The running loss is: 8.625365018844604 The number of items in train is: 11 The loss for epoch 6 0.7841240926222368 The running loss is: 6.593550542369485 The number of items in train is: 11 The loss for epoch 7 0.5994136856699531 The running loss is: 5.768903240561485 The number of items in train is: 11 The loss for epoch 8 0.5244457491419532 The running loss is: 5.97909389436245 The number of items in train is: 11 The loss for epoch 9 0.5435539903965864 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 17.675484 48 30755 ... 20.721533 49 30756 ... 22.798523 50 30757 ... 24.087915 51 30758 ... 24.757021 52 30759 ... 24.872627 53 30760 ... 24.516352 54 30761 ... 26.986809 55 30762 ... 28.829451 56 30763 ... 29.786718 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 069lrx0s wandb: Agent Starting Run: cnt3vzs0 with config: batch_size: 4 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: cnt3vzs0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.997970461845398 The number of items in train is: 10 The loss for epoch 0 1.0997970461845399 The running loss is: 21.985935747623444 The number of items in train is: 10 The loss for epoch 1 2.198593574762344 The running loss is: 12.202106922864914 The number of items in train is: 10 The loss for epoch 2 1.2202106922864915 The running loss is: 9.17008501291275 The number of items in train is: 10 The loss for epoch 3 0.917008501291275 The running loss is: 8.464543163776398 The number of items in train is: 10 The loss for epoch 4 0.8464543163776398 The running loss is: 8.57983085513115 The number of items in train is: 10 The loss for epoch 5 0.857983085513115 The running loss is: 8.02047947049141 The number of items in train is: 10 The loss for epoch 6 0.802047947049141 The running loss is: 7.290555238723755 The number of items in train is: 10 The loss for epoch 7 0.7290555238723755 The running loss is: 6.692835777997971 The number of items in train is: 10 The loss for epoch 8 0.6692835777997971 The running loss is: 6.110147446393967 The number of items in train is: 10 The loss for epoch 9 0.6110147446393966 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.224773 48 30755 ... 15.265686 49 30756 ... 15.022220 50 30757 ... 16.957497 51 30758 ... 16.836491 52 30759 ... 16.931461 53 30760 ... 15.981196 54 30761 ... 17.926718 55 30762 ... 19.954655 56 30763 ... 21.096838 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cnt3vzs0 wandb: Agent Starting Run: qocq3wae with config: batch_size: 4 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: qocq3wae
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.904254585504532 The number of items in train is: 10 The loss for epoch 0 0.9904254585504532 The running loss is: 25.055099427700043 The number of items in train is: 10 The loss for epoch 1 2.5055099427700043 The running loss is: 12.711764395236969 The number of items in train is: 10 The loss for epoch 2 1.2711764395236969 The running loss is: 10.374877393245697 The number of items in train is: 10 The loss for epoch 3 1.0374877393245696 The running loss is: 8.679088652133942 The number of items in train is: 10 The loss for epoch 4 0.8679088652133942 The running loss is: 7.766414493322372 The number of items in train is: 10 The loss for epoch 5 0.7766414493322372 The running loss is: 7.597523421049118 The number of items in train is: 10 The loss for epoch 6 0.7597523421049118 The running loss is: 7.39857842028141 The number of items in train is: 10 The loss for epoch 7 0.739857842028141 The running loss is: 6.676791451871395 The number of items in train is: 10 The loss for epoch 8 0.6676791451871396 The running loss is: 6.837151870131493 The number of items in train is: 10 The loss for epoch 9 0.6837151870131493 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.726316 48 30755 ... 14.972114 49 30756 ... 16.001463 50 30757 ... 16.900673 51 30758 ... 17.000143 52 30759 ... 16.699017 53 30760 ... 15.903903 54 30761 ... 19.487146 55 30762 ... 20.715403 56 30763 ... 21.923807 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qocq3wae wandb: Agent Starting Run: fv3v4uho with config: batch_size: 4 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fv3v4uho
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 40.59835138916969 The number of items in train is: 11 The loss for epoch 0 3.690759217197245 The running loss is: 19.944113321602345 The number of items in train is: 11 The loss for epoch 1 1.8131012110547586 The running loss is: 11.857287377119064 The number of items in train is: 11 The loss for epoch 2 1.077935216101733 The running loss is: 12.013430297374725 The number of items in train is: 11 The loss for epoch 3 1.092130027034066 The running loss is: 12.344391658902168 The number of items in train is: 11 The loss for epoch 4 1.1222174235365607 The running loss is: 8.543003568425775 The number of items in train is: 11 The loss for epoch 5 0.7766366880387068 The running loss is: 12.394158691167831 The number of items in train is: 11 The loss for epoch 6 1.1267416991970756 The running loss is: 10.03352677822113 The number of items in train is: 11 The loss for epoch 7 0.9121387980201028 The running loss is: 7.597949281334877 The number of items in train is: 11 The loss for epoch 8 0.6907226619395342 The running loss is: 11.681423753499985 The number of items in train is: 11 The loss for epoch 9 1.061947613954544 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 18.578806 48 30755 ... 20.679152 49 30756 ... 23.081081 50 30757 ... 23.915461 51 30758 ... 24.671740 52 30759 ... 24.634520 53 30760 ... 24.390169 54 30761 ... 27.176733 55 30762 ... 27.554413 56 30763 ... 28.308208 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fv3v4uho wandb: Agent Starting Run: m9ue8zb4 with config: batch_size: 4 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: m9ue8zb4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 26.59406042098999 The number of items in train is: 10 The loss for epoch 0 2.659406042098999 The running loss is: 13.403459221124649 The number of items in train is: 10 The loss for epoch 1 1.340345922112465 The running loss is: 9.142663478851318 The number of items in train is: 10 The loss for epoch 2 0.9142663478851318 The running loss is: 11.032457649707794 The number of items in train is: 10 The loss for epoch 3 1.1032457649707794 The running loss is: 9.233210653066635 The number of items in train is: 10 The loss for epoch 4 0.9233210653066635 The running loss is: 11.626732230186462 The number of items in train is: 10 The loss for epoch 5 1.1626732230186463 The running loss is: 13.688178479671478 The number of items in train is: 10 The loss for epoch 6 1.3688178479671478 The running loss is: 9.463880628347397 The number of items in train is: 10 The loss for epoch 7 0.9463880628347396 The running loss is: 9.63527712225914 The number of items in train is: 10 The loss for epoch 8 0.963527712225914 The running loss is: 8.616059482097626 The number of items in train is: 10 The loss for epoch 9 0.8616059482097626 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.567437 48 30755 ... 6.328658 49 30756 ... 5.065443 50 30757 ... 4.457339 51 30758 ... 3.853146 52 30759 ... 3.379244 53 30760 ... 2.938148 54 30761 ... 2.664474 55 30762 ... 3.861934 56 30763 ... 3.986446 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: m9ue8zb4 wandb: Agent Starting Run: 8ljn4u6x with config: batch_size: 4 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8ljn4u6x
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 28.372302889823914 The number of items in train is: 10 The loss for epoch 0 2.8372302889823913 The running loss is: 12.347882062196732 The number of items in train is: 10 The loss for epoch 1 1.2347882062196731 The running loss is: 9.684420198202133 The number of items in train is: 10 The loss for epoch 2 0.9684420198202133 The running loss is: 9.461739972233772 The number of items in train is: 10 The loss for epoch 3 0.9461739972233772 The running loss is: 12.423586398363113 The number of items in train is: 10 The loss for epoch 4 1.2423586398363113 The running loss is: 9.940438836812973 The number of items in train is: 10 The loss for epoch 5 0.9940438836812973 The running loss is: 10.14803022146225 The number of items in train is: 10 The loss for epoch 6 1.014803022146225 The running loss is: 10.891903132200241 The number of items in train is: 10 The loss for epoch 7 1.089190313220024 The running loss is: 8.46597534418106 The number of items in train is: 10 The loss for epoch 8 0.846597534418106 The running loss is: 9.821460217237473 The number of items in train is: 10 The loss for epoch 9 0.9821460217237472 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.317070 48 30755 ... 12.904198 49 30756 ... 12.515239 50 30757 ... 12.116361 51 30758 ... 11.319300 52 30759 ... 10.415378 53 30760 ... 9.452648 54 30761 ... 10.703618 55 30762 ... 12.681755 56 30763 ... 12.554018 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8ljn4u6x wandb: Agent Starting Run: 9073m7jd with config: batch_size: 4 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 9073m7jd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.627537846565247 The number of items in train is: 10 The loss for epoch 0 0.9627537846565246 The running loss is: 17.363112449645996 The number of items in train is: 10 The loss for epoch 1 1.7363112449645997 The running loss is: 6.405838273465633 The number of items in train is: 10 The loss for epoch 2 0.6405838273465634 The running loss is: 5.693458579480648 The number of items in train is: 10 The loss for epoch 3 0.5693458579480648 The running loss is: 5.169158458709717 The number of items in train is: 10 The loss for epoch 4 0.5169158458709717 The running loss is: 5.052080765366554 The number of items in train is: 10 The loss for epoch 5 0.5052080765366554 The running loss is: 4.704639323055744 The number of items in train is: 10 The loss for epoch 6 0.47046393230557443 The running loss is: 4.387305963784456 The number of items in train is: 10 The loss for epoch 7 0.43873059637844564 The running loss is: 4.495713531970978 The number of items in train is: 10 The loss for epoch 8 0.4495713531970978 The running loss is: 4.703176259994507 The number of items in train is: 10 The loss for epoch 9 0.4703176259994507 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.808335 48 30755 ... 6.588649 49 30756 ... 12.238354 50 30757 ... 11.621011 51 30758 ... 10.989270 52 30759 ... 10.464103 53 30760 ... 8.492026 54 30761 ... 8.029394 55 30762 ... 7.711127 56 30763 ... 12.337846 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9073m7jd wandb: Agent Starting Run: ak3ddjcm with config: batch_size: 4 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ak3ddjcm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.51008079200983 The number of items in train is: 10 The loss for epoch 0 1.351008079200983 The running loss is: 9.150133788585663 The number of items in train is: 10 The loss for epoch 1 0.9150133788585663 The running loss is: 8.0506741553545 The number of items in train is: 10 The loss for epoch 2 0.80506741553545 The running loss is: 7.332058683037758 The number of items in train is: 10 The loss for epoch 3 0.7332058683037758 The running loss is: 7.43514696136117 The number of items in train is: 10 The loss for epoch 4 0.743514696136117 The running loss is: 6.992777206003666 The number of items in train is: 10 The loss for epoch 5 0.6992777206003666 The running loss is: 6.710105545818806 The number of items in train is: 10 The loss for epoch 6 0.6710105545818805 The running loss is: 7.016908168792725 The number of items in train is: 10 The loss for epoch 7 0.7016908168792725 The running loss is: 6.1487134620547295 The number of items in train is: 10 The loss for epoch 8 0.6148713462054729 The running loss is: 6.259711891412735 The number of items in train is: 10 The loss for epoch 9 0.6259711891412735 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.518709 48 30755 ... 9.676765 49 30756 ... 14.328287 50 30757 ... 14.434947 51 30758 ... 14.797523 52 30759 ... 15.179770 53 30760 ... 13.908753 54 30761 ... 16.497807 55 30762 ... 18.353893 56 30763 ... 22.759249 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ak3ddjcm wandb: Agent Starting Run: gkboykbz with config: batch_size: 4 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: gkboykbz
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.057014763355255 The number of items in train is: 10 The loss for epoch 0 1.2057014763355256 The running loss is: 9.196175366640091 The number of items in train is: 10 The loss for epoch 1 0.9196175366640091 The running loss is: 7.984934225678444 The number of items in train is: 10 The loss for epoch 2 0.7984934225678444 The running loss is: 7.211847752332687 The number of items in train is: 10 The loss for epoch 3 0.7211847752332687 The running loss is: 6.867999359965324 The number of items in train is: 10 The loss for epoch 4 0.6867999359965324 The running loss is: 6.554838925600052 The number of items in train is: 10 The loss for epoch 5 0.6554838925600052 The running loss is: 6.439648315310478 The number of items in train is: 10 The loss for epoch 6 0.6439648315310478 The running loss is: 6.144940108060837 The number of items in train is: 10 The loss for epoch 7 0.6144940108060837 The running loss is: 5.929564245045185 The number of items in train is: 10 The loss for epoch 8 0.5929564245045185 The running loss is: 5.835510566830635 The number of items in train is: 10 The loss for epoch 9 0.5835510566830635 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.744005 48 30755 ... 6.455384 49 30756 ... 7.808669 50 30757 ... 6.539020 51 30758 ... 4.805805 52 30759 ... 2.202368 53 30760 ... -1.791144 54 30761 ... -1.477443 55 30762 ... -3.113125 56 30763 ... -5.422577 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gkboykbz wandb: Agent Starting Run: fw7dwm15 with config: batch_size: 4 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fw7dwm15
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.429576203227043 The number of items in train is: 10 The loss for epoch 0 0.8429576203227043 The running loss is: 35.47298264503479 The number of items in train is: 10 The loss for epoch 1 3.547298264503479 The running loss is: 11.112188205122948 The number of items in train is: 10 The loss for epoch 2 1.1112188205122948 The running loss is: 13.196346916258335 The number of items in train is: 10 The loss for epoch 3 1.3196346916258335 The running loss is: 6.575393192470074 The number of items in train is: 10 The loss for epoch 4 0.6575393192470074 The running loss is: 5.8676954954862595 The number of items in train is: 10 The loss for epoch 5 0.5867695495486259 The running loss is: 5.116438694298267 The number of items in train is: 10 The loss for epoch 6 0.5116438694298268 The running loss is: 4.6275116093456745 The number of items in train is: 10 The loss for epoch 7 0.4627511609345675 The running loss is: 4.5346789956092834 The number of items in train is: 10 The loss for epoch 8 0.45346789956092837 The running loss is: 4.536572776734829 The number of items in train is: 10 The loss for epoch 9 0.4536572776734829 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.103466 48 30755 ... 6.257463 49 30756 ... 11.562319 50 30757 ... 10.523199 51 30758 ... 9.646112 52 30759 ... 8.691895 53 30760 ... 6.254402 54 30761 ... 6.156374 55 30762 ... 5.828930 56 30763 ... 10.276820 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fw7dwm15 wandb: Agent Starting Run: dpi51sw2 with config: batch_size: 4 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: dpi51sw2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.501193806529045 The number of items in train is: 10 The loss for epoch 0 1.2501193806529045 The running loss is: 20.099119901657104 The number of items in train is: 10 The loss for epoch 1 2.0099119901657105 The running loss is: 8.999961793422699 The number of items in train is: 10 The loss for epoch 2 0.8999961793422699 The running loss is: 8.48761773109436 The number of items in train is: 10 The loss for epoch 3 0.848761773109436 The running loss is: 7.359446678310633 The number of items in train is: 10 The loss for epoch 4 0.7359446678310633 The running loss is: 7.000715114176273 The number of items in train is: 10 The loss for epoch 5 0.7000715114176274 The running loss is: 6.593851193785667 The number of items in train is: 10 The loss for epoch 6 0.6593851193785667 The running loss is: 6.7040664702653885 The number of items in train is: 10 The loss for epoch 7 0.6704066470265388 The running loss is: 5.951735310256481 The number of items in train is: 10 The loss for epoch 8 0.5951735310256481 The running loss is: 5.534311920404434 The number of items in train is: 10 The loss for epoch 9 0.5534311920404434 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.366433 48 30755 ... 9.865753 49 30756 ... 13.617732 50 30757 ... 13.982615 51 30758 ... 14.094790 52 30759 ... 14.050801 53 30760 ... 12.748096 54 30761 ... 14.966385 55 30762 ... 17.125698 56 30763 ... 20.394379 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: dpi51sw2 wandb: Agent Starting Run: u80txo66 with config: batch_size: 4 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: u80txo66
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.667285114526749 The number of items in train is: 10 The loss for epoch 0 1.0667285114526748 The running loss is: 20.265333622694016 The number of items in train is: 10 The loss for epoch 1 2.0265333622694017 The running loss is: 8.728106766939163 The number of items in train is: 10 The loss for epoch 2 0.8728106766939163 The running loss is: 8.550827756524086 The number of items in train is: 10 The loss for epoch 3 0.8550827756524086 The running loss is: 7.6918254643678665 The number of items in train is: 10 The loss for epoch 4 0.7691825464367866 The running loss is: 7.004032850265503 The number of items in train is: 10 The loss for epoch 5 0.7004032850265502 The running loss is: 6.4064972549676895 The number of items in train is: 10 The loss for epoch 6 0.6406497254967689 The running loss is: 6.222326099872589 The number of items in train is: 10 The loss for epoch 7 0.6222326099872589 The running loss is: 5.876827664673328 The number of items in train is: 10 The loss for epoch 8 0.5876827664673329 The running loss is: 5.46251180768013 The number of items in train is: 10 The loss for epoch 9 0.546251180768013 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.634794 48 30755 ... 5.956108 49 30756 ... 7.695518 50 30757 ... 6.790030 51 30758 ... 5.360010 52 30759 ... 3.331872 53 30760 ... 0.147778 54 30761 ... -0.868146 55 30762 ... -2.107802 56 30763 ... -3.228223 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u80txo66 wandb: Agent Starting Run: 4htpl5rr with config: batch_size: 4 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 4htpl5rr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.714561760425568 The number of items in train is: 10 The loss for epoch 0 1.4714561760425569 The running loss is: 21.01663726568222 The number of items in train is: 10 The loss for epoch 1 2.101663726568222 The running loss is: 15.515894889831543 The number of items in train is: 10 The loss for epoch 2 1.5515894889831543 The running loss is: 7.601687487214804 The number of items in train is: 10 The loss for epoch 3 0.7601687487214803 The running loss is: 6.936983227729797 The number of items in train is: 10 The loss for epoch 4 0.6936983227729797 The running loss is: 6.483203932642937 The number of items in train is: 10 The loss for epoch 5 0.6483203932642937 The running loss is: 5.312639720737934 The number of items in train is: 10 The loss for epoch 6 0.5312639720737934 The running loss is: 5.345114007592201 The number of items in train is: 10 The loss for epoch 7 0.5345114007592201 The running loss is: 5.2790632620453835 The number of items in train is: 10 The loss for epoch 8 0.5279063262045384 The running loss is: 5.034602418541908 The number of items in train is: 10 The loss for epoch 9 0.5034602418541908 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.954473 48 30755 ... 6.272552 49 30756 ... 11.065792 50 30757 ... 10.025171 51 30758 ... 8.285496 52 30759 ... 7.193275 53 30760 ... 4.804574 54 30761 ... 4.655031 55 30762 ... 4.361861 56 30763 ... 8.187953 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4htpl5rr wandb: Agent Starting Run: lo2ks8hs with config: batch_size: 4 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: lo2ks8hs
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.384419649839401 The number of items in train is: 10 The loss for epoch 0 1.1384419649839401 The running loss is: 18.25188379921019 The number of items in train is: 10 The loss for epoch 1 1.8251883799210191 The running loss is: 12.829950749874115 The number of items in train is: 10 The loss for epoch 2 1.2829950749874115 The running loss is: 7.982527822256088 The number of items in train is: 10 The loss for epoch 3 0.7982527822256088 The running loss is: 7.810066565871239 The number of items in train is: 10 The loss for epoch 4 0.7810066565871239 The running loss is: 6.684666350483894 The number of items in train is: 10 The loss for epoch 5 0.6684666350483894 The running loss is: 7.643584281206131 The number of items in train is: 10 The loss for epoch 6 0.764358428120613 The running loss is: 8.792829811573029 The number of items in train is: 10 The loss for epoch 7 0.8792829811573029 The running loss is: 6.99271997064352 The number of items in train is: 10 The loss for epoch 8 0.6992719970643521 The running loss is: 6.918453752994537 The number of items in train is: 10 The loss for epoch 9 0.6918453752994538 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.321559 48 30755 ... 9.187271 49 30756 ... 12.871760 50 30757 ... 12.650419 51 30758 ... 11.597202 52 30759 ... 9.462704 53 30760 ... 6.282671 54 30761 ... 5.563904 55 30762 ... 6.355840 56 30763 ... 9.107053 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lo2ks8hs wandb: Agent Starting Run: f7bdxdg5 with config: batch_size: 4 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: f7bdxdg5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.466510713100433 The number of items in train is: 10 The loss for epoch 0 0.9466510713100433 The running loss is: 19.481352478265762 The number of items in train is: 10 The loss for epoch 1 1.9481352478265763 The running loss is: 12.479926511645317 The number of items in train is: 10 The loss for epoch 2 1.2479926511645316 The running loss is: 8.340172469615936 The number of items in train is: 10 The loss for epoch 3 0.8340172469615936 The running loss is: 8.205783903598785 The number of items in train is: 10 The loss for epoch 4 0.8205783903598786 The running loss is: 7.630669295787811 The number of items in train is: 10 The loss for epoch 5 0.7630669295787811 The running loss is: 6.677744090557098 The number of items in train is: 10 The loss for epoch 6 0.6677744090557098 The running loss is: 6.896913185715675 The number of items in train is: 10 The loss for epoch 7 0.6896913185715675 The running loss is: 6.556647375226021 The number of items in train is: 10 The loss for epoch 8 0.6556647375226021 The running loss is: 6.700380817055702 The number of items in train is: 10 The loss for epoch 9 0.6700380817055702 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.198957 48 30755 ... 12.617393 49 30756 ... 12.954767 50 30757 ... 12.107231 51 30758 ... 11.026435 52 30759 ... 9.624288 53 30760 ... 7.724436 54 30761 ... 10.234614 55 30762 ... 10.804576 56 30763 ... 10.495942 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: f7bdxdg5 wandb: Agent Starting Run: kyfny3j5 with config: batch_size: 4 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: kyfny3j5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 91.59792420268059 The number of items in train is: 10 The loss for epoch 0 9.159792420268058 The running loss is: 23.251791685819626 The number of items in train is: 10 The loss for epoch 1 2.3251791685819625 The running loss is: 11.11307579278946 The number of items in train is: 10 The loss for epoch 2 1.111307579278946 The running loss is: 6.939586728811264 The number of items in train is: 10 The loss for epoch 3 0.6939586728811264 The running loss is: 9.343335047364235 The number of items in train is: 10 The loss for epoch 4 0.9343335047364235 The running loss is: 6.820296868681908 The number of items in train is: 10 The loss for epoch 5 0.6820296868681908 The running loss is: 5.8018301874399185 The number of items in train is: 10 The loss for epoch 6 0.5801830187439918 The running loss is: 5.937199890613556 The number of items in train is: 10 The loss for epoch 7 0.5937199890613556 The running loss is: 6.757883593440056 The number of items in train is: 10 The loss for epoch 8 0.6757883593440056 The running loss is: 7.597961753606796 The number of items in train is: 10 The loss for epoch 9 0.7597961753606797 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.007220 48 30755 ... 4.571890 49 30756 ... 4.057703 50 30757 ... 1.964260 51 30758 ... -0.132805 52 30759 ... -2.333437 53 30760 ... -4.619548 54 30761 ... -4.016709 55 30762 ... -4.159013 56 30763 ... -3.811644 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: kyfny3j5 wandb: Agent Starting Run: scy00je1 with config: batch_size: 4 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: scy00je1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 49.56044429540634 The number of items in train is: 10 The loss for epoch 0 4.9560444295406345 The running loss is: 13.70760928094387 The number of items in train is: 10 The loss for epoch 1 1.370760928094387 The running loss is: 17.000253543257713 The number of items in train is: 10 The loss for epoch 2 1.7000253543257713 The running loss is: 13.842572450637817 The number of items in train is: 10 The loss for epoch 3 1.3842572450637818 The running loss is: 15.544250130653381 The number of items in train is: 10 The loss for epoch 4 1.554425013065338 The running loss is: 9.349140167236328 The number of items in train is: 10 The loss for epoch 5 0.9349140167236328 The running loss is: 10.090777337551117 The number of items in train is: 10 The loss for epoch 6 1.0090777337551118 The running loss is: 11.35200434923172 The number of items in train is: 10 The loss for epoch 7 1.135200434923172 The running loss is: 7.790517836809158 The number of items in train is: 10 The loss for epoch 8 0.7790517836809159 The running loss is: 8.42673248052597 The number of items in train is: 10 The loss for epoch 9 0.842673248052597 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.598314 48 30755 ... 7.377418 49 30756 ... 9.713764 50 30757 ... 8.512883 51 30758 ... 6.791293 52 30759 ... 5.252714 53 30760 ... 3.030388 54 30761 ... 3.328702 55 30762 ... 3.037323 56 30763 ... 3.389056 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: scy00je1 wandb: Agent Starting Run: iygt4rxi with config: batch_size: 4 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: iygt4rxi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 36.11813059449196 The number of items in train is: 10 The loss for epoch 0 3.611813059449196 The running loss is: 12.339976996183395 The number of items in train is: 10 The loss for epoch 1 1.2339976996183395 The running loss is: 9.668639838695526 The number of items in train is: 10 The loss for epoch 2 0.9668639838695526 The running loss is: 9.826381415128708 The number of items in train is: 10 The loss for epoch 3 0.9826381415128708 The running loss is: 15.76567393541336 The number of items in train is: 10 The loss for epoch 4 1.576567393541336 The running loss is: 10.812987506389618 The number of items in train is: 10 The loss for epoch 5 1.0812987506389617 The running loss is: 9.61716541647911 The number of items in train is: 10 The loss for epoch 6 0.9617165416479111 The running loss is: 9.290621802210808 The number of items in train is: 10 The loss for epoch 7 0.9290621802210808 The running loss is: 8.212620228528976 The number of items in train is: 10 The loss for epoch 8 0.8212620228528976 The running loss is: 9.537692248821259 The number of items in train is: 10 The loss for epoch 9 0.9537692248821259 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.728024 48 30755 ... 10.327018 49 30756 ... 12.556839 50 30757 ... 11.601530 51 30758 ... 10.465916 52 30759 ... 10.037251 53 30760 ... 8.805302 54 30761 ... 9.777656 55 30762 ... 9.648338 56 30763 ... 11.390595 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: iygt4rxi wandb: Agent Starting Run: u4p26qqe with config: batch_size: 4 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: u4p26qqe
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.139220284298062 The number of items in train is: 10 The loss for epoch 0 1.3139220284298063 The running loss is: 7.603810682892799 The number of items in train is: 10 The loss for epoch 1 0.76038106828928 The running loss is: 6.590954020619392 The number of items in train is: 10 The loss for epoch 2 0.6590954020619393 The running loss is: 5.3788275346159935 The number of items in train is: 10 The loss for epoch 3 0.5378827534615993 The running loss is: 4.933269586414099 The number of items in train is: 10 The loss for epoch 4 0.49332695864140985 The running loss is: 4.663033917546272 The number of items in train is: 10 The loss for epoch 5 0.4663033917546272 The running loss is: 4.390941029414535 The number of items in train is: 10 The loss for epoch 6 0.43909410294145346 The running loss is: 4.794956460595131 The number of items in train is: 10 The loss for epoch 7 0.4794956460595131 The running loss is: 4.561512395739555 The number of items in train is: 10 The loss for epoch 8 0.45615123957395554 The running loss is: 4.312907887622714 The number of items in train is: 10 The loss for epoch 9 0.4312907887622714 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.966106 48 30755 ... 7.026946 49 30756 ... 7.303446 50 30757 ... 6.005102 51 30758 ... 4.476109 52 30759 ... 3.117196 53 30760 ... 1.653447 54 30761 ... 1.438207 55 30762 ... 1.206806 56 30763 ... 1.003915 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u4p26qqe wandb: Agent Starting Run: oa112vdp with config: batch_size: 4 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: oa112vdp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.0843945145607 The number of items in train is: 10 The loss for epoch 0 1.30843945145607 The running loss is: 7.665140315890312 The number of items in train is: 10 The loss for epoch 1 0.7665140315890312 The running loss is: 6.743201792240143 The number of items in train is: 10 The loss for epoch 2 0.6743201792240143 The running loss is: 5.883106000721455 The number of items in train is: 10 The loss for epoch 3 0.5883106000721454 The running loss is: 5.515905536711216 The number of items in train is: 10 The loss for epoch 4 0.5515905536711216 The running loss is: 4.997781403362751 The number of items in train is: 10 The loss for epoch 5 0.4997781403362751 The running loss is: 4.992602676153183 The number of items in train is: 10 The loss for epoch 6 0.4992602676153183 The running loss is: 5.128393992781639 The number of items in train is: 10 The loss for epoch 7 0.5128393992781639 The running loss is: 4.745439916849136 The number of items in train is: 10 The loss for epoch 8 0.4745439916849136 The running loss is: 5.019068889319897 The number of items in train is: 10 The loss for epoch 9 0.5019068889319896 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.649288 48 30755 ... 7.107749 49 30756 ... 7.127906 50 30757 ... 5.951869 51 30758 ... 4.860780 52 30759 ... 4.058114 53 30760 ... 3.299357 54 30761 ... 3.037968 55 30762 ... 2.571593 56 30763 ... 1.843937 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: oa112vdp wandb: Agent Starting Run: lvob0bbe with config: batch_size: 4 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: lvob0bbe
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.67995372414589 The number of items in train is: 10 The loss for epoch 0 1.367995372414589 The running loss is: 8.989439904689789 The number of items in train is: 10 The loss for epoch 1 0.8989439904689789 The running loss is: 8.195689350366592 The number of items in train is: 10 The loss for epoch 2 0.8195689350366593 The running loss is: 6.894126743078232 The number of items in train is: 10 The loss for epoch 3 0.6894126743078232 The running loss is: 6.594148024916649 The number of items in train is: 10 The loss for epoch 4 0.6594148024916648 The running loss is: 6.3120845928788185 The number of items in train is: 10 The loss for epoch 5 0.6312084592878818 The running loss is: 6.1284110099077225 The number of items in train is: 10 The loss for epoch 6 0.6128411009907723 The running loss is: 6.259409077465534 The number of items in train is: 10 The loss for epoch 7 0.6259409077465534 The running loss is: 5.780759200453758 The number of items in train is: 10 The loss for epoch 8 0.5780759200453758 The running loss is: 5.695149905979633 The number of items in train is: 10 The loss for epoch 9 0.5695149905979633 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.292809 48 30755 ... 12.110656 49 30756 ... 13.091563 50 30757 ... 13.885511 51 30758 ... 15.185983 52 30759 ... 17.058050 53 30760 ... 19.260855 54 30761 ... 20.051224 55 30762 ... 20.744509 56 30763 ... 21.911655 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lvob0bbe wandb: Agent Starting Run: 35j8rkx7 with config: batch_size: 4 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 35j8rkx7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.55137413740158 The number of items in train is: 10 The loss for epoch 0 1.155137413740158 The running loss is: 16.014386296272278 The number of items in train is: 10 The loss for epoch 1 1.6014386296272278 The running loss is: 6.75588384270668 The number of items in train is: 10 The loss for epoch 2 0.675588384270668 The running loss is: 6.29716794192791 The number of items in train is: 10 The loss for epoch 3 0.629716794192791 The running loss is: 5.1970526948571205 The number of items in train is: 10 The loss for epoch 4 0.519705269485712 The running loss is: 5.025679625570774 The number of items in train is: 10 The loss for epoch 5 0.5025679625570774 The running loss is: 4.67264661937952 The number of items in train is: 10 The loss for epoch 6 0.467264661937952 The running loss is: 5.31112065166235 The number of items in train is: 10 The loss for epoch 7 0.531112065166235 The running loss is: 4.5775028094649315 The number of items in train is: 10 The loss for epoch 8 0.45775028094649317 The running loss is: 4.067775249481201 The number of items in train is: 10 The loss for epoch 9 0.40677752494812014 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.944151 48 30755 ... 8.560498 49 30756 ... 8.103656 50 30757 ... 6.687842 51 30758 ... 5.952302 52 30759 ... 5.573210 53 30760 ... 5.453351 54 30761 ... 5.476648 55 30762 ... 4.879870 56 30763 ... 4.252527 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 35j8rkx7 wandb: Agent Starting Run: sg71mruo with config: batch_size: 4 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sg71mruo
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.126236453652382 The number of items in train is: 10 The loss for epoch 0 1.3126236453652382 The running loss is: 14.40095217525959 The number of items in train is: 10 The loss for epoch 1 1.440095217525959 The running loss is: 7.083043187856674 The number of items in train is: 10 The loss for epoch 2 0.7083043187856675 The running loss is: 6.096744194626808 The number of items in train is: 10 The loss for epoch 3 0.6096744194626809 The running loss is: 5.1841307654976845 The number of items in train is: 10 The loss for epoch 4 0.5184130765497684 The running loss is: 5.177260473370552 The number of items in train is: 10 The loss for epoch 5 0.5177260473370552 The running loss is: 4.819695513695478 The number of items in train is: 10 The loss for epoch 6 0.48196955136954783 The running loss is: 5.148202821612358 The number of items in train is: 10 The loss for epoch 7 0.5148202821612358 The running loss is: 4.959500506520271 The number of items in train is: 10 The loss for epoch 8 0.49595005065202713 The running loss is: 5.563718307763338 The number of items in train is: 10 The loss for epoch 9 0.5563718307763338 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.187324 48 30755 ... 9.934227 49 30756 ... 10.304854 50 30757 ... 9.717361 51 30758 ... 10.074327 52 30759 ... 10.855839 53 30760 ... 11.962115 54 30761 ... 12.211823 55 30762 ... 12.268024 56 30763 ... 12.549157 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sg71mruo wandb: Agent Starting Run: n009dnk2 with config: batch_size: 4 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: n009dnk2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.769485369324684 The number of items in train is: 10 The loss for epoch 0 1.2769485369324685 The running loss is: 18.07359327375889 The number of items in train is: 10 The loss for epoch 1 1.8073593273758888 The running loss is: 8.222085058689117 The number of items in train is: 10 The loss for epoch 2 0.8222085058689117 The running loss is: 7.520764961838722 The number of items in train is: 10 The loss for epoch 3 0.7520764961838722 The running loss is: 6.81798791885376 The number of items in train is: 10 The loss for epoch 4 0.681798791885376 The running loss is: 6.529789224267006 The number of items in train is: 10 The loss for epoch 5 0.6529789224267006 The running loss is: 6.242193579673767 The number of items in train is: 10 The loss for epoch 6 0.6242193579673767 The running loss is: 6.023411050438881 The number of items in train is: 10 The loss for epoch 7 0.602341105043888 The running loss is: 5.495791830122471 The number of items in train is: 10 The loss for epoch 8 0.5495791830122471 The running loss is: 5.40959145501256 The number of items in train is: 10 The loss for epoch 9 0.540959145501256 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.513058 48 30755 ... 11.645679 49 30756 ... 13.005260 50 30757 ... 14.087539 51 30758 ... 15.303416 52 30759 ... 16.887409 53 30760 ... 18.930803 54 30761 ... 20.712101 55 30762 ... 21.618250 56 30763 ... 22.668322 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: n009dnk2 wandb: Agent Starting Run: bphq6zit with config: batch_size: 4 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: bphq6zit
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.001862179487944 The number of items in train is: 10 The loss for epoch 0 0.9001862179487944 The running loss is: 24.234292328357697 The number of items in train is: 10 The loss for epoch 1 2.42342923283577 The running loss is: 12.146701619029045 The number of items in train is: 10 The loss for epoch 2 1.2146701619029046 The running loss is: 8.325868934392929 The number of items in train is: 10 The loss for epoch 3 0.8325868934392929 The running loss is: 7.485300242900848 The number of items in train is: 10 The loss for epoch 4 0.7485300242900849 The running loss is: 6.788752064108849 The number of items in train is: 10 The loss for epoch 5 0.6788752064108848 The running loss is: 6.220466896891594 The number of items in train is: 10 The loss for epoch 6 0.6220466896891594 The running loss is: 5.8215655237436295 The number of items in train is: 10 The loss for epoch 7 0.5821565523743629 The running loss is: 5.489045836031437 The number of items in train is: 10 The loss for epoch 8 0.5489045836031436 The running loss is: 5.328197099268436 The number of items in train is: 10 The loss for epoch 9 0.5328197099268437 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.155974 48 30755 ... 10.577695 49 30756 ... 10.467627 50 30757 ... 11.085591 51 30758 ... 10.823718 52 30759 ... 10.074667 53 30760 ... 9.439847 54 30761 ... 10.096174 55 30762 ... 9.974174 56 30763 ... 10.144117 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bphq6zit wandb: Agent Starting Run: 0t6i24cz with config: batch_size: 4 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 0t6i24cz
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.483697727322578 The number of items in train is: 10 The loss for epoch 0 0.8483697727322579 The running loss is: 21.93063649535179 The number of items in train is: 10 The loss for epoch 1 2.193063649535179 The running loss is: 10.534606114029884 The number of items in train is: 10 The loss for epoch 2 1.0534606114029885 The running loss is: 9.683033972978592 The number of items in train is: 10 The loss for epoch 3 0.9683033972978592 The running loss is: 8.544187188148499 The number of items in train is: 10 The loss for epoch 4 0.8544187188148499 The running loss is: 7.527521088719368 The number of items in train is: 10 The loss for epoch 5 0.7527521088719368 The running loss is: 6.968377232551575 The number of items in train is: 10 The loss for epoch 6 0.6968377232551575 The running loss is: 6.07134684920311 The number of items in train is: 10 The loss for epoch 7 0.607134684920311 The running loss is: 5.064359068870544 The number of items in train is: 10 The loss for epoch 8 0.5064359068870544 The running loss is: 6.055943515151739 The number of items in train is: 10 The loss for epoch 9 0.6055943515151739 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.822945 48 30755 ... 6.611187 49 30756 ... 6.530975 50 30757 ... 4.915924 51 30758 ... 3.429251 52 30759 ... 2.679210 53 30760 ... 2.441298 54 30761 ... -1.963033 55 30762 ... -0.440692 56 30763 ... -0.592469 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0t6i24cz wandb: Agent Starting Run: u56nih5a with config: batch_size: 4 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: u56nih5a
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 7.976818040013313 The number of items in train is: 10 The loss for epoch 0 0.7976818040013314 The running loss is: 33.770317524671555 The number of items in train is: 10 The loss for epoch 1 3.3770317524671554 The running loss is: 11.967144101858139 The number of items in train is: 10 The loss for epoch 2 1.1967144101858138 The running loss is: 9.863078862428665 The number of items in train is: 10 The loss for epoch 3 0.9863078862428665 The running loss is: 8.59804680943489 The number of items in train is: 10 The loss for epoch 4 0.859804680943489 The running loss is: 7.818701654672623 The number of items in train is: 10 The loss for epoch 5 0.7818701654672623 The running loss is: 7.778759300708771 The number of items in train is: 10 The loss for epoch 6 0.7778759300708771 The running loss is: 7.312741860747337 The number of items in train is: 10 The loss for epoch 7 0.7312741860747337 The running loss is: 6.312692016363144 The number of items in train is: 10 The loss for epoch 8 0.6312692016363144 The running loss is: 6.413540616631508 The number of items in train is: 10 The loss for epoch 9 0.6413540616631508 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.117382 48 30755 ... 10.954368 49 30756 ... 12.910322 50 30757 ... 12.665748 51 30758 ... 13.424576 52 30759 ... 14.412344 53 30760 ... 15.858442 54 30761 ... 12.063550 55 30762 ... 15.121051 56 30763 ... 15.554323 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u56nih5a wandb: Agent Starting Run: mxi4wxbt with config: batch_size: 4 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: mxi4wxbt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 39.859717562794685 The number of items in train is: 10 The loss for epoch 0 3.9859717562794685 The running loss is: 13.916883394122124 The number of items in train is: 10 The loss for epoch 1 1.3916883394122124 The running loss is: 14.028552146628499 The number of items in train is: 10 The loss for epoch 2 1.40285521466285 The running loss is: 12.02799230068922 The number of items in train is: 10 The loss for epoch 3 1.202799230068922 The running loss is: 9.812308438122272 The number of items in train is: 10 The loss for epoch 4 0.9812308438122272 The running loss is: 9.249479830265045 The number of items in train is: 10 The loss for epoch 5 0.9249479830265045 The running loss is: 8.068130537867546 The number of items in train is: 10 The loss for epoch 6 0.8068130537867546 The running loss is: 8.860792085528374 The number of items in train is: 10 The loss for epoch 7 0.8860792085528374 The running loss is: 7.412374511361122 The number of items in train is: 10 The loss for epoch 8 0.7412374511361122 The running loss is: 7.8305803835392 The number of items in train is: 10 The loss for epoch 9 0.78305803835392 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.818081 48 30755 ... 9.417191 49 30756 ... 9.138782 50 30757 ... 9.442849 51 30758 ... 8.466863 52 30759 ... 8.141625 53 30760 ... 8.005954 54 30761 ... 8.691431 55 30762 ... 7.704202 56 30763 ... 7.805756 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mxi4wxbt wandb: Agent Starting Run: fp70pn3z with config: batch_size: 4 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: fp70pn3z
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 31.45028382539749 The number of items in train is: 10 The loss for epoch 0 3.145028382539749 The running loss is: 12.89564847946167 The number of items in train is: 10 The loss for epoch 1 1.289564847946167 The running loss is: 11.893807530403137 The number of items in train is: 10 The loss for epoch 2 1.1893807530403138 The running loss is: 8.323095485568047 The number of items in train is: 10 The loss for epoch 3 0.8323095485568046 The running loss is: 8.408325374126434 The number of items in train is: 10 The loss for epoch 4 0.8408325374126434 The running loss is: 7.324984163045883 The number of items in train is: 10 The loss for epoch 5 0.7324984163045883 The running loss is: 8.863726764917374 The number of items in train is: 10 The loss for epoch 6 0.8863726764917373 The running loss is: 8.59510800242424 The number of items in train is: 10 The loss for epoch 7 0.859510800242424 The running loss is: 7.816119492053986 The number of items in train is: 10 The loss for epoch 8 0.7816119492053986 The running loss is: 6.991639479994774 The number of items in train is: 10 The loss for epoch 9 0.6991639479994773 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.604881 48 30755 ... 10.088811 49 30756 ... 10.282960 50 30757 ... 10.789194 51 30758 ... 9.315967 52 30759 ... 8.543083 53 30760 ... 7.887885 54 30761 ... 9.119453 55 30762 ... 9.185229 56 30763 ... 9.172606 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fp70pn3z wandb: Agent Starting Run: n3wt2y70 with config: batch_size: 4 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: n3wt2y70
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 34.098082691431046 The number of items in train is: 10 The loss for epoch 0 3.4098082691431046 The running loss is: 14.255046874284744 The number of items in train is: 10 The loss for epoch 1 1.4255046874284745 The running loss is: 14.010826796293259 The number of items in train is: 10 The loss for epoch 2 1.4010826796293259 The running loss is: 8.812499105930328 The number of items in train is: 10 The loss for epoch 3 0.8812499105930328 The running loss is: 10.274688363075256 The number of items in train is: 10 The loss for epoch 4 1.0274688363075257 The running loss is: 8.562583446502686 The number of items in train is: 10 The loss for epoch 5 0.8562583446502685 The running loss is: 7.185037016868591 The number of items in train is: 10 The loss for epoch 6 0.7185037016868592 The running loss is: 6.902286410331726 The number of items in train is: 10 The loss for epoch 7 0.6902286410331726 The running loss is: 6.14476877823472 The number of items in train is: 10 The loss for epoch 8 0.614476877823472 The running loss is: 6.940630495548248 The number of items in train is: 10 The loss for epoch 9 0.6940630495548248 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 15.987806 48 30755 ... 14.906799 49 30756 ... 14.925628 50 30757 ... 15.739111 51 30758 ... 17.029638 52 30759 ... 17.821407 53 30760 ... 18.541513 54 30761 ... 21.510548 55 30762 ... 21.508347 56 30763 ... 21.507570 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: n3wt2y70 wandb: Agent Starting Run: bcc38ycr with config: batch_size: 4 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: bcc38ycr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.850830286741257 The number of items in train is: 10 The loss for epoch 0 1.2850830286741257 The running loss is: 7.531756274402142 The number of items in train is: 10 The loss for epoch 1 0.7531756274402142 The running loss is: 7.164153054356575 The number of items in train is: 10 The loss for epoch 2 0.7164153054356575 The running loss is: 6.104249902069569 The number of items in train is: 10 The loss for epoch 3 0.6104249902069568 The running loss is: 5.67718306183815 The number of items in train is: 10 The loss for epoch 4 0.567718306183815 The running loss is: 5.363151956349611 The number of items in train is: 10 The loss for epoch 5 0.5363151956349611 The running loss is: 5.421984151005745 The number of items in train is: 10 The loss for epoch 6 0.5421984151005745 The running loss is: 5.277610749006271 The number of items in train is: 10 The loss for epoch 7 0.5277610749006272 The running loss is: 5.469041176140308 The number of items in train is: 10 The loss for epoch 8 0.5469041176140308 The running loss is: 5.041734091937542 The number of items in train is: 10 The loss for epoch 9 0.5041734091937542 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.612688 48 30755 ... 9.810590 49 30756 ... 9.924997 50 30757 ... 10.803505 51 30758 ... 12.177807 52 30759 ... 12.428595 53 30760 ... 13.000287 54 30761 ... 12.871050 55 30762 ... 12.918545 56 30763 ... 13.982430 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bcc38ycr wandb: Agent Starting Run: gebuyenr with config: batch_size: 4 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: gebuyenr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.784172236919403 The number of items in train is: 10 The loss for epoch 0 1.3784172236919403 The running loss is: 8.965025827288628 The number of items in train is: 10 The loss for epoch 1 0.8965025827288627 The running loss is: 7.920389890670776 The number of items in train is: 10 The loss for epoch 2 0.7920389890670776 The running loss is: 6.930768981575966 The number of items in train is: 10 The loss for epoch 3 0.6930768981575965 The running loss is: 6.458241403102875 The number of items in train is: 10 The loss for epoch 4 0.6458241403102875 The running loss is: 5.874626487493515 The number of items in train is: 10 The loss for epoch 5 0.5874626487493515 The running loss is: 5.821754619479179 The number of items in train is: 10 The loss for epoch 6 0.5821754619479179 The running loss is: 5.629227995872498 The number of items in train is: 10 The loss for epoch 7 0.5629227995872498 The running loss is: 5.769639223814011 The number of items in train is: 10 The loss for epoch 8 0.576963922381401 The running loss is: 5.803562685847282 The number of items in train is: 10 The loss for epoch 9 0.5803562685847282 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.040811 48 30755 ... 12.388928 49 30756 ... 11.988900 50 30757 ... 13.375152 51 30758 ... 15.614386 52 30759 ... 17.559206 53 30760 ... 19.836933 54 30761 ... 20.253407 55 30762 ... 20.165487 56 30763 ... 21.959352 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gebuyenr wandb: Agent Starting Run: ifvuwc4s with config: batch_size: 4 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ifvuwc4s
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.077335000038147 The number of items in train is: 9 The loss for epoch 0 1.3419261111153498 The running loss is: 7.720571994781494 The number of items in train is: 9 The loss for epoch 1 0.8578413327534994 The running loss is: 7.231207340955734 The number of items in train is: 9 The loss for epoch 2 0.8034674823284149 The running loss is: 6.3102400451898575 The number of items in train is: 9 The loss for epoch 3 0.7011377827988731 The running loss is: 5.723727948963642 The number of items in train is: 9 The loss for epoch 4 0.6359697721070714 The running loss is: 5.507725924253464 The number of items in train is: 9 The loss for epoch 5 0.6119695471392738 The running loss is: 5.226244807243347 The number of items in train is: 9 The loss for epoch 6 0.580693867471483 The running loss is: 5.0174964517354965 The number of items in train is: 9 The loss for epoch 7 0.5574996057483885 The running loss is: 5.04413865506649 The number of items in train is: 9 The loss for epoch 8 0.5604598505629433 The running loss is: 4.887636784464121 The number of items in train is: 9 The loss for epoch 9 0.5430707538293468 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.133517 48 30755 ... 14.204868 49 30756 ... 8.201635 50 30757 ... 8.487048 51 30758 ... 8.313649 52 30759 ... 8.158344 53 30760 ... 8.212668 54 30761 ... 7.956340 55 30762 ... 7.777701 56 30763 ... 7.756563 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ifvuwc4s wandb: Agent Starting Run: gfkj4xmn with config: batch_size: 4 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: gfkj4xmn
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.208374172449112 The number of items in train is: 10 The loss for epoch 0 1.320837417244911 The running loss is: 14.000371232628822 The number of items in train is: 10 The loss for epoch 1 1.4000371232628823 The running loss is: 7.599640764296055 The number of items in train is: 10 The loss for epoch 2 0.7599640764296055 The running loss is: 6.7018884010612965 The number of items in train is: 10 The loss for epoch 3 0.6701888401061297 The running loss is: 5.82843029871583 The number of items in train is: 10 The loss for epoch 4 0.582843029871583 The running loss is: 5.561043694615364 The number of items in train is: 10 The loss for epoch 5 0.5561043694615364 The running loss is: 5.080736458301544 The number of items in train is: 10 The loss for epoch 6 0.5080736458301545 The running loss is: 4.953924670815468 The number of items in train is: 10 The loss for epoch 7 0.4953924670815468 The running loss is: 5.481087975203991 The number of items in train is: 10 The loss for epoch 8 0.5481087975203991 The running loss is: 4.529741728678346 The number of items in train is: 10 The loss for epoch 9 0.4529741728678346 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.652000 48 30755 ... 12.953487 49 30756 ... 12.495256 50 30757 ... 14.109031 51 30758 ... 15.218346 52 30759 ... 16.241440 53 30760 ... 17.719902 54 30761 ... 17.692379 55 30762 ... 16.954758 56 30763 ... 18.674665 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gfkj4xmn wandb: Agent Starting Run: p48n5h27 with config: batch_size: 4 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: p48n5h27
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.969248041510582 The number of items in train is: 10 The loss for epoch 0 1.2969248041510582 The running loss is: 18.971767611801624 The number of items in train is: 10 The loss for epoch 1 1.8971767611801624 The running loss is: 7.910560250282288 The number of items in train is: 10 The loss for epoch 2 0.7910560250282288 The running loss is: 8.072082966566086 The number of items in train is: 10 The loss for epoch 3 0.8072082966566085 The running loss is: 7.181809782981873 The number of items in train is: 10 The loss for epoch 4 0.7181809782981873 The running loss is: 5.9828749895095825 The number of items in train is: 10 The loss for epoch 5 0.5982874989509582 The running loss is: 5.653284996747971 The number of items in train is: 10 The loss for epoch 6 0.565328499674797 The running loss is: 5.712180733680725 The number of items in train is: 10 The loss for epoch 7 0.5712180733680725 The running loss is: 4.802202343940735 The number of items in train is: 10 The loss for epoch 8 0.48022023439407346 The running loss is: 4.912356749176979 The number of items in train is: 10 The loss for epoch 9 0.49123567491769793 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.621552 48 30755 ... 10.974742 49 30756 ... 12.895342 50 30757 ... 16.525156 51 30758 ... 19.239813 52 30759 ... 20.686008 53 30760 ... 22.838928 54 30761 ... 23.955635 55 30762 ... 23.857677 56 30763 ... 28.428850 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: p48n5h27 wandb: Agent Starting Run: 8nyyzakm with config: batch_size: 4 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8nyyzakm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.066332712769508 The number of items in train is: 9 The loss for epoch 0 1.3407036347521677 The running loss is: 13.345939487218857 The number of items in train is: 9 The loss for epoch 1 1.4828821652465396 The running loss is: 7.0621998608112335 The number of items in train is: 9 The loss for epoch 2 0.7846888734234704 The running loss is: 6.6326291263103485 The number of items in train is: 9 The loss for epoch 3 0.736958791812261 The running loss is: 6.007634565234184 The number of items in train is: 9 The loss for epoch 4 0.6675149516926872 The running loss is: 5.633084714412689 The number of items in train is: 9 The loss for epoch 5 0.6258983016014099 The running loss is: 5.117097146809101 The number of items in train is: 9 The loss for epoch 6 0.5685663496454557 The running loss is: 4.964767277240753 The number of items in train is: 9 The loss for epoch 7 0.5516408085823059 The running loss is: 4.961631417274475 The number of items in train is: 9 The loss for epoch 8 0.5512923796971639 The running loss is: 4.953397177159786 The number of items in train is: 9 The loss for epoch 9 0.5503774641288651 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.383920 48 30755 ... 15.534488 49 30756 ... 9.711837 50 30757 ... 9.893675 51 30758 ... 10.529510 52 30759 ... 11.202310 53 30760 ... 12.237284 54 30761 ... 12.017599 55 30762 ... 12.478189 56 30763 ... 12.300585 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8nyyzakm wandb: Agent Starting Run: ucaltidj with config: batch_size: 4 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ucaltidj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.098492935299873 The number of items in train is: 10 The loss for epoch 0 0.8098492935299874 The running loss is: 23.566280841827393 The number of items in train is: 10 The loss for epoch 1 2.356628084182739 The running loss is: 11.333626061677933 The number of items in train is: 10 The loss for epoch 2 1.1333626061677933 The running loss is: 9.972441203892231 The number of items in train is: 10 The loss for epoch 3 0.997244120389223 The running loss is: 8.263748623430729 The number of items in train is: 10 The loss for epoch 4 0.8263748623430729 The running loss is: 7.430231392383575 The number of items in train is: 10 The loss for epoch 5 0.7430231392383575 The running loss is: 7.192676857113838 The number of items in train is: 10 The loss for epoch 6 0.7192676857113838 The running loss is: 6.158903509378433 The number of items in train is: 10 The loss for epoch 7 0.6158903509378433 The running loss is: 6.380030982196331 The number of items in train is: 10 The loss for epoch 8 0.6380030982196331 The running loss is: 6.256686411798 The number of items in train is: 10 The loss for epoch 9 0.6256686411798 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.842103 48 30755 ... 9.856387 49 30756 ... 11.671286 50 30757 ... 11.879260 51 30758 ... 11.551217 52 30759 ... 12.265154 53 30760 ... 12.465170 54 30761 ... 12.783993 55 30762 ... 12.274730 56 30763 ... 13.479129 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ucaltidj wandb: Agent Starting Run: lch9dwmf with config: batch_size: 4 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: lch9dwmf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.695682540535927 The number of items in train is: 10 The loss for epoch 0 0.8695682540535927 The running loss is: 24.36949035525322 The number of items in train is: 10 The loss for epoch 1 2.436949035525322 The running loss is: 11.298262119293213 The number of items in train is: 10 The loss for epoch 2 1.1298262119293212 The running loss is: 10.062248289585114 The number of items in train is: 10 The loss for epoch 3 1.0062248289585114 The running loss is: 8.349945664405823 The number of items in train is: 10 The loss for epoch 4 0.8349945664405822 The running loss is: 7.397077739238739 The number of items in train is: 10 The loss for epoch 5 0.7397077739238739 The running loss is: 7.06380096077919 The number of items in train is: 10 The loss for epoch 6 0.706380096077919 The running loss is: 5.405614405870438 The number of items in train is: 10 The loss for epoch 7 0.5405614405870438 The running loss is: 6.062748953700066 The number of items in train is: 10 The loss for epoch 8 0.6062748953700066 The running loss is: 6.174377530813217 The number of items in train is: 10 The loss for epoch 9 0.6174377530813218 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 15.031854 48 30755 ... 10.359957 49 30756 ... 8.908915 50 30757 ... 11.616050 51 30758 ... 14.293598 52 30759 ... 13.883785 53 30760 ... 14.726389 54 30761 ... 14.138464 55 30762 ... 10.921678 56 30763 ... 14.764153 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lch9dwmf wandb: Agent Starting Run: hw10t2mp with config: batch_size: 4 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: hw10t2mp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.075239360332489 The number of items in train is: 9 The loss for epoch 0 0.897248817814721 The running loss is: 21.2212555706501 The number of items in train is: 9 The loss for epoch 1 2.357917285627789 The running loss is: 9.465078294277191 The number of items in train is: 9 The loss for epoch 2 1.051675366030799 The running loss is: 9.448686242103577 The number of items in train is: 9 The loss for epoch 3 1.0498540269003973 The running loss is: 7.564092457294464 The number of items in train is: 9 The loss for epoch 4 0.8404547174771627 The running loss is: 6.826194107532501 The number of items in train is: 9 The loss for epoch 5 0.7584660119480557 The running loss is: 6.084612876176834 The number of items in train is: 9 The loss for epoch 6 0.6760680973529816 The running loss is: 5.682695642113686 The number of items in train is: 9 The loss for epoch 7 0.6314106269015206 The running loss is: 5.182469367980957 The number of items in train is: 9 The loss for epoch 8 0.5758299297756619 The running loss is: 5.210104294121265 The number of items in train is: 9 The loss for epoch 9 0.578900477124585 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.247068 48 30755 ... 14.380191 49 30756 ... 7.810470 50 30757 ... 7.876924 51 30758 ... 7.553281 52 30759 ... 8.155678 53 30760 ... 9.258459 54 30761 ... 6.550736 55 30762 ... 7.366041 56 30763 ... 6.780664 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hw10t2mp wandb: Agent Starting Run: lg5ngbrv with config: batch_size: 4 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: lg5ngbrv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 29.403677381575108 The number of items in train is: 10 The loss for epoch 0 2.940367738157511 The running loss is: 14.427762001752853 The number of items in train is: 10 The loss for epoch 1 1.4427762001752853 The running loss is: 9.362008228898048 The number of items in train is: 10 The loss for epoch 2 0.9362008228898049 The running loss is: 9.065472334623337 The number of items in train is: 10 The loss for epoch 3 0.9065472334623337 The running loss is: 8.686813779175282 The number of items in train is: 10 The loss for epoch 4 0.8686813779175282 The running loss is: 7.925582256168127 The number of items in train is: 10 The loss for epoch 5 0.7925582256168127 The running loss is: 8.436862831935287 The number of items in train is: 10 The loss for epoch 6 0.8436862831935287 The running loss is: 8.473329044878483 The number of items in train is: 10 The loss for epoch 7 0.8473329044878483 The running loss is: 8.727103762328625 The number of items in train is: 10 The loss for epoch 8 0.8727103762328625 The running loss is: 6.296208456158638 The number of items in train is: 10 The loss for epoch 9 0.6296208456158638 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.326419 48 30755 ... 9.670631 49 30756 ... 11.336937 50 30757 ... 16.110525 51 30758 ... 15.503344 52 30759 ... 14.850665 53 30760 ... 13.109945 54 30761 ... 13.666155 55 30762 ... 12.507251 56 30763 ... 13.980711 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lg5ngbrv wandb: Agent Starting Run: 3lup5gl4 with config: batch_size: 4 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 3lup5gl4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 39.57245537638664 The number of items in train is: 10 The loss for epoch 0 3.957245537638664 The running loss is: 10.280797213315964 The number of items in train is: 10 The loss for epoch 1 1.0280797213315964 The running loss is: 8.693240597844124 The number of items in train is: 10 The loss for epoch 2 0.8693240597844124 The running loss is: 7.663233906030655 The number of items in train is: 10 The loss for epoch 3 0.7663233906030655 The running loss is: 10.1103096306324 The number of items in train is: 10 The loss for epoch 4 1.0110309630632401 The running loss is: 18.52347093820572 The number of items in train is: 10 The loss for epoch 5 1.852347093820572 The running loss is: 10.631574869155884 The number of items in train is: 10 The loss for epoch 6 1.0631574869155884 The running loss is: 9.706002175807953 The number of items in train is: 10 The loss for epoch 7 0.9706002175807953 The running loss is: 8.629770785570145 The number of items in train is: 10 The loss for epoch 8 0.8629770785570144 The running loss is: 10.745264112949371 The number of items in train is: 10 The loss for epoch 9 1.074526411294937 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.510293 48 30755 ... 10.594899 49 30756 ... 10.696557 50 30757 ... 10.699605 51 30758 ... 10.587273 52 30759 ... 10.662291 53 30760 ... 10.781241 54 30761 ... 10.739531 55 30762 ... 10.732348 56 30763 ... 10.744804 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3lup5gl4 wandb: Agent Starting Run: jm38otv8 with config: batch_size: 4 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: jm38otv8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 30.17451411485672 The number of items in train is: 9 The loss for epoch 0 3.3527237905396357 The running loss is: 10.276994824409485 The number of items in train is: 9 The loss for epoch 1 1.141888313823276 The running loss is: 11.995807766914368 The number of items in train is: 9 The loss for epoch 2 1.332867529657152 The running loss is: 9.06753146648407 The number of items in train is: 9 The loss for epoch 3 1.0075034962760077 The running loss is: 8.199181139469147 The number of items in train is: 9 The loss for epoch 4 0.911020126607683 The running loss is: 6.896306037902832 The number of items in train is: 9 The loss for epoch 5 0.766256226433648 The running loss is: 6.741923570632935 The number of items in train is: 9 The loss for epoch 6 0.7491026189592149 The running loss is: 6.182898551225662 The number of items in train is: 9 The loss for epoch 7 0.6869887279139625 The running loss is: 7.065683364868164 The number of items in train is: 9 The loss for epoch 8 0.785075929429796 The running loss is: 6.285583019256592 The number of items in train is: 9 The loss for epoch 9 0.6983981132507324 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.558565 48 30755 ... 14.500316 49 30756 ... 11.803816 50 30757 ... 11.264889 51 30758 ... 11.637167 52 30759 ... 12.255816 53 30760 ... 13.166669 54 30761 ... 13.725646 55 30762 ... 13.694263 56 30763 ... 13.723823 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jm38otv8 wandb: Agent Starting Run: qz68dg80 with config: batch_size: 4 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: qz68dg80
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.469213277101517 The number of items in train is: 10 The loss for epoch 0 1.3469213277101517 The running loss is: 8.658868372440338 The number of items in train is: 10 The loss for epoch 1 0.8658868372440338 The running loss is: 6.475258469581604 The number of items in train is: 10 The loss for epoch 2 0.6475258469581604 The running loss is: 5.690110743045807 The number of items in train is: 10 The loss for epoch 3 0.5690110743045806 The running loss is: 5.235761940479279 The number of items in train is: 10 The loss for epoch 4 0.5235761940479279 The running loss is: 4.875370755791664 The number of items in train is: 10 The loss for epoch 5 0.4875370755791664 The running loss is: 4.801120638847351 The number of items in train is: 10 The loss for epoch 6 0.4801120638847351 The running loss is: 4.296569600701332 The number of items in train is: 10 The loss for epoch 7 0.4296569600701332 The running loss is: 3.9086484387516975 The number of items in train is: 10 The loss for epoch 8 0.39086484387516973 The running loss is: 4.612558275461197 The number of items in train is: 10 The loss for epoch 9 0.4612558275461197 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.746770 48 30755 ... 17.278393 49 30756 ... 20.268206 50 30757 ... 16.799969 51 30758 ... 18.261110 52 30759 ... 21.016077 53 30760 ... 25.866169 54 30761 ... 26.150158 55 30762 ... 27.741076 56 30763 ... 29.664261 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qz68dg80 wandb: Agent Starting Run: yc8vzk15 with config: batch_size: 4 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: yc8vzk15
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.648816645145416 The number of items in train is: 9 The loss for epoch 0 1.294312960571713 The running loss is: 7.589744657278061 The number of items in train is: 9 The loss for epoch 1 0.8433049619197845 The running loss is: 6.459843933582306 The number of items in train is: 9 The loss for epoch 2 0.7177604370647006 The running loss is: 5.186166860163212 The number of items in train is: 9 The loss for epoch 3 0.5762407622403569 The running loss is: 4.682988181710243 The number of items in train is: 9 The loss for epoch 4 0.520332020190027 The running loss is: 4.529887855052948 The number of items in train is: 9 The loss for epoch 5 0.5033208727836609 The running loss is: 4.174439802765846 The number of items in train is: 9 The loss for epoch 6 0.4638266447517607 The running loss is: 4.335402585566044 The number of items in train is: 9 The loss for epoch 7 0.4817113983962271 The running loss is: 4.026810601353645 The number of items in train is: 9 The loss for epoch 8 0.44742340015040505 The running loss is: 3.961600847542286 The number of items in train is: 9 The loss for epoch 9 0.4401778719491429 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.441639 48 30755 ... 10.630715 49 30756 ... 11.287188 50 30757 ... 6.068464 51 30758 ... 5.964826 52 30759 ... 4.343362 53 30760 ... 2.792007 54 30761 ... 2.465134 55 30762 ... 1.961774 56 30763 ... 1.201431 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yc8vzk15 wandb: Agent Starting Run: gb5pbrx8 with config: batch_size: 4 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: gb5pbrx8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.373695477843285 The number of items in train is: 9 The loss for epoch 0 1.263743941982587 The running loss is: 7.596046328544617 The number of items in train is: 9 The loss for epoch 1 0.8440051476160685 The running loss is: 7.026428073644638 The number of items in train is: 9 The loss for epoch 2 0.7807142304049598 The running loss is: 5.834165081381798 The number of items in train is: 9 The loss for epoch 3 0.6482405645979775 The running loss is: 5.792373478412628 The number of items in train is: 9 The loss for epoch 4 0.6435970531569587 The running loss is: 5.450645856559277 The number of items in train is: 9 The loss for epoch 5 0.6056273173954752 The running loss is: 5.28040973842144 The number of items in train is: 9 The loss for epoch 6 0.5867121931579378 The running loss is: 5.260490275919437 The number of items in train is: 9 The loss for epoch 7 0.5844989195466042 The running loss is: 5.06695993989706 The number of items in train is: 9 The loss for epoch 8 0.5629955488774512 The running loss is: 5.005925253033638 The number of items in train is: 9 The loss for epoch 9 0.5562139170037376 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.719934 48 30755 ... 10.537707 49 30756 ... 12.890726 50 30757 ... 5.602832 51 30758 ... 5.312798 52 30759 ... 3.378870 53 30760 ... 1.443442 54 30761 ... 0.235049 55 30762 ... -0.287667 56 30763 ... -0.960572 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gb5pbrx8 wandb: Agent Starting Run: 2ii41qnn with config: batch_size: 4 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 2ii41qnn
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.847636476159096 The number of items in train is: 10 The loss for epoch 0 1.1847636476159096 The running loss is: 19.28851977735758 The number of items in train is: 10 The loss for epoch 1 1.9288519777357578 The running loss is: 6.863035127520561 The number of items in train is: 10 The loss for epoch 2 0.6863035127520561 The running loss is: 6.861020892858505 The number of items in train is: 10 The loss for epoch 3 0.6861020892858505 The running loss is: 5.373749539256096 The number of items in train is: 10 The loss for epoch 4 0.5373749539256096 The running loss is: 4.984086461365223 The number of items in train is: 10 The loss for epoch 5 0.4984086461365223 The running loss is: 4.53009369969368 The number of items in train is: 10 The loss for epoch 6 0.45300936996936797 The running loss is: 4.434199392795563 The number of items in train is: 10 The loss for epoch 7 0.44341993927955625 The running loss is: 4.03824046254158 The number of items in train is: 10 The loss for epoch 8 0.403824046254158 The running loss is: 4.690671548247337 The number of items in train is: 10 The loss for epoch 9 0.4690671548247337 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.863157 48 30755 ... 16.795988 49 30756 ... 20.582083 50 30757 ... 17.093380 51 30758 ... 17.988306 52 30759 ... 20.010696 53 30760 ... 24.001680 54 30761 ... 24.718653 55 30762 ... 26.494963 56 30763 ... 28.380241 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2ii41qnn wandb: Agent Starting Run: 1wctf3h1 with config: batch_size: 4 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 1wctf3h1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.46183493733406 The number of items in train is: 9 The loss for epoch 0 1.162426104148229 The running loss is: 17.30639934539795 The number of items in train is: 9 The loss for epoch 1 1.9229332605997722 The running loss is: 6.3309420347213745 The number of items in train is: 9 The loss for epoch 2 0.7034380038579305 The running loss is: 6.377431869506836 The number of items in train is: 9 The loss for epoch 3 0.7086035410563151 The running loss is: 5.5489144921302795 The number of items in train is: 9 The loss for epoch 4 0.6165460546811422 The running loss is: 4.946435913443565 The number of items in train is: 9 The loss for epoch 5 0.5496039903826184 The running loss is: 4.314482182264328 The number of items in train is: 9 The loss for epoch 6 0.4793869091404809 The running loss is: 4.079594299197197 The number of items in train is: 9 The loss for epoch 7 0.4532882554663552 The running loss is: 4.3184704929590225 The number of items in train is: 9 The loss for epoch 8 0.4798300547732247 The running loss is: 3.7194052562117577 The number of items in train is: 9 The loss for epoch 9 0.4132672506901953 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.938203 48 30755 ... 10.590812 49 30756 ... 11.731659 50 30757 ... 7.816141 51 30758 ... 7.934283 52 30759 ... 7.898247 53 30760 ... 7.827030 54 30761 ... 7.770433 55 30762 ... 7.636737 56 30763 ... 7.446535 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1wctf3h1 wandb: Agent Starting Run: lnptcntk with config: batch_size: 4 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: lnptcntk
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.301906615495682 The number of items in train is: 9 The loss for epoch 0 1.2557674017217424 The running loss is: 13.34939444065094 The number of items in train is: 9 The loss for epoch 1 1.4832660489612155 The running loss is: 7.083951860666275 The number of items in train is: 9 The loss for epoch 2 0.7871057622962527 The running loss is: 6.721273362636566 The number of items in train is: 9 The loss for epoch 3 0.7468081514040629 The running loss is: 6.33242367208004 The number of items in train is: 9 The loss for epoch 4 0.7036026302311156 The running loss is: 5.559299543499947 The number of items in train is: 9 The loss for epoch 5 0.6176999492777718 The running loss is: 5.3248555809259415 The number of items in train is: 9 The loss for epoch 6 0.5916506201028824 The running loss is: 5.212460063397884 The number of items in train is: 9 The loss for epoch 7 0.5791622292664316 The running loss is: 5.161771774291992 The number of items in train is: 9 The loss for epoch 8 0.5735301971435547 The running loss is: 5.854519993066788 The number of items in train is: 9 The loss for epoch 9 0.6505022214518653 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.666964 48 30755 ... 7.844455 49 30756 ... 10.758030 50 30757 ... 4.357377 51 30758 ... 3.401670 52 30759 ... 0.159843 53 30760 ... -3.441156 54 30761 ... -5.457528 55 30762 ... -5.833113 56 30763 ... -5.806427 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lnptcntk wandb: Agent Starting Run: vt9wfc3i with config: batch_size: 4 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: vt9wfc3i
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.370520025491714 The number of items in train is: 10 The loss for epoch 0 0.9370520025491714 The running loss is: 24.28932160139084 The number of items in train is: 10 The loss for epoch 1 2.428932160139084 The running loss is: 11.215482264757156 The number of items in train is: 10 The loss for epoch 2 1.1215482264757157 The running loss is: 8.304980039596558 The number of items in train is: 10 The loss for epoch 3 0.8304980039596558 The running loss is: 5.969888746738434 The number of items in train is: 10 The loss for epoch 4 0.5969888746738434 The running loss is: 5.667651101946831 The number of items in train is: 10 The loss for epoch 5 0.5667651101946831 The running loss is: 5.531609956175089 The number of items in train is: 10 The loss for epoch 6 0.5531609956175089 The running loss is: 4.260201007127762 The number of items in train is: 10 The loss for epoch 7 0.4260201007127762 The running loss is: 4.308543294668198 The number of items in train is: 10 The loss for epoch 8 0.4308543294668198 The running loss is: 4.031116555444896 The number of items in train is: 10 The loss for epoch 9 0.40311165554448963 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.514585 48 30755 ... 13.957551 49 30756 ... 22.536795 50 30757 ... 19.147823 51 30758 ... 18.851774 52 30759 ... 16.785509 53 30760 ... 16.631109 54 30761 ... 14.371087 55 30762 ... 17.450026 56 30763 ... 23.144482 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vt9wfc3i wandb: Agent Starting Run: 79g5c2ih with config: batch_size: 4 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 79g5c2ih
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.218592584133148 The number of items in train is: 9 The loss for epoch 0 0.913176953792572 The running loss is: 22.594658076763153 The number of items in train is: 9 The loss for epoch 1 2.510517564084795 The running loss is: 8.755667477846146 The number of items in train is: 9 The loss for epoch 2 0.972851941982905 The running loss is: 7.895386904478073 The number of items in train is: 9 The loss for epoch 3 0.8772652116086748 The running loss is: 5.952311813831329 The number of items in train is: 9 The loss for epoch 4 0.6613679793145921 The running loss is: 5.395892843604088 The number of items in train is: 9 The loss for epoch 5 0.5995436492893431 The running loss is: 5.016872830688953 The number of items in train is: 9 The loss for epoch 6 0.5574303145209948 The running loss is: 4.522265180945396 The number of items in train is: 9 The loss for epoch 7 0.502473908993933 The running loss is: 4.903088375926018 The number of items in train is: 9 The loss for epoch 8 0.5447875973251131 The running loss is: 4.967217639088631 The number of items in train is: 9 The loss for epoch 9 0.5519130710098479 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.197464 48 30755 ... 14.589086 49 30756 ... 15.102975 50 30757 ... 11.490273 51 30758 ... 11.686521 52 30759 ... 12.958370 53 30760 ... 14.398232 54 30761 ... 14.449973 55 30762 ... 13.878452 56 30763 ... 13.028694 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 79g5c2ih wandb: Agent Starting Run: hun860ha with config: batch_size: 4 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: hun860ha
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.466349959373474 The number of items in train is: 9 The loss for epoch 0 0.9407055510414971 The running loss is: 20.51015877723694 The number of items in train is: 9 The loss for epoch 1 2.2789065308041043 The running loss is: 9.455008566379547 The number of items in train is: 9 The loss for epoch 2 1.0505565073755052 The running loss is: 8.632069051265717 The number of items in train is: 9 The loss for epoch 3 0.9591187834739685 The running loss is: 7.387580871582031 The number of items in train is: 9 The loss for epoch 4 0.8208423190646701 The running loss is: 6.931646406650543 The number of items in train is: 9 The loss for epoch 5 0.7701829340722826 The running loss is: 6.353820636868477 The number of items in train is: 9 The loss for epoch 6 0.705980070763164 The running loss is: 6.147080808877945 The number of items in train is: 9 The loss for epoch 7 0.6830089787642161 The running loss is: 6.059936374425888 The number of items in train is: 9 The loss for epoch 8 0.6733262638250986 The running loss is: 5.553804494440556 The number of items in train is: 9 The loss for epoch 9 0.6170893882711729 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.846986 48 30755 ... 13.832122 49 30756 ... 14.052855 50 30757 ... 9.490732 51 30758 ... 9.761359 52 30759 ... 10.063552 53 30760 ... 10.918784 54 30761 ... 10.505589 55 30762 ... 10.037671 56 30763 ... 8.904584 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hun860ha wandb: Agent Starting Run: 56xnjmqw with config: batch_size: 4 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 56xnjmqw
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 63.19029159843922 The number of items in train is: 10 The loss for epoch 0 6.319029159843922 The running loss is: 15.668059527873993 The number of items in train is: 10 The loss for epoch 1 1.5668059527873992 The running loss is: 6.7668338268995285 The number of items in train is: 10 The loss for epoch 2 0.6766833826899529 The running loss is: 10.653816670179367 The number of items in train is: 10 The loss for epoch 3 1.0653816670179368 The running loss is: 6.2057484947144985 The number of items in train is: 10 The loss for epoch 4 0.6205748494714498 The running loss is: 12.597524106502533 The number of items in train is: 10 The loss for epoch 5 1.2597524106502533 The running loss is: 8.133643388748169 The number of items in train is: 10 The loss for epoch 6 0.8133643388748169 The running loss is: 6.504064813256264 The number of items in train is: 10 The loss for epoch 7 0.6504064813256264 The running loss is: 7.600483626127243 The number of items in train is: 10 The loss for epoch 8 0.7600483626127243 The running loss is: 6.0942140482366085 The number of items in train is: 10 The loss for epoch 9 0.6094214048236608 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 17.412844 48 30755 ... 16.113131 49 30756 ... 17.652231 50 30757 ... 17.093540 51 30758 ... 17.538973 52 30759 ... 18.912992 53 30760 ... 22.012920 54 30761 ... 22.796741 55 30762 ... 23.825220 56 30763 ... 24.379248 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 56xnjmqw wandb: Agent Starting Run: rjlb3x25 with config: batch_size: 4 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: rjlb3x25
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 47.18400213122368 The number of items in train is: 9 The loss for epoch 0 5.242666903469297 The running loss is: 7.782240986824036 The number of items in train is: 9 The loss for epoch 1 0.8646934429804484 The running loss is: 13.350460350513458 The number of items in train is: 9 The loss for epoch 2 1.4833844833903842 The running loss is: 10.830940991640091 The number of items in train is: 9 The loss for epoch 3 1.20343788796001 The running loss is: 8.378268256783485 The number of items in train is: 9 The loss for epoch 4 0.9309186951981651 The running loss is: 7.522539705038071 The number of items in train is: 9 The loss for epoch 5 0.83583774500423 The running loss is: 7.092203080654144 The number of items in train is: 9 The loss for epoch 6 0.7880225645171272 The running loss is: 5.928473547101021 The number of items in train is: 9 The loss for epoch 7 0.6587192830112245 The running loss is: 5.759520620107651 The number of items in train is: 9 The loss for epoch 8 0.6399467355675168 The running loss is: 5.335961684584618 The number of items in train is: 9 The loss for epoch 9 0.5928846316205131 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.474265 48 30755 ... 14.597093 49 30756 ... 14.583648 50 30757 ... 10.177814 51 30758 ... 10.120189 52 30759 ... 9.762475 53 30760 ... 9.834273 54 30761 ... 9.889601 55 30762 ... 10.552725 56 30763 ... 8.368625 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rjlb3x25 wandb: Agent Starting Run: r1hloomg with config: batch_size: 4 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: r1hloomg
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 35.278807163238525 The number of items in train is: 9 The loss for epoch 0 3.9198674625820584 The running loss is: 9.09990394115448 The number of items in train is: 9 The loss for epoch 1 1.0111004379060533 The running loss is: 8.631413072347641 The number of items in train is: 9 The loss for epoch 2 0.9590458969275156 The running loss is: 13.801436424255371 The number of items in train is: 9 The loss for epoch 3 1.5334929360283747 The running loss is: 11.059120297431946 The number of items in train is: 9 The loss for epoch 4 1.228791144159105 The running loss is: 12.807693928480148 The number of items in train is: 9 The loss for epoch 5 1.423077103164461 The running loss is: 8.163722217082977 The number of items in train is: 9 The loss for epoch 6 0.907080246342553 The running loss is: 8.258003741502762 The number of items in train is: 9 The loss for epoch 7 0.9175559712780846 The running loss is: 7.6043756902217865 The number of items in train is: 9 The loss for epoch 8 0.8449306322468652 The running loss is: 7.030919551849365 The number of items in train is: 9 The loss for epoch 9 0.7812132835388184 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.151881 48 30755 ... 11.383740 49 30756 ... 11.417962 50 30757 ... 11.303598 51 30758 ... 11.302509 52 30759 ... 11.487692 53 30760 ... 11.680331 54 30761 ... 11.406602 55 30762 ... 11.407322 56 30763 ... 11.404839 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r1hloomg wandb: Agent Starting Run: y0bnlpuy with config: batch_size: 4 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: y0bnlpuy
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.633945550769567 The number of items in train is: 9 The loss for epoch 0 1.181549505641063 The running loss is: 12.043411642313004 The number of items in train is: 9 The loss for epoch 1 1.3381568491458893 The running loss is: 5.877998441457748 The number of items in train is: 9 The loss for epoch 2 0.6531109379397498 The running loss is: 5.546243727207184 The number of items in train is: 9 The loss for epoch 3 0.6162493030230204 The running loss is: 5.403127163648605 The number of items in train is: 9 The loss for epoch 4 0.6003474626276228 The running loss is: 4.643219918012619 The number of items in train is: 9 The loss for epoch 5 0.5159133242236243 The running loss is: 4.852768741548061 The number of items in train is: 9 The loss for epoch 6 0.5391965268386735 The running loss is: 4.382803924381733 The number of items in train is: 9 The loss for epoch 7 0.4869782138201926 The running loss is: 4.16484721750021 The number of items in train is: 9 The loss for epoch 8 0.4627608019444678 The running loss is: 4.4322224371135235 The number of items in train is: 9 The loss for epoch 9 0.4924691596792804 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.033802 48 30755 ... 9.551357 49 30756 ... 10.077868 50 30757 ... 9.963331 51 30758 ... 6.366199 52 30759 ... 6.216858 53 30760 ... 5.372510 54 30761 ... 4.884486 55 30762 ... 4.517594 56 30763 ... 4.314028 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: y0bnlpuy wandb: Agent Starting Run: owmfh421 with config: batch_size: 4 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: owmfh421
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.215542949736118 The number of items in train is: 9 The loss for epoch 0 1.2461714388595686 The running loss is: 9.463058114051819 The number of items in train is: 9 The loss for epoch 1 1.0514509015613132 The running loss is: 6.107879787683487 The number of items in train is: 9 The loss for epoch 2 0.6786533097426096 The running loss is: 5.39974407851696 The number of items in train is: 9 The loss for epoch 3 0.5999715642796623 The running loss is: 5.072701074182987 The number of items in train is: 9 The loss for epoch 4 0.5636334526869986 The running loss is: 4.804857462644577 The number of items in train is: 9 The loss for epoch 5 0.533873051404953 The running loss is: 4.5060970187187195 The number of items in train is: 9 The loss for epoch 6 0.5006774465243021 The running loss is: 4.700375184416771 The number of items in train is: 9 The loss for epoch 7 0.5222639093796412 The running loss is: 4.428327962756157 The number of items in train is: 9 The loss for epoch 8 0.49203644030623966 The running loss is: 4.5398461520671844 The number of items in train is: 9 The loss for epoch 9 0.5044273502296872 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.511998 48 30755 ... 5.250092 49 30756 ... 5.816338 50 30757 ... 5.612596 51 30758 ... 0.421234 52 30759 ... -1.497605 53 30760 ... -7.030499 54 30761 ... -8.206348 55 30762 ... -9.200907 56 30763 ... -9.880840 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: owmfh421 wandb: Agent Starting Run: 9gl4dblh with config: batch_size: 4 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 9gl4dblh
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.968374609947205 The number of items in train is: 9 The loss for epoch 0 1.218708289994134 The running loss is: 7.037350654602051 The number of items in train is: 9 The loss for epoch 1 0.781927850511339 The running loss is: 6.37801668047905 The number of items in train is: 9 The loss for epoch 2 0.7086685200532278 The running loss is: 5.6258958876132965 The number of items in train is: 9 The loss for epoch 3 0.6250995430681441 The running loss is: 5.45712573826313 The number of items in train is: 9 The loss for epoch 4 0.6063473042514589 The running loss is: 5.067378714680672 The number of items in train is: 9 The loss for epoch 5 0.5630420794089636 The running loss is: 4.6998710706830025 The number of items in train is: 9 The loss for epoch 6 0.5222078967425559 The running loss is: 4.821414604783058 The number of items in train is: 9 The loss for epoch 7 0.5357127338647842 The running loss is: 4.696104887872934 The number of items in train is: 9 The loss for epoch 8 0.5217894319858816 The running loss is: 4.9355600625276566 The number of items in train is: 9 The loss for epoch 9 0.548395562503073 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 4.753484 48 30755 ... 5.158859 49 30756 ... 5.436313 50 30757 ... 5.256255 51 30758 ... -0.213982 52 30759 ... -2.439097 53 30760 ... -8.436878 54 30761 ... -9.941109 55 30762 ... -11.239862 56 30763 ... -12.347157 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9gl4dblh wandb: Agent Starting Run: k8zdpd46 with config: batch_size: 4 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: k8zdpd46
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.622326582670212 The number of items in train is: 9 The loss for epoch 0 1.069147398074468 The running loss is: 27.29498302936554 The number of items in train is: 9 The loss for epoch 1 3.0327758921517267 The running loss is: 7.484041184186935 The number of items in train is: 9 The loss for epoch 2 0.8315601315763261 The running loss is: 8.233914986252785 The number of items in train is: 9 The loss for epoch 3 0.9148794429169761 The running loss is: 5.771057903766632 The number of items in train is: 9 The loss for epoch 4 0.6412286559740702 The running loss is: 5.484783336520195 The number of items in train is: 9 The loss for epoch 5 0.6094203707244661 The running loss is: 5.26647499576211 The number of items in train is: 9 The loss for epoch 6 0.5851638884180121 The running loss is: 4.466490536928177 The number of items in train is: 9 The loss for epoch 7 0.49627672632535297 The running loss is: 4.091578543186188 The number of items in train is: 9 The loss for epoch 8 0.4546198381317986 The running loss is: 4.385637752711773 The number of items in train is: 9 The loss for epoch 9 0.4872930836346414 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.332860 48 30755 ... 10.200597 49 30756 ... 10.226647 50 30757 ... 9.453783 51 30758 ... 7.146721 52 30759 ... 6.883693 53 30760 ... 6.543474 54 30761 ... 5.816170 55 30762 ... 5.922008 56 30763 ... 5.386109 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: k8zdpd46 wandb: Agent Starting Run: l1ctof91 with config: batch_size: 4 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: l1ctof91
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.580014735460281 The number of items in train is: 9 The loss for epoch 0 1.064446081717809 The running loss is: 21.697373241186142 The number of items in train is: 9 The loss for epoch 1 2.4108192490206823 The running loss is: 6.6545195281505585 The number of items in train is: 9 The loss for epoch 2 0.7393910586833954 The running loss is: 7.011622667312622 The number of items in train is: 9 The loss for epoch 3 0.779069185256958 The running loss is: 6.083614349365234 The number of items in train is: 9 The loss for epoch 4 0.6759571499294705 The running loss is: 5.649204224348068 The number of items in train is: 9 The loss for epoch 5 0.6276893582608964 The running loss is: 5.127370245754719 The number of items in train is: 9 The loss for epoch 6 0.5697078050838577 The running loss is: 4.944306641817093 The number of items in train is: 9 The loss for epoch 7 0.5493674046463437 The running loss is: 4.8338189907372 The number of items in train is: 9 The loss for epoch 8 0.5370909989707999 The running loss is: 4.484746187925339 The number of items in train is: 9 The loss for epoch 9 0.4983051319917043 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 4.635915 48 30755 ... 5.037758 49 30756 ... 5.179454 50 30757 ... 5.334713 51 30758 ... 1.140849 52 30759 ... -0.616794 53 30760 ... -5.523585 54 30761 ... -6.937500 55 30762 ... -7.549229 56 30763 ... -7.830435 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l1ctof91 wandb: Agent Starting Run: u10rjkpr with config: batch_size: 4 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: u10rjkpr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.579345598816872 The number of items in train is: 9 The loss for epoch 0 1.1754828443129857 The running loss is: 13.758408069610596 The number of items in train is: 9 The loss for epoch 1 1.5287120077345107 The running loss is: 6.689704149961472 The number of items in train is: 9 The loss for epoch 2 0.7433004611068301 The running loss is: 6.441909082233906 The number of items in train is: 9 The loss for epoch 3 0.7157676758037673 The running loss is: 5.889819331467152 The number of items in train is: 9 The loss for epoch 4 0.6544243701630168 The running loss is: 5.225266307592392 The number of items in train is: 9 The loss for epoch 5 0.5805851452880435 The running loss is: 4.707424312829971 The number of items in train is: 9 The loss for epoch 6 0.5230471458699968 The running loss is: 4.644587963819504 The number of items in train is: 9 The loss for epoch 7 0.5160653293132782 The running loss is: 4.423424337059259 The number of items in train is: 9 The loss for epoch 8 0.4914915930065844 The running loss is: 4.801369518041611 The number of items in train is: 9 The loss for epoch 9 0.5334855020046234 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.572619 48 30755 ... 5.447958 49 30756 ... 5.573647 50 30757 ... 5.955884 51 30758 ... 1.513768 52 30759 ... -0.038620 53 30760 ... -4.731401 54 30761 ... -5.841568 55 30762 ... -6.382008 56 30763 ... -6.736419 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u10rjkpr wandb: Agent Starting Run: mhp5jf5e with config: batch_size: 4 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: mhp5jf5e
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.49449360370636 The number of items in train is: 9 The loss for epoch 0 1.6104992893007066 The running loss is: 19.521971058100462 The number of items in train is: 9 The loss for epoch 1 2.1691078953444958 The running loss is: 28.291439056396484 The number of items in train is: 9 The loss for epoch 2 3.143493228488498 The running loss is: 8.388818830251694 The number of items in train is: 9 The loss for epoch 3 0.9320909811390771 The running loss is: 8.282284513115883 The number of items in train is: 9 The loss for epoch 4 0.9202538347906537 The running loss is: 6.225587673485279 The number of items in train is: 9 The loss for epoch 5 0.6917319637205865 The running loss is: 5.497670985758305 The number of items in train is: 9 The loss for epoch 6 0.6108523317509227 The running loss is: 4.806649524718523 The number of items in train is: 9 The loss for epoch 7 0.5340721694131693 The running loss is: 4.585236996412277 The number of items in train is: 9 The loss for epoch 8 0.5094707773791419 The running loss is: 4.70761264488101 The number of items in train is: 9 The loss for epoch 9 0.5230680716534456 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.213211 48 30755 ... 6.962625 49 30756 ... 7.404693 50 30757 ... 8.399524 51 30758 ... 1.793925 52 30759 ... 0.937240 53 30760 ... -3.075130 54 30761 ... -4.972503 55 30762 ... -4.848470 56 30763 ... -5.870366 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mhp5jf5e wandb: Agent Starting Run: l26ko7a1 with config: batch_size: 4 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: l26ko7a1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.378090545535088 The number of items in train is: 9 The loss for epoch 0 1.2642322828372319 The running loss is: 20.013391137123108 The number of items in train is: 9 The loss for epoch 1 2.223710126347012 The running loss is: 19.87523329257965 The number of items in train is: 9 The loss for epoch 2 2.2083592547310724 The running loss is: 8.844613701105118 The number of items in train is: 9 The loss for epoch 3 0.9827348556783464 The running loss is: 7.205383747816086 The number of items in train is: 9 The loss for epoch 4 0.8005981942017873 The running loss is: 6.940165609121323 The number of items in train is: 9 The loss for epoch 5 0.7711295121245914 The running loss is: 6.24945005774498 The number of items in train is: 9 The loss for epoch 6 0.6943833397494422 The running loss is: 5.91395029425621 The number of items in train is: 9 The loss for epoch 7 0.65710558825069 The running loss is: 5.396865144371986 The number of items in train is: 9 The loss for epoch 8 0.5996516827079985 The running loss is: 5.062415450811386 The number of items in train is: 9 The loss for epoch 9 0.5624906056457095 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.514519 48 30755 ... 9.442804 49 30756 ... 8.812165 50 30757 ... 9.532930 51 30758 ... 6.297042 52 30759 ... 6.181820 53 30760 ... 5.386303 54 30761 ... 3.235852 55 30762 ... 3.117307 56 30763 ... 3.085574 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l26ko7a1 wandb: Agent Starting Run: zotbismr with config: batch_size: 4 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: zotbismr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.956711173057556 The number of items in train is: 9 The loss for epoch 0 0.9951901303397285 The running loss is: 20.03506526350975 The number of items in train is: 9 The loss for epoch 1 2.2261183626121945 The running loss is: 10.61062902212143 The number of items in train is: 9 The loss for epoch 2 1.1789587802357144 The running loss is: 7.9828891307115555 The number of items in train is: 9 The loss for epoch 3 0.8869876811901728 The running loss is: 7.088197961449623 The number of items in train is: 9 The loss for epoch 4 0.7875775512721803 The running loss is: 6.779843673110008 The number of items in train is: 9 The loss for epoch 5 0.7533159636788898 The running loss is: 6.002784684300423 The number of items in train is: 9 The loss for epoch 6 0.6669760760333803 The running loss is: 5.491729207336903 The number of items in train is: 9 The loss for epoch 7 0.6101921341485448 The running loss is: 5.527640491724014 The number of items in train is: 9 The loss for epoch 8 0.6141822768582238 The running loss is: 6.085138563066721 The number of items in train is: 9 The loss for epoch 9 0.6761265070074134 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.490681 48 30755 ... 13.582205 49 30756 ... 13.004211 50 30757 ... 12.755482 51 30758 ... 12.320765 52 30759 ... 12.612151 53 30760 ... 13.293688 54 30761 ... 13.494370 55 30762 ... 13.886261 56 30763 ... 13.653646 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: zotbismr wandb: Agent Starting Run: dvll38mr with config: batch_size: 4 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: dvll38mr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 98.88792389631271 The number of items in train is: 9 The loss for epoch 0 10.987547099590302 The running loss is: 8.609584867954254 The number of items in train is: 9 The loss for epoch 1 0.956620540883806 The running loss is: 9.498519219458103 The number of items in train is: 9 The loss for epoch 2 1.0553910243842337 The running loss is: 49.756335735321045 The number of items in train is: 9 The loss for epoch 3 5.528481748369005 The running loss is: 15.944260041695088 The number of items in train is: 9 The loss for epoch 4 1.7715844490772321 The running loss is: 18.559796810150146 The number of items in train is: 9 The loss for epoch 5 2.0621996455722384 The running loss is: 7.868879586458206 The number of items in train is: 9 The loss for epoch 6 0.8743199540509118 The running loss is: 6.104154862463474 The number of items in train is: 9 The loss for epoch 7 0.6782394291626083 The running loss is: 7.538334250450134 The number of items in train is: 9 The loss for epoch 8 0.8375926944944594 The running loss is: 6.918812483549118 The number of items in train is: 9 The loss for epoch 9 0.7687569426165687 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.731135 48 30755 ... 9.728546 49 30756 ... 10.310928 50 30757 ... 10.316441 51 30758 ... 7.959233 52 30759 ... 7.956962 53 30760 ... 7.942179 54 30761 ... 6.841368 55 30762 ... 6.677052 56 30763 ... 6.692796 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: dvll38mr wandb: Agent Starting Run: rya2yy5p with config: batch_size: 4 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: rya2yy5p
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 67.89308589696884 The number of items in train is: 9 The loss for epoch 0 7.543676210774316 The running loss is: 9.431407779455185 The number of items in train is: 9 The loss for epoch 1 1.0479341977172427 The running loss is: 21.126766741275787 The number of items in train is: 9 The loss for epoch 2 2.3474185268084207 The running loss is: 14.993719905614853 The number of items in train is: 9 The loss for epoch 3 1.6659688784016504 The running loss is: 7.41693702340126 The number of items in train is: 9 The loss for epoch 4 0.8241041137112511 The running loss is: 8.626804292201996 The number of items in train is: 9 The loss for epoch 5 0.9585338102446662 The running loss is: 7.170477196574211 The number of items in train is: 9 The loss for epoch 6 0.7967196885082457 The running loss is: 7.380770206451416 The number of items in train is: 9 The loss for epoch 7 0.8200855784946017 The running loss is: 6.92872542142868 The number of items in train is: 9 The loss for epoch 8 0.7698583801587423 The running loss is: 6.632938742637634 The number of items in train is: 9 The loss for epoch 9 0.7369931936264038 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.066799 48 30755 ... 11.078013 49 30756 ... 11.082559 50 30757 ... 11.086118 51 30758 ... 10.130918 52 30759 ... 10.135627 53 30760 ... 10.872349 54 30761 ... 9.913726 55 30762 ... 9.913918 56 30763 ... 9.914637 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rya2yy5p wandb: Agent Starting Run: 8oqgctmv with config: batch_size: 4 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8oqgctmv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 46.47122222185135 The number of items in train is: 9 The loss for epoch 0 5.163469135761261 The running loss is: 8.845713376998901 The number of items in train is: 9 The loss for epoch 1 0.9828570418887668 The running loss is: 13.030948475003242 The number of items in train is: 9 The loss for epoch 2 1.447883163889249 The running loss is: 10.48940259218216 The number of items in train is: 9 The loss for epoch 3 1.165489176909129 The running loss is: 9.511059552431107 The number of items in train is: 9 The loss for epoch 4 1.0567843947145674 The running loss is: 8.09024153649807 The number of items in train is: 9 The loss for epoch 5 0.8989157262775633 The running loss is: 6.7674222737550735 The number of items in train is: 9 The loss for epoch 6 0.7519358081950082 The running loss is: 6.153109893202782 The number of items in train is: 9 The loss for epoch 7 0.6836788770225313 The running loss is: 6.054163038730621 The number of items in train is: 9 The loss for epoch 8 0.6726847820811801 The running loss is: 5.372741438448429 The number of items in train is: 9 The loss for epoch 9 0.5969712709387144 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.541071 48 30755 ... 12.220772 49 30756 ... 11.060917 50 30757 ... 10.666188 51 30758 ... 3.418077 52 30759 ... 3.772269 53 30760 ... 0.733020 54 30761 ... 1.369237 55 30762 ... 1.944399 56 30763 ... 1.421969 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8oqgctmv wandb: Agent Starting Run: vtgyuhtf with config: batch_size: 4 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: vtgyuhtf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.348638638854027 The number of items in train is: 9 The loss for epoch 0 1.2609598487615585 The running loss is: 6.918910779058933 The number of items in train is: 9 The loss for epoch 1 0.7687678643398814 The running loss is: 5.745432838797569 The number of items in train is: 9 The loss for epoch 2 0.6383814265330633 The running loss is: 4.999900542199612 The number of items in train is: 9 The loss for epoch 3 0.5555445046888458 The running loss is: 4.773765811696649 The number of items in train is: 9 The loss for epoch 4 0.5304184235218499 The running loss is: 4.680868253111839 The number of items in train is: 9 The loss for epoch 5 0.5200964725679822 The running loss is: 4.301170352846384 The number of items in train is: 9 The loss for epoch 6 0.47790781698293155 The running loss is: 4.601465173065662 The number of items in train is: 9 The loss for epoch 7 0.5112739081184069 The running loss is: 4.934664955362678 The number of items in train is: 9 The loss for epoch 8 0.5482961061514087 The running loss is: 4.621857643127441 The number of items in train is: 9 The loss for epoch 9 0.5135397381252713 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.836509 48 30755 ... 8.574735 49 30756 ... 11.337667 50 30757 ... 10.399076 51 30758 ... 6.875823 52 30759 ... 5.910570 53 30760 ... 5.708830 54 30761 ... 4.988645 55 30762 ... 4.351829 56 30763 ... 4.867961 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vtgyuhtf wandb: Agent Starting Run: qthc3jrw with config: batch_size: 4 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: qthc3jrw
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.358599215745926 The number of items in train is: 9 The loss for epoch 0 1.3731776906384363 The running loss is: 8.195348471403122 The number of items in train is: 9 The loss for epoch 1 0.9105942746003469 The running loss is: 7.318853735923767 The number of items in train is: 9 The loss for epoch 2 0.8132059706581963 The running loss is: 6.295140668749809 The number of items in train is: 9 The loss for epoch 3 0.6994600743055344 The running loss is: 6.144186645746231 The number of items in train is: 9 The loss for epoch 4 0.6826874050829146 The running loss is: 5.869756370782852 The number of items in train is: 9 The loss for epoch 5 0.6521951523092058 The running loss is: 5.804843842983246 The number of items in train is: 9 The loss for epoch 6 0.6449826492203606 The running loss is: 5.551393002271652 The number of items in train is: 9 The loss for epoch 7 0.6168214446968503 The running loss is: 5.521760046482086 The number of items in train is: 9 The loss for epoch 8 0.6135288940535651 The running loss is: 5.504636391997337 The number of items in train is: 9 The loss for epoch 9 0.6116262657774819 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.424033 48 30755 ... 11.064072 49 30756 ... 11.643181 50 30757 ... 12.372051 51 30758 ... 12.407243 52 30759 ... 8.644774 53 30760 ... 8.674614 54 30761 ... 9.206502 55 30762 ... 8.878454 56 30763 ... 8.787256 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qthc3jrw wandb: Agent Starting Run: nudj0ttj with config: batch_size: 4 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: nudj0ttj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.974797561764717 The number of items in train is: 9 The loss for epoch 0 1.3305330624183018 The running loss is: 7.871524661779404 The number of items in train is: 9 The loss for epoch 1 0.8746138513088226 The running loss is: 6.378603428602219 The number of items in train is: 9 The loss for epoch 2 0.7087337142891355 The running loss is: 5.855801060795784 The number of items in train is: 9 The loss for epoch 3 0.6506445623106427 The running loss is: 5.593401655554771 The number of items in train is: 9 The loss for epoch 4 0.621489072839419 The running loss is: 5.430000275373459 The number of items in train is: 9 The loss for epoch 5 0.6033333639303843 The running loss is: 5.198335066437721 The number of items in train is: 9 The loss for epoch 6 0.5775927851597468 The running loss is: 5.2052818685770035 The number of items in train is: 9 The loss for epoch 7 0.5783646520641115 The running loss is: 5.29455591738224 The number of items in train is: 9 The loss for epoch 8 0.588283990820249 The running loss is: 5.005378872156143 The number of items in train is: 9 The loss for epoch 9 0.5561532080173492 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.795309 48 30755 ... 9.963115 49 30756 ... 11.581796 50 30757 ... 11.518932 51 30758 ... 10.245250 52 30759 ... 8.156085 53 30760 ... 8.071309 54 30761 ... 8.587109 55 30762 ... 8.115870 56 30763 ... 8.071095 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nudj0ttj wandb: Agent Starting Run: pqquxpyi with config: batch_size: 4 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: pqquxpyi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.936804950237274 The number of items in train is: 9 The loss for epoch 0 1.326311661137475 The running loss is: 13.103957504034042 The number of items in train is: 9 The loss for epoch 1 1.4559952782260046 The running loss is: 6.130839288234711 The number of items in train is: 9 The loss for epoch 2 0.6812043653594123 The running loss is: 5.423560082912445 The number of items in train is: 9 The loss for epoch 3 0.6026177869902717 The running loss is: 5.0311368107795715 The number of items in train is: 9 The loss for epoch 4 0.5590152011977302 The running loss is: 4.549448646605015 The number of items in train is: 9 The loss for epoch 5 0.5054942940672239 The running loss is: 4.158376228064299 The number of items in train is: 9 The loss for epoch 6 0.4620418031182554 The running loss is: 5.161359757184982 The number of items in train is: 9 The loss for epoch 7 0.573484417464998 The running loss is: 5.153440713882446 The number of items in train is: 9 The loss for epoch 8 0.5726045237647163 The running loss is: 3.981059141457081 The number of items in train is: 9 The loss for epoch 9 0.4423399046063423 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.477754 48 30755 ... 8.494497 49 30756 ... 12.196461 50 30757 ... 10.884727 51 30758 ... 7.412595 52 30759 ... 7.065908 53 30760 ... 7.101405 54 30761 ... 6.012889 55 30762 ... 5.877822 56 30763 ... 7.438658 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pqquxpyi wandb: Agent Starting Run: 68xo9ypq with config: batch_size: 4 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 68xo9ypq
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.190880864858627 The number of items in train is: 9 The loss for epoch 0 1.3545423183176253 The running loss is: 13.892218500375748 The number of items in train is: 9 The loss for epoch 1 1.543579833375083 The running loss is: 6.900015220046043 The number of items in train is: 9 The loss for epoch 2 0.7666683577828937 The running loss is: 6.897568985819817 The number of items in train is: 9 The loss for epoch 3 0.7663965539799796 The running loss is: 6.506961166858673 The number of items in train is: 9 The loss for epoch 4 0.7229956852065192 The running loss is: 6.165369838476181 The number of items in train is: 9 The loss for epoch 5 0.6850410931640201 The running loss is: 5.86061418056488 The number of items in train is: 9 The loss for epoch 6 0.6511793533960978 The running loss is: 5.5902515053749084 The number of items in train is: 9 The loss for epoch 7 0.6211390561527677 The running loss is: 5.628728866577148 The number of items in train is: 9 The loss for epoch 8 0.6254143185085721 The running loss is: 5.315730541944504 The number of items in train is: 9 The loss for epoch 9 0.5906367268827226 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.205215 48 30755 ... 10.191205 49 30756 ... 10.337317 50 30757 ... 10.732488 51 30758 ... 11.198917 52 30759 ... 8.658087 53 30760 ... 8.819209 54 30761 ... 8.749974 55 30762 ... 8.259215 56 30763 ... 8.356953 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 68xo9ypq wandb: Agent Starting Run: fy82xr6x with config: batch_size: 4 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: fy82xr6x
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.067734479904175 The number of items in train is: 9 The loss for epoch 0 1.2297482755449083 The running loss is: 15.965270072221756 The number of items in train is: 9 The loss for epoch 1 1.7739188969135284 The running loss is: 6.704161122441292 The number of items in train is: 9 The loss for epoch 2 0.7449067913823657 The running loss is: 6.657948046922684 The number of items in train is: 9 The loss for epoch 3 0.7397720052136315 The running loss is: 6.264713495969772 The number of items in train is: 9 The loss for epoch 4 0.6960792773299747 The running loss is: 5.739080086350441 The number of items in train is: 9 The loss for epoch 5 0.637675565150049 The running loss is: 5.670556038618088 The number of items in train is: 9 The loss for epoch 6 0.6300617820686765 The running loss is: 5.386943072080612 The number of items in train is: 9 The loss for epoch 7 0.5985492302311791 The running loss is: 5.308087810873985 The number of items in train is: 9 The loss for epoch 8 0.589787534541554 The running loss is: 4.992166683077812 The number of items in train is: 9 The loss for epoch 9 0.5546851870086458 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.993382 48 30755 ... 10.131286 49 30756 ... 11.634473 50 30757 ... 11.604493 51 30758 ... 10.855100 52 30759 ... 9.658119 53 30760 ... 9.685330 54 30761 ... 9.968962 55 30762 ... 9.553234 56 30763 ... 9.550599 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fy82xr6x wandb: Agent Starting Run: 83h0wkh0 with config: batch_size: 4 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 83h0wkh0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.505407392978668 The number of items in train is: 9 The loss for epoch 0 1.0561563769976299 The running loss is: 21.379353791475296 The number of items in train is: 9 The loss for epoch 1 2.375483754608366 The running loss is: 8.969172284007072 The number of items in train is: 9 The loss for epoch 2 0.996574698223008 The running loss is: 8.166614294052124 The number of items in train is: 9 The loss for epoch 3 0.9074015882280138 The running loss is: 6.223415791988373 The number of items in train is: 9 The loss for epoch 4 0.6914906435542636 The running loss is: 6.225053533911705 The number of items in train is: 9 The loss for epoch 5 0.6916726148790784 The running loss is: 4.850820034742355 The number of items in train is: 9 The loss for epoch 6 0.5389800038602617 The running loss is: 6.047254383563995 The number of items in train is: 9 The loss for epoch 7 0.6719171537293328 The running loss is: 5.450169747695327 The number of items in train is: 9 The loss for epoch 8 0.6055744164105918 The running loss is: 5.5230641812086105 The number of items in train is: 9 The loss for epoch 9 0.6136737979120679 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 2.551796 48 30755 ... 9.289855 49 30756 ... 13.825897 50 30757 ... 10.026182 51 30758 ... 6.181005 52 30759 ... 6.497049 53 30760 ... 4.788657 54 30761 ... 3.555442 55 30762 ... 3.971375 56 30763 ... 6.380777 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 83h0wkh0 wandb: Agent Starting Run: lkat3a3t with config: batch_size: 4 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: lkat3a3t
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.228183835744858 The number of items in train is: 9 The loss for epoch 0 1.1364648706383176 The running loss is: 22.093879207968712 The number of items in train is: 9 The loss for epoch 1 2.454875467552079 The running loss is: 11.21305176615715 The number of items in train is: 9 The loss for epoch 2 1.2458946406841278 The running loss is: 8.938593842089176 The number of items in train is: 9 The loss for epoch 3 0.993177093565464 The running loss is: 7.865151785314083 The number of items in train is: 9 The loss for epoch 4 0.873905753923787 The running loss is: 7.342009246349335 The number of items in train is: 9 The loss for epoch 5 0.8157788051499261 The running loss is: 6.836678400635719 The number of items in train is: 9 The loss for epoch 6 0.7596309334039688 The running loss is: 6.812281683087349 The number of items in train is: 9 The loss for epoch 7 0.7569201870097054 The running loss is: 6.919483810663223 The number of items in train is: 9 The loss for epoch 8 0.7688315345181359 The running loss is: 6.063464671373367 The number of items in train is: 9 The loss for epoch 9 0.673718296819263 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.149070 48 30755 ... 12.772628 49 30756 ... 10.170836 50 30757 ... 12.094771 51 30758 ... 12.898168 52 30759 ... 11.223684 53 30760 ... 11.328439 54 30761 ... 11.660076 55 30762 ... 11.364662 56 30763 ... 11.240909 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lkat3a3t wandb: Agent Starting Run: 83qumktt with config: batch_size: 4 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 83qumktt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.269839070737362 The number of items in train is: 9 The loss for epoch 0 1.2522043411930401 The running loss is: 18.2245534658432 The number of items in train is: 9 The loss for epoch 1 2.024950385093689 The running loss is: 11.093135692179203 The number of items in train is: 9 The loss for epoch 2 1.232570632464356 The running loss is: 7.84151503443718 The number of items in train is: 9 The loss for epoch 3 0.8712794482707977 The running loss is: 7.130702927708626 The number of items in train is: 9 The loss for epoch 4 0.7923003253009584 The running loss is: 6.894553929567337 The number of items in train is: 9 The loss for epoch 5 0.7660615477297041 The running loss is: 6.550070330500603 The number of items in train is: 9 The loss for epoch 6 0.7277855922778448 The running loss is: 5.66788774728775 The number of items in train is: 9 The loss for epoch 7 0.6297653052541945 The running loss is: 5.8400644809007645 The number of items in train is: 9 The loss for epoch 8 0.6488960534334183 The running loss is: 5.484764613211155 The number of items in train is: 9 The loss for epoch 9 0.609418290356795 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.282831 48 30755 ... 10.786951 49 30756 ... 11.856423 50 30757 ... 11.354153 51 30758 ... 11.202002 52 30759 ... 11.278160 53 30760 ... 11.181666 54 30761 ... 11.049433 55 30762 ... 10.850035 56 30763 ... 11.016407 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 83qumktt wandb: Agent Starting Run: eaehlwpi with config: batch_size: 4 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: eaehlwpi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 50.12921614944935 The number of items in train is: 9 The loss for epoch 0 5.569912905494372 The running loss is: 8.785686165094376 The number of items in train is: 9 The loss for epoch 1 0.9761873516771529 The running loss is: 12.605510175228119 The number of items in train is: 9 The loss for epoch 2 1.4006122416920133 The running loss is: 21.619386926293373 The number of items in train is: 9 The loss for epoch 3 2.402154102921486 The running loss is: 8.039730727672577 The number of items in train is: 9 The loss for epoch 4 0.8933034141858419 The running loss is: 8.46184479445219 The number of items in train is: 9 The loss for epoch 5 0.9402049771613545 The running loss is: 8.858764350414276 The number of items in train is: 9 The loss for epoch 6 0.9843071500460306 The running loss is: 8.675993755459785 The number of items in train is: 9 The loss for epoch 7 0.9639993061621984 The running loss is: 10.160760685801506 The number of items in train is: 9 The loss for epoch 8 1.1289734095335007 The running loss is: 9.34771716594696 The number of items in train is: 9 The loss for epoch 9 1.0386352406607733 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.515077 48 30755 ... 10.698237 49 30756 ... 11.456429 50 30757 ... 11.007051 51 30758 ... 11.129147 52 30759 ... 10.843229 53 30760 ... 10.730742 54 30761 ... 11.280998 55 30762 ... 11.350057 56 30763 ... 10.585619 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: eaehlwpi wandb: Agent Starting Run: clw96b2s with config: batch_size: 4 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: clw96b2s
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 45.258555337786674 The number of items in train is: 9 The loss for epoch 0 5.028728370865186 The running loss is: 9.887949824333191 The number of items in train is: 9 The loss for epoch 1 1.0986610915925767 The running loss is: 14.993930101394653 The number of items in train is: 9 The loss for epoch 2 1.6659922334882948 The running loss is: 8.667252570390701 The number of items in train is: 9 The loss for epoch 3 0.9630280633767446 The running loss is: 9.43253342807293 The number of items in train is: 9 The loss for epoch 4 1.048059269785881 The running loss is: 8.472909659147263 The number of items in train is: 9 The loss for epoch 5 0.941434406571918 The running loss is: 8.426761694252491 The number of items in train is: 9 The loss for epoch 6 0.9363068549169434 The running loss is: 7.336565665900707 The number of items in train is: 9 The loss for epoch 7 0.8151739628778564 The running loss is: 7.057315722107887 The number of items in train is: 9 The loss for epoch 8 0.7841461913453208 The running loss is: 7.008694067597389 The number of items in train is: 9 The loss for epoch 9 0.7787437852885988 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.018428 48 30755 ... 11.246632 49 30756 ... 10.371849 50 30757 ... 11.048549 51 30758 ... 12.152980 52 30759 ... 10.506842 53 30760 ... 10.698140 54 30761 ... 11.106715 55 30762 ... 9.964753 56 30763 ... 9.393328 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: clw96b2s wandb: Agent Starting Run: cbu0v3vm with config: batch_size: 4 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: cbu0v3vm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 55.83113503456116 The number of items in train is: 9 The loss for epoch 0 6.203459448284573 The running loss is: 7.615257233381271 The number of items in train is: 9 The loss for epoch 1 0.846139692597919 The running loss is: 13.260914385318756 The number of items in train is: 9 The loss for epoch 2 1.473434931702084 The running loss is: 18.711096964776516 The number of items in train is: 9 The loss for epoch 3 2.0790107738640575 The running loss is: 9.84968450665474 The number of items in train is: 9 The loss for epoch 4 1.0944093896283045 The running loss is: 8.82070518285036 The number of items in train is: 9 The loss for epoch 5 0.9800783536500401 The running loss is: 7.753073289990425 The number of items in train is: 9 The loss for epoch 6 0.8614525877767139 The running loss is: 7.464309379458427 The number of items in train is: 9 The loss for epoch 7 0.8293677088287141 The running loss is: 7.830278053879738 The number of items in train is: 9 The loss for epoch 8 0.8700308948755264 The running loss is: 7.0657903999090195 The number of items in train is: 9 The loss for epoch 9 0.7850878222121133 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.494602 48 30755 ... 10.482347 49 30756 ... 10.473118 50 30757 ... 10.541009 51 30758 ... 10.541041 52 30759 ... 9.136126 53 30760 ... 8.867601 54 30761 ... 9.107225 55 30762 ... 8.831312 56 30763 ... 8.666946 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cbu0v3vm wandb: Agent Starting Run: p6pyaclx with config: batch_size: 4 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: p6pyaclx
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.472531259059906 The number of items in train is: 9 The loss for epoch 0 1.2747256954511006 The running loss is: 9.711678888648748 The number of items in train is: 9 The loss for epoch 1 1.0790754320720832 The running loss is: 6.233100436627865 The number of items in train is: 9 The loss for epoch 2 0.6925667151808739 The running loss is: 5.8241632133722305 The number of items in train is: 9 The loss for epoch 3 0.6471292459302478 The running loss is: 5.290510561317205 The number of items in train is: 9 The loss for epoch 4 0.5878345068130229 The running loss is: 5.006042655557394 The number of items in train is: 9 The loss for epoch 5 0.5562269617285993 The running loss is: 4.981331991031766 The number of items in train is: 9 The loss for epoch 6 0.5534813323368629 The running loss is: 4.4758083410561085 The number of items in train is: 9 The loss for epoch 7 0.4973120378951232 The running loss is: 4.3199992924928665 The number of items in train is: 9 The loss for epoch 8 0.4799999213880963 The running loss is: 4.310908626765013 The number of items in train is: 9 The loss for epoch 9 0.4789898474183347 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.323457 48 30755 ... 7.979432 49 30756 ... 8.822479 50 30757 ... 10.618973 51 30758 ... 10.024648 52 30759 ... 7.265971 53 30760 ... 5.206593 54 30761 ... 4.850113 55 30762 ... 4.195802 56 30763 ... 4.077375 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: p6pyaclx wandb: Agent Starting Run: q4e69gzs with config: batch_size: 4 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: q4e69gzs
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.337343990802765 The number of items in train is: 9 The loss for epoch 0 1.2597048878669739 The running loss is: 7.484142437577248 The number of items in train is: 9 The loss for epoch 1 0.8315713819530275 The running loss is: 6.609706312417984 The number of items in train is: 9 The loss for epoch 2 0.7344118124908872 The running loss is: 5.361370384693146 The number of items in train is: 9 The loss for epoch 3 0.5957078205214607 The running loss is: 5.242933452129364 The number of items in train is: 9 The loss for epoch 4 0.5825481613477071 The running loss is: 5.025114297866821 The number of items in train is: 9 The loss for epoch 5 0.5583460330963135 The running loss is: 4.582142144441605 The number of items in train is: 9 The loss for epoch 6 0.5091269049379561 The running loss is: 4.44568158686161 The number of items in train is: 9 The loss for epoch 7 0.49396462076240116 The running loss is: 4.307258158922195 The number of items in train is: 9 The loss for epoch 8 0.47858423988024396 The running loss is: 4.187428444623947 The number of items in train is: 9 The loss for epoch 9 0.4652698271804386 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.117650 48 30755 ... 7.928844 49 30756 ... 9.761184 50 30757 ... 13.123506 51 30758 ... 11.381822 52 30759 ... 6.784797 53 30760 ... 5.429676 54 30761 ... 5.440561 55 30762 ... 4.422199 56 30763 ... 4.445116 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: q4e69gzs wandb: Agent Starting Run: ji2nr6u1 with config: batch_size: 4 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ji2nr6u1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.389308661222458 The number of items in train is: 8 The loss for epoch 0 1.1736635826528072 The running loss is: 11.884019121527672 The number of items in train is: 8 The loss for epoch 1 1.485502390190959 The running loss is: 6.111610025167465 The number of items in train is: 8 The loss for epoch 2 0.7639512531459332 The running loss is: 5.661065757274628 The number of items in train is: 8 The loss for epoch 3 0.7076332196593285 The running loss is: 5.221550419926643 The number of items in train is: 8 The loss for epoch 4 0.6526938024908304 The running loss is: 4.935086935758591 The number of items in train is: 8 The loss for epoch 5 0.6168858669698238 The running loss is: 4.89002551138401 The number of items in train is: 8 The loss for epoch 6 0.6112531889230013 The running loss is: 4.821478247642517 The number of items in train is: 8 The loss for epoch 7 0.6026847809553146 The running loss is: 4.719222843647003 The number of items in train is: 8 The loss for epoch 8 0.5899028554558754 The running loss is: 4.442844241857529 The number of items in train is: 8 The loss for epoch 9 0.5553555302321911 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.830432 48 30755 ... 7.491436 49 30756 ... 7.830326 50 30757 ... 8.473710 51 30758 ... 8.261139 52 30759 ... 6.579417 53 30760 ... 4.488674 54 30761 ... 4.710826 55 30762 ... 4.869449 56 30763 ... 3.949037 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ji2nr6u1 wandb: Agent Starting Run: 4tgn3n63 with config: batch_size: 4 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 4tgn3n63
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.71286141872406 The number of items in train is: 9 The loss for epoch 0 1.1903179354137845 The running loss is: 21.590499818325043 The number of items in train is: 9 The loss for epoch 1 2.398944424258338 The running loss is: 7.400251135230064 The number of items in train is: 9 The loss for epoch 2 0.8222501261366738 The running loss is: 7.180257387459278 The number of items in train is: 9 The loss for epoch 3 0.7978063763843642 The running loss is: 5.999096572399139 The number of items in train is: 9 The loss for epoch 4 0.6665662858221266 The running loss is: 5.3636345863342285 The number of items in train is: 9 The loss for epoch 5 0.595959398481581 The running loss is: 4.844901656731963 The number of items in train is: 9 The loss for epoch 6 0.5383224063035514 The running loss is: 4.299406096339226 The number of items in train is: 9 The loss for epoch 7 0.4777117884821362 The running loss is: 3.937914729118347 The number of items in train is: 9 The loss for epoch 8 0.4375460810131497 The running loss is: 3.964134406298399 The number of items in train is: 9 The loss for epoch 9 0.44045937847759986 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.955766 48 30755 ... 9.095902 49 30756 ... 9.801540 50 30757 ... 12.133164 51 30758 ... 10.810966 52 30759 ... 8.204831 53 30760 ... 8.553889 54 30761 ... 7.950711 55 30762 ... 7.240780 56 30763 ... 6.987817 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4tgn3n63 wandb: Agent Starting Run: 19iqie21 with config: batch_size: 4 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 19iqie21
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.870292961597443 The number of items in train is: 9 The loss for epoch 0 1.2078103290663824 The running loss is: 13.46465790271759 The number of items in train is: 9 The loss for epoch 1 1.4960731003019545 The running loss is: 7.045529410243034 The number of items in train is: 9 The loss for epoch 2 0.7828366011381149 The running loss is: 6.129437237977982 The number of items in train is: 9 The loss for epoch 3 0.6810485819975535 The running loss is: 5.570417806506157 The number of items in train is: 9 The loss for epoch 4 0.6189353118340174 The running loss is: 5.336072877049446 The number of items in train is: 9 The loss for epoch 5 0.5928969863388274 The running loss is: 4.585846528410912 The number of items in train is: 9 The loss for epoch 6 0.509538503156768 The running loss is: 4.421219557523727 The number of items in train is: 9 The loss for epoch 7 0.4912466175026364 The running loss is: 4.118749655783176 The number of items in train is: 9 The loss for epoch 8 0.45763885064257515 The running loss is: 4.141455993056297 The number of items in train is: 9 The loss for epoch 9 0.46016177700625527 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.972950 48 30755 ... 8.010669 49 30756 ... 10.162770 50 30757 ... 13.685595 51 30758 ... 11.899075 52 30759 ... 7.380159 53 30760 ... 6.770110 54 30761 ... 6.820722 55 30762 ... 5.682702 56 30763 ... 5.836186 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 19iqie21 wandb: Agent Starting Run: 2wjn71cw with config: batch_size: 4 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 2wjn71cw
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.224892944097519 The number of items in train is: 8 The loss for epoch 0 1.4031116180121899 The running loss is: 22.453463792800903 The number of items in train is: 8 The loss for epoch 1 2.806682974100113 The running loss is: 6.1356241554021835 The number of items in train is: 8 The loss for epoch 2 0.7669530194252729 The running loss is: 6.19755494594574 The number of items in train is: 8 The loss for epoch 3 0.7746943682432175 The running loss is: 5.850357830524445 The number of items in train is: 8 The loss for epoch 4 0.7312947288155556 The running loss is: 5.245521053671837 The number of items in train is: 8 The loss for epoch 5 0.6556901317089796 The running loss is: 5.032821208238602 The number of items in train is: 8 The loss for epoch 6 0.6291026510298252 The running loss is: 4.9136738032102585 The number of items in train is: 8 The loss for epoch 7 0.6142092254012823 The running loss is: 4.7698249369859695 The number of items in train is: 8 The loss for epoch 8 0.5962281171232462 The running loss is: 4.3794238567352295 The number of items in train is: 8 The loss for epoch 9 0.5474279820919037 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.586073 48 30755 ... 7.948225 49 30756 ... 8.597462 50 30757 ... 9.739484 51 30758 ... 9.282975 52 30759 ... 7.467255 53 30760 ... 6.273127 54 30761 ... 6.356297 55 30762 ... 6.291785 56 30763 ... 5.424063 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2wjn71cw wandb: Agent Starting Run: 00kr9sl0 with config: batch_size: 4 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 00kr9sl0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.727948267012835 The number of items in train is: 9 The loss for epoch 0 1.5253275852236483 The running loss is: 21.50830540060997 The number of items in train is: 9 The loss for epoch 1 2.3898117111788855 The running loss is: 16.788552042096853 The number of items in train is: 9 The loss for epoch 2 1.8653946713440948 The running loss is: 7.9370488822460175 The number of items in train is: 9 The loss for epoch 3 0.8818943202495575 The running loss is: 6.910562638193369 The number of items in train is: 9 The loss for epoch 4 0.7678402931325965 The running loss is: 6.337854765355587 The number of items in train is: 9 The loss for epoch 5 0.7042060850395097 The running loss is: 5.4855453334748745 The number of items in train is: 9 The loss for epoch 6 0.6095050370527638 The running loss is: 5.8733771443367 The number of items in train is: 9 The loss for epoch 7 0.6525974604818556 The running loss is: 6.408730834722519 The number of items in train is: 9 The loss for epoch 8 0.7120812038580576 The running loss is: 6.403976768255234 The number of items in train is: 9 The loss for epoch 9 0.7115529742505815 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.310756 48 30755 ... 7.642404 49 30756 ... 9.885168 50 30757 ... 12.911268 51 30758 ... 11.841020 52 30759 ... 8.110412 53 30760 ... 7.384973 54 30761 ... 10.239965 55 30762 ... 7.918401 56 30763 ... 7.714108 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 00kr9sl0 wandb: Agent Starting Run: sowhvjl7 with config: batch_size: 4 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sowhvjl7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.251713529229164 The number of items in train is: 9 The loss for epoch 0 1.1390792810254626 The running loss is: 19.286679983139038 The number of items in train is: 9 The loss for epoch 1 2.1429644425710044 The running loss is: 11.851648703217506 The number of items in train is: 9 The loss for epoch 2 1.3168498559130564 The running loss is: 8.593457102775574 The number of items in train is: 9 The loss for epoch 3 0.9548285669750638 The running loss is: 7.537827163934708 The number of items in train is: 9 The loss for epoch 4 0.8375363515483009 The running loss is: 7.457647129893303 The number of items in train is: 9 The loss for epoch 5 0.8286274588770337 The running loss is: 7.16678649187088 The number of items in train is: 9 The loss for epoch 6 0.7963096102078756 The running loss is: 6.750422567129135 The number of items in train is: 9 The loss for epoch 7 0.7500469519032372 The running loss is: 6.237434804439545 The number of items in train is: 9 The loss for epoch 8 0.6930483116043938 The running loss is: 6.342507421970367 The number of items in train is: 9 The loss for epoch 9 0.7047230468855964 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.323541 48 30755 ... 8.063728 49 30756 ... 10.272192 50 30757 ... 15.522292 51 30758 ... 12.543692 52 30759 ... 7.162727 53 30760 ... 10.342567 54 30761 ... 11.479841 55 30762 ... 9.222147 56 30763 ... 10.127317 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sowhvjl7 wandb: Agent Starting Run: mtxkvdqw with config: batch_size: 4 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: mtxkvdqw
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.705665796995163 The number of items in train is: 8 The loss for epoch 0 2.3382082246243954 The running loss is: 18.839629769325256 The number of items in train is: 8 The loss for epoch 1 2.354953721165657 The running loss is: 23.626360967755318 The number of items in train is: 8 The loss for epoch 2 2.9532951209694147 The running loss is: 8.420704454183578 The number of items in train is: 8 The loss for epoch 3 1.0525880567729473 The running loss is: 7.341050535440445 The number of items in train is: 8 The loss for epoch 4 0.9176313169300556 The running loss is: 6.895925462245941 The number of items in train is: 8 The loss for epoch 5 0.8619906827807426 The running loss is: 6.075425148010254 The number of items in train is: 8 The loss for epoch 6 0.7594281435012817 The running loss is: 5.39270444214344 The number of items in train is: 8 The loss for epoch 7 0.67408805526793 The running loss is: 5.2611357271671295 The number of items in train is: 8 The loss for epoch 8 0.6576419658958912 The running loss is: 4.8258286118507385 The number of items in train is: 8 The loss for epoch 9 0.6032285764813423 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.815147 48 30755 ... 9.209466 49 30756 ... 9.237023 50 30757 ... 10.296669 51 30758 ... 9.815141 52 30759 ... 8.073587 53 30760 ... 7.225603 54 30761 ... 7.534699 55 30762 ... 7.330389 56 30763 ... 6.658091 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mtxkvdqw wandb: Agent Starting Run: l4rdkk5i with config: batch_size: 4 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: l4rdkk5i
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 81.38286215811968 The number of items in train is: 9 The loss for epoch 0 9.042540239791075 The running loss is: 6.7282320857048035 The number of items in train is: 9 The loss for epoch 1 0.7475813428560892 The running loss is: 17.271905541419983 The number of items in train is: 9 The loss for epoch 2 1.9191006157133315 The running loss is: 22.52288556098938 The number of items in train is: 9 The loss for epoch 3 2.502542840109931 The running loss is: 13.139688491821289 The number of items in train is: 9 The loss for epoch 4 1.4599653879801433 The running loss is: 12.133773386478424 The number of items in train is: 9 The loss for epoch 5 1.3481970429420471 The running loss is: 8.478021509945393 The number of items in train is: 9 The loss for epoch 6 0.9420023899939325 The running loss is: 8.083688005805016 The number of items in train is: 9 The loss for epoch 7 0.8981875562005572 The running loss is: 6.952758699655533 The number of items in train is: 9 The loss for epoch 8 0.7725287444061704 The running loss is: 6.886708460748196 The number of items in train is: 9 The loss for epoch 9 0.7651898289720217 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.982682 48 30755 ... 9.206006 49 30756 ... 9.838526 50 30757 ... 11.931196 51 30758 ... 10.667216 52 30759 ... 9.140854 53 30760 ... 8.847374 54 30761 ... 9.114708 55 30762 ... 8.678926 56 30763 ... 8.438699 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l4rdkk5i wandb: Agent Starting Run: iatf6fgg with config: batch_size: 4 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: iatf6fgg
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 51.24754601716995 The number of items in train is: 9 The loss for epoch 0 5.694171779685551 The running loss is: 8.4677115380764 The number of items in train is: 9 The loss for epoch 1 0.9408568375640445 The running loss is: 15.262419521808624 The number of items in train is: 9 The loss for epoch 2 1.6958243913120694 The running loss is: 9.589929044246674 The number of items in train is: 9 The loss for epoch 3 1.0655476715829637 The running loss is: 9.376197457313538 The number of items in train is: 9 The loss for epoch 4 1.041799717479282 The running loss is: 8.084025770425797 The number of items in train is: 9 The loss for epoch 5 0.8982250856028663 The running loss is: 7.947470888495445 The number of items in train is: 9 The loss for epoch 6 0.8830523209439384 The running loss is: 7.507450953125954 The number of items in train is: 9 The loss for epoch 7 0.8341612170139948 The running loss is: 7.8752095103263855 The number of items in train is: 9 The loss for epoch 8 0.875023278925154 The running loss is: 7.515006110072136 The number of items in train is: 9 The loss for epoch 9 0.835000678896904 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.094513 48 30755 ... 11.177944 49 30756 ... 12.555366 50 30757 ... 10.339748 51 30758 ... 10.501686 52 30759 ... 9.739458 53 30760 ... 9.221687 54 30761 ... 9.388515 55 30762 ... 9.439221 56 30763 ... 9.129675 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: iatf6fgg wandb: Agent Starting Run: u46ofsht with config: batch_size: 4 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: u46ofsht
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 100.43890479207039 The number of items in train is: 8 The loss for epoch 0 12.554863099008799 The running loss is: 6.304996594786644 The number of items in train is: 8 The loss for epoch 1 0.7881245743483305 The running loss is: 17.867437183856964 The number of items in train is: 8 The loss for epoch 2 2.2334296479821205 The running loss is: 15.657972991466522 The number of items in train is: 8 The loss for epoch 3 1.9572466239333153 The running loss is: 14.777969121932983 The number of items in train is: 8 The loss for epoch 4 1.847246140241623 The running loss is: 11.4342300593853 The number of items in train is: 8 The loss for epoch 5 1.4292787574231625 The running loss is: 14.000842481851578 The number of items in train is: 8 The loss for epoch 6 1.7501053102314472 The running loss is: 7.894358307123184 The number of items in train is: 8 The loss for epoch 7 0.986794788390398 The running loss is: 7.187334030866623 The number of items in train is: 8 The loss for epoch 8 0.8984167538583279 The running loss is: 6.727936089038849 The number of items in train is: 8 The loss for epoch 9 0.8409920111298561 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.339002 48 30755 ... 8.151986 49 30756 ... 8.261250 50 30757 ... 8.263336 51 30758 ... 9.959813 52 30759 ... 9.977565 53 30760 ... 8.724285 54 30761 ... 8.880425 55 30762 ... 8.432564 56 30763 ... 8.202187 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u46ofsht wandb: Agent Starting Run: 2ar2l5wu with config: batch_size: 4 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 2ar2l5wu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.240214586257935 The number of items in train is: 9 The loss for epoch 0 1.2489127318064372 The running loss is: 8.247485101222992 The number of items in train is: 9 The loss for epoch 1 0.9163872334692214 The running loss is: 5.765671074390411 The number of items in train is: 9 The loss for epoch 2 0.6406301193767123 The running loss is: 5.146143764257431 The number of items in train is: 9 The loss for epoch 3 0.571793751584159 The running loss is: 4.820492431521416 The number of items in train is: 9 The loss for epoch 4 0.5356102701690462 The running loss is: 4.526142358779907 The number of items in train is: 9 The loss for epoch 5 0.5029047065311008 The running loss is: 4.435101807117462 The number of items in train is: 9 The loss for epoch 6 0.492789089679718 The running loss is: 4.415074750781059 The number of items in train is: 9 The loss for epoch 7 0.49056386119789547 The running loss is: 3.871296752244234 The number of items in train is: 9 The loss for epoch 8 0.4301440835826927 The running loss is: 3.9733955711126328 The number of items in train is: 9 The loss for epoch 9 0.4414883967902925 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.965207 48 30755 ... 14.476615 49 30756 ... 16.937613 50 30757 ... 17.153940 51 30758 ... 16.729450 52 30759 ... 17.081961 53 30760 ... 16.339411 54 30761 ... 15.521223 55 30762 ... 16.540747 56 30763 ... 17.925924 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2ar2l5wu wandb: Agent Starting Run: mv48xg3w with config: batch_size: 4 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: mv48xg3w
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.515716254711151 The number of items in train is: 8 The loss for epoch 0 1.189464531838894 The running loss is: 7.534291982650757 The number of items in train is: 8 The loss for epoch 1 0.9417864978313446 The running loss is: 5.5912118554115295 The number of items in train is: 8 The loss for epoch 2 0.6989014819264412 The running loss is: 4.792952626943588 The number of items in train is: 8 The loss for epoch 3 0.5991190783679485 The running loss is: 4.525293126702309 The number of items in train is: 8 The loss for epoch 4 0.5656616408377886 The running loss is: 4.299796998500824 The number of items in train is: 8 The loss for epoch 5 0.537474624812603 The running loss is: 4.276003211736679 The number of items in train is: 8 The loss for epoch 6 0.5345004014670849 The running loss is: 4.01696603000164 The number of items in train is: 8 The loss for epoch 7 0.502120753750205 The running loss is: 3.905553936958313 The number of items in train is: 8 The loss for epoch 8 0.4881942421197891 The running loss is: 3.9828645288944244 The number of items in train is: 8 The loss for epoch 9 0.49785806611180305 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.893699 48 30755 ... 6.638311 49 30756 ... 7.527349 50 30757 ... 7.468067 51 30758 ... 6.686835 52 30759 ... 6.755731 53 30760 ... 6.032629 54 30761 ... 1.660941 55 30762 ... 1.834283 56 30763 ... 2.062750 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mv48xg3w wandb: Agent Starting Run: hs9lsvq5 with config: batch_size: 4 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: hs9lsvq5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.516059219837189 The number of items in train is: 8 The loss for epoch 0 1.1895074024796486 The running loss is: 6.715246796607971 The number of items in train is: 8 The loss for epoch 1 0.8394058495759964 The running loss is: 5.639530926942825 The number of items in train is: 8 The loss for epoch 2 0.7049413658678532 The running loss is: 4.6814810037612915 The number of items in train is: 8 The loss for epoch 3 0.5851851254701614 The running loss is: 4.4828057289123535 The number of items in train is: 8 The loss for epoch 4 0.5603507161140442 The running loss is: 4.376252077519894 The number of items in train is: 8 The loss for epoch 5 0.5470315096899867 The running loss is: 4.29168626666069 The number of items in train is: 8 The loss for epoch 6 0.5364607833325863 The running loss is: 4.129114165902138 The number of items in train is: 8 The loss for epoch 7 0.5161392707377672 The running loss is: 3.896572157740593 The number of items in train is: 8 The loss for epoch 8 0.4870715197175741 The running loss is: 3.9742572754621506 The number of items in train is: 8 The loss for epoch 9 0.4967821594327688 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.151683 48 30755 ... 6.115150 49 30756 ... 5.120647 50 30757 ... 5.428493 51 30758 ... 5.418796 52 30759 ... 5.150074 53 30760 ... 3.822505 54 30761 ... 0.330210 55 30762 ... 0.349950 56 30763 ... 0.434411 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hs9lsvq5 wandb: Agent Starting Run: y0msl3ra with config: batch_size: 4 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: y0msl3ra
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.602681040763855 The number of items in train is: 9 The loss for epoch 0 1.1780756711959839 The running loss is: 13.631228134036064 The number of items in train is: 9 The loss for epoch 1 1.514580903781785 The running loss is: 6.118208613246679 The number of items in train is: 9 The loss for epoch 2 0.6798009570274088 The running loss is: 5.688015699386597 The number of items in train is: 9 The loss for epoch 3 0.6320017443762885 The running loss is: 5.0169960260391235 The number of items in train is: 9 The loss for epoch 4 0.5574440028932359 The running loss is: 4.685733154416084 The number of items in train is: 9 The loss for epoch 5 0.5206370171573427 The running loss is: 4.271254613995552 The number of items in train is: 9 The loss for epoch 6 0.47458384599950576 The running loss is: 4.182044744491577 The number of items in train is: 9 The loss for epoch 7 0.4646716382768419 The running loss is: 3.620811596279964 The number of items in train is: 9 The loss for epoch 8 0.40231239958666265 The running loss is: 3.491945043206215 The number of items in train is: 9 The loss for epoch 9 0.3879938936895794 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.298182 48 30755 ... 13.530397 49 30756 ... 17.241079 50 30757 ... 17.800289 51 30758 ... 16.026747 52 30759 ... 16.836815 53 30760 ... 16.701458 54 30761 ... 15.817758 55 30762 ... 16.637817 56 30763 ... 17.145372 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: y0msl3ra wandb: Agent Starting Run: 48gcksh1 with config: batch_size: 4 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 48gcksh1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.860792398452759 The number of items in train is: 8 The loss for epoch 0 1.2325990498065948 The running loss is: 14.10496175289154 The number of items in train is: 8 The loss for epoch 1 1.7631202191114426 The running loss is: 5.463801130652428 The number of items in train is: 8 The loss for epoch 2 0.6829751413315535 The running loss is: 5.403226584196091 The number of items in train is: 8 The loss for epoch 3 0.6754033230245113 The running loss is: 5.051839262247086 The number of items in train is: 8 The loss for epoch 4 0.6314799077808857 The running loss is: 4.48129203915596 The number of items in train is: 8 The loss for epoch 5 0.560161504894495 The running loss is: 4.7035655826330185 The number of items in train is: 8 The loss for epoch 6 0.5879456978291273 The running loss is: 4.368928179144859 The number of items in train is: 8 The loss for epoch 7 0.5461160223931074 The running loss is: 3.841419756412506 The number of items in train is: 8 The loss for epoch 8 0.48017746955156326 The running loss is: 4.101872503757477 The number of items in train is: 8 The loss for epoch 9 0.5127340629696846 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.275268 48 30755 ... 6.410582 49 30756 ... 7.161199 50 30757 ... 7.300799 51 30758 ... 6.098117 52 30759 ... 6.650946 53 30760 ... 7.211934 54 30761 ... 2.103153 55 30762 ... 2.071001 56 30763 ... 1.847907 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 48gcksh1 wandb: Agent Starting Run: 3rt84xz2 with config: batch_size: 4 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 3rt84xz2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.657917499542236 The number of items in train is: 8 The loss for epoch 0 1.2072396874427795 The running loss is: 11.63252505660057 The number of items in train is: 8 The loss for epoch 1 1.4540656320750713 The running loss is: 5.313596427440643 The number of items in train is: 8 The loss for epoch 2 0.6641995534300804 The running loss is: 5.196029812097549 The number of items in train is: 8 The loss for epoch 3 0.6495037265121937 The running loss is: 4.855725049972534 The number of items in train is: 8 The loss for epoch 4 0.6069656312465668 The running loss is: 4.514636904001236 The number of items in train is: 8 The loss for epoch 5 0.5643296130001545 The running loss is: 4.483666583895683 The number of items in train is: 8 The loss for epoch 6 0.5604583229869604 The running loss is: 4.368599742650986 The number of items in train is: 8 The loss for epoch 7 0.5460749678313732 The running loss is: 3.887495845556259 The number of items in train is: 8 The loss for epoch 8 0.4859369806945324 The running loss is: 3.9840978533029556 The number of items in train is: 8 The loss for epoch 9 0.49801223166286945 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.280387 48 30755 ... 6.253471 49 30756 ... 3.794707 50 30757 ... 4.741993 51 30758 ... 5.272310 52 30759 ... 5.426122 53 30760 ... 5.281884 54 30761 ... 1.368745 55 30762 ... 1.047200 56 30763 ... 0.864929 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3rt84xz2 wandb: Agent Starting Run: 4l6ynrgv with config: batch_size: 4 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 4l6ynrgv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.533425658941269 The number of items in train is: 9 The loss for epoch 0 1.7259361843268077 The running loss is: 12.174829576164484 The number of items in train is: 9 The loss for epoch 1 1.3527588417960539 The running loss is: 11.701843023300171 The number of items in train is: 9 The loss for epoch 2 1.3002047803666856 The running loss is: 6.7660181522369385 The number of items in train is: 9 The loss for epoch 3 0.7517797946929932 The running loss is: 5.420725777745247 The number of items in train is: 9 The loss for epoch 4 0.6023028641939163 The running loss is: 5.102972134947777 The number of items in train is: 9 The loss for epoch 5 0.5669969038830863 The running loss is: 4.493372078268294 The number of items in train is: 9 The loss for epoch 6 0.49926356425203267 The running loss is: 4.5250896736979485 The number of items in train is: 9 The loss for epoch 7 0.5027877415219942 The running loss is: 3.6071000695228577 The number of items in train is: 9 The loss for epoch 8 0.40078889661365086 The running loss is: 4.666622310876846 The number of items in train is: 9 The loss for epoch 9 0.5185135900974274 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.809757 48 30755 ... 13.937504 49 30756 ... 15.696578 50 30757 ... 15.797330 51 30758 ... 14.323220 52 30759 ... 15.466822 53 30760 ... 16.896070 54 30761 ... 16.546282 55 30762 ... 16.577997 56 30763 ... 17.435064 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4l6ynrgv wandb: Agent Starting Run: ydoutypm with config: batch_size: 4 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ydoutypm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.363870769739151 The number of items in train is: 8 The loss for epoch 0 1.7954838462173939 The running loss is: 19.697499066591263 The number of items in train is: 8 The loss for epoch 1 2.462187383323908 The running loss is: 11.393310114741325 The number of items in train is: 8 The loss for epoch 2 1.4241637643426657 The running loss is: 8.402333736419678 The number of items in train is: 8 The loss for epoch 3 1.0502917170524597 The running loss is: 5.944117605686188 The number of items in train is: 8 The loss for epoch 4 0.7430147007107735 The running loss is: 5.597024708986282 The number of items in train is: 8 The loss for epoch 5 0.6996280886232853 The running loss is: 5.168054163455963 The number of items in train is: 8 The loss for epoch 6 0.6460067704319954 The running loss is: 4.947095543146133 The number of items in train is: 8 The loss for epoch 7 0.6183869428932667 The running loss is: 4.267922282218933 The number of items in train is: 8 The loss for epoch 8 0.5334902852773666 The running loss is: 4.8770816922187805 The number of items in train is: 8 The loss for epoch 9 0.6096352115273476 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.681001 48 30755 ... 8.239495 49 30756 ... 5.559090 50 30757 ... 7.716256 51 30758 ... 7.096302 52 30759 ... 8.370895 53 30760 ... 8.647257 54 30761 ... 5.265896 55 30762 ... 5.894797 56 30763 ... 5.552207 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ydoutypm wandb: Agent Starting Run: c644kaet with config: batch_size: 4 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: c644kaet
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.808787852525711 The number of items in train is: 8 The loss for epoch 0 1.6010984815657139 The running loss is: 18.55983731150627 The number of items in train is: 8 The loss for epoch 1 2.319979663938284 The running loss is: 9.308479636907578 The number of items in train is: 8 The loss for epoch 2 1.1635599546134472 The running loss is: 7.871344238519669 The number of items in train is: 8 The loss for epoch 3 0.9839180298149586 The running loss is: 6.256579011678696 The number of items in train is: 8 The loss for epoch 4 0.782072376459837 The running loss is: 6.102777987718582 The number of items in train is: 8 The loss for epoch 5 0.7628472484648228 The running loss is: 6.1117411851882935 The number of items in train is: 8 The loss for epoch 6 0.7639676481485367 The running loss is: 5.467746406793594 The number of items in train is: 8 The loss for epoch 7 0.6834683008491993 The running loss is: 5.107202380895615 The number of items in train is: 8 The loss for epoch 8 0.6384002976119518 The running loss is: 4.626663476228714 The number of items in train is: 8 The loss for epoch 9 0.5783329345285892 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.824013 48 30755 ... 10.360836 49 30756 ... 1.159604 50 30757 ... 4.956064 51 30758 ... 10.496676 52 30759 ... 9.896183 53 30760 ... 8.568040 54 30761 ... 4.366958 55 30762 ... 8.373426 56 30763 ... 12.185763 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c644kaet wandb: Agent Starting Run: 08iry1zu with config: batch_size: 4 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 08iry1zu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 75.98427636921406 The number of items in train is: 9 The loss for epoch 0 8.442697374357117 The running loss is: 7.671401828527451 The number of items in train is: 9 The loss for epoch 1 0.8523779809474945 The running loss is: 7.74273831769824 The number of items in train is: 9 The loss for epoch 2 0.8603042575220267 The running loss is: 20.43498346209526 The number of items in train is: 9 The loss for epoch 3 2.2705537180105844 The running loss is: 9.485761232674122 The number of items in train is: 9 The loss for epoch 4 1.0539734702971246 The running loss is: 7.028515428304672 The number of items in train is: 9 The loss for epoch 5 0.7809461587005191 The running loss is: 9.961183845996857 The number of items in train is: 9 The loss for epoch 6 1.1067982051107619 The running loss is: 8.72087475657463 The number of items in train is: 9 The loss for epoch 7 0.9689860840638479 The running loss is: 6.958840258419514 The number of items in train is: 9 The loss for epoch 8 0.7732044731577238 The running loss is: 6.960021182894707 The number of items in train is: 9 The loss for epoch 9 0.7733356869883008 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.854007 48 30755 ... 10.343146 49 30756 ... 10.939295 50 30757 ... 10.770342 51 30758 ... 10.956257 52 30759 ... 10.479692 53 30760 ... 10.429470 54 30761 ... 10.492990 55 30762 ... 9.486902 56 30763 ... 10.307619 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 08iry1zu wandb: Agent Starting Run: lex8ifnr with config: batch_size: 4 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: lex8ifnr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 74.78043869137764 The number of items in train is: 8 The loss for epoch 0 9.347554836422205 The running loss is: 7.614499539136887 The number of items in train is: 8 The loss for epoch 1 0.9518124423921108 The running loss is: 15.35375702381134 The number of items in train is: 8 The loss for epoch 2 1.9192196279764175 The running loss is: 8.587577134370804 The number of items in train is: 8 The loss for epoch 3 1.0734471417963505 The running loss is: 9.464078083634377 The number of items in train is: 8 The loss for epoch 4 1.183009760454297 The running loss is: 6.2125754952430725 The number of items in train is: 8 The loss for epoch 5 0.7765719369053841 The running loss is: 6.502643406391144 The number of items in train is: 8 The loss for epoch 6 0.812830425798893 The running loss is: 6.101149320602417 The number of items in train is: 8 The loss for epoch 7 0.7626436650753021 The running loss is: 5.572430431842804 The number of items in train is: 8 The loss for epoch 8 0.6965538039803505 The running loss is: 5.655242145061493 The number of items in train is: 8 The loss for epoch 9 0.7069052681326866 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.959207 48 30755 ... 9.834291 49 30756 ... 9.036126 50 30757 ... 9.565654 51 30758 ... 10.552333 52 30759 ... 8.679264 53 30760 ... 9.437155 54 30761 ... 8.514996 55 30762 ... 8.533216 56 30763 ... 8.519036 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lex8ifnr wandb: Agent Starting Run: cw2pk8sa with config: batch_size: 4 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: cw2pk8sa
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 59.434263706207275 The number of items in train is: 8 The loss for epoch 0 7.429282963275909 The running loss is: 7.967703193426132 The number of items in train is: 8 The loss for epoch 1 0.9959628991782665 The running loss is: 12.137783110141754 The number of items in train is: 8 The loss for epoch 2 1.5172228887677193 The running loss is: 6.155479699373245 The number of items in train is: 8 The loss for epoch 3 0.7694349624216557 The running loss is: 8.069218963384628 The number of items in train is: 8 The loss for epoch 4 1.0086523704230785 The running loss is: 6.376190662384033 The number of items in train is: 8 The loss for epoch 5 0.7970238327980042 The running loss is: 6.5400115847587585 The number of items in train is: 8 The loss for epoch 6 0.8175014480948448 The running loss is: 6.4503806829452515 The number of items in train is: 8 The loss for epoch 7 0.8062975853681564 The running loss is: 5.695991367101669 The number of items in train is: 8 The loss for epoch 8 0.7119989208877087 The running loss is: 5.114424854516983 The number of items in train is: 8 The loss for epoch 9 0.6393031068146229 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.761915 48 30755 ... 8.762178 49 30756 ... 9.847136 50 30757 ... 10.490384 51 30758 ... 10.029481 52 30759 ... 9.967039 53 30760 ... 9.756455 54 30761 ... 9.366921 55 30762 ... 9.376884 56 30763 ... 9.368626 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cw2pk8sa wandb: Agent Starting Run: j4pjd9fg with config: batch_size: 5 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: j4pjd9fg
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.533234931528568 The number of items in train is: 9 The loss for epoch 0 1.2814705479476187 The running loss is: 6.274889692664146 The number of items in train is: 9 The loss for epoch 1 0.6972099658515718 The running loss is: 6.580070376396179 The number of items in train is: 9 The loss for epoch 2 0.7311189307106866 The running loss is: 6.824178397655487 The number of items in train is: 9 The loss for epoch 3 0.758242044183943 The running loss is: 6.764967136085033 The number of items in train is: 9 The loss for epoch 4 0.7516630151205592 The running loss is: 6.578010678291321 The number of items in train is: 9 The loss for epoch 5 0.7308900753657023 The running loss is: 6.553186744451523 The number of items in train is: 9 The loss for epoch 6 0.7281318604946136 The running loss is: 6.889299750328064 The number of items in train is: 9 The loss for epoch 7 0.7654777500364516 The running loss is: 6.328777223825455 The number of items in train is: 9 The loss for epoch 8 0.7031974693139394 The running loss is: 7.134986996650696 The number of items in train is: 9 The loss for epoch 9 0.7927763329611884 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 10.560451 48 30755 ... 9.577876 49 30756 ... 9.191813 50 30757 ... 9.049974 51 30758 ... 9.008125 52 30759 ... 9.007214 53 30760 ... 9.023063 54 30761 ... 8.932218 55 30762 ... 8.911247 56 30763 ... 8.918882 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: j4pjd9fg wandb: Agent Starting Run: a36qa9p5 with config: batch_size: 5 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: a36qa9p5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.704378187656403 The number of items in train is: 9 The loss for epoch 0 1.7449309097396002 The running loss is: 11.479490011930466 The number of items in train is: 9 The loss for epoch 1 1.2754988902144961 The running loss is: 11.382507085800171 The number of items in train is: 9 The loss for epoch 2 1.2647230095333524 The running loss is: 11.495850086212158 The number of items in train is: 9 The loss for epoch 3 1.2773166762457953 The running loss is: 11.004574656486511 The number of items in train is: 9 The loss for epoch 4 1.2227305173873901 The running loss is: 10.956842869520187 The number of items in train is: 9 The loss for epoch 5 1.217426985502243 The running loss is: 10.731719583272934 The number of items in train is: 9 The loss for epoch 6 1.192413287030326 The running loss is: 10.264773041009903 The number of items in train is: 9 The loss for epoch 7 1.1405303378899891 The running loss is: 10.230035275220871 The number of items in train is: 9 The loss for epoch 8 1.1366705861356523 The running loss is: 10.418312817811966 The number of items in train is: 9 The loss for epoch 9 1.1575903130902185 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 16.478621 48 30755 ... 18.715132 49 30756 ... 20.084146 50 30757 ... 20.847290 51 30758 ... 21.187290 52 30759 ... 21.231760 53 30760 ... 21.069832 54 30761 ... 22.114664 55 30762 ... 22.651400 56 30763 ... 22.833271 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: a36qa9p5 wandb: Agent Starting Run: tlrhr9xu with config: batch_size: 5 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: tlrhr9xu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.656018763780594 The number of items in train is: 8 The loss for epoch 0 1.5820023454725742 The running loss is: 8.512771248817444 The number of items in train is: 8 The loss for epoch 1 1.0640964061021805 The running loss is: 8.516142398118973 The number of items in train is: 8 The loss for epoch 2 1.0645177997648716 The running loss is: 8.601598471403122 The number of items in train is: 8 The loss for epoch 3 1.0751998089253902 The running loss is: 8.647248148918152 The number of items in train is: 8 The loss for epoch 4 1.080906018614769 The running loss is: 7.904319673776627 The number of items in train is: 8 The loss for epoch 5 0.9880399592220783 The running loss is: 8.513316988945007 The number of items in train is: 8 The loss for epoch 6 1.064164623618126 The running loss is: 8.36613380908966 The number of items in train is: 8 The loss for epoch 7 1.0457667261362076 The running loss is: 7.99756520986557 The number of items in train is: 8 The loss for epoch 8 0.9996956512331963 The running loss is: 8.158995658159256 The number of items in train is: 8 The loss for epoch 9 1.019874457269907 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 5.005669 48 30755 ... 1.284676 49 30756 ... -0.648910 50 30757 ... -1.834878 51 30758 ... -2.708139 52 30759 ... -3.450607 53 30760 ... -4.138366 54 30761 ... -2.162786 55 30762 ... -1.713670 56 30763 ... -1.903026 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tlrhr9xu wandb: Agent Starting Run: 5sh0r9aa with config: batch_size: 5 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5sh0r9aa
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.186528503894806 The number of items in train is: 9 The loss for epoch 0 1.3540587226549785 The running loss is: 9.87041188776493 The number of items in train is: 9 The loss for epoch 1 1.0967124319738812 The running loss is: 6.568782415241003 The number of items in train is: 9 The loss for epoch 2 0.7298647128045559 The running loss is: 6.8365867882966995 The number of items in train is: 9 The loss for epoch 3 0.7596207542551888 The running loss is: 7.052983522415161 The number of items in train is: 9 The loss for epoch 4 0.7836648358239068 The running loss is: 6.735688462853432 The number of items in train is: 9 The loss for epoch 5 0.7484098292059369 The running loss is: 6.670852228999138 The number of items in train is: 9 The loss for epoch 6 0.7412058032221265 The running loss is: 6.929626300930977 The number of items in train is: 9 The loss for epoch 7 0.7699584778812196 The running loss is: 6.557141110301018 The number of items in train is: 9 The loss for epoch 8 0.7285712344778909 The running loss is: 7.013601660728455 The number of items in train is: 9 The loss for epoch 9 0.7792890734142728 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 10.546264 48 30755 ... 9.607576 49 30756 ... 9.256057 50 30757 ... 9.132097 51 30758 ... 9.096332 52 30759 ... 9.094746 53 30760 ... 9.106406 54 30761 ... 9.037273 55 30762 ... 9.022756 56 30763 ... 9.029405 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5sh0r9aa wandb: Agent Starting Run: jwrpyn6n with config: batch_size: 5 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: jwrpyn6n
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.897263944149017 The number of items in train is: 9 The loss for epoch 0 1.877473771572113 The running loss is: 13.586029052734375 The number of items in train is: 9 The loss for epoch 1 1.5095587836371527 The running loss is: 11.505275323987007 The number of items in train is: 9 The loss for epoch 2 1.2783639248874452 The running loss is: 10.849119901657104 The number of items in train is: 9 The loss for epoch 3 1.2054577668507893 The running loss is: 10.990880310535431 The number of items in train is: 9 The loss for epoch 4 1.2212089233928256 The running loss is: 10.673891842365265 The number of items in train is: 9 The loss for epoch 5 1.1859879824850295 The running loss is: 10.410960853099823 The number of items in train is: 9 The loss for epoch 6 1.1567734281222026 The running loss is: 9.912422180175781 The number of items in train is: 9 The loss for epoch 7 1.1013802422417536 The running loss is: 9.722930133342743 The number of items in train is: 9 The loss for epoch 8 1.0803255703714159 The running loss is: 9.893279522657394 The number of items in train is: 9 The loss for epoch 9 1.0992532802952661 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 16.081408 48 30755 ... 18.041018 49 30756 ... 19.219566 50 30757 ... 19.854288 51 30758 ... 20.110369 52 30759 ... 20.102816 53 30760 ... 19.911705 54 30761 ... 20.893753 55 30762 ... 21.391663 56 30763 ... 21.552485 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jwrpyn6n wandb: Agent Starting Run: 61yhxkr5 with config: batch_size: 5 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 61yhxkr5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.252773106098175 The number of items in train is: 8 The loss for epoch 0 1.6565966382622719 The running loss is: 11.093029141426086 The number of items in train is: 8 The loss for epoch 1 1.3866286426782608 The running loss is: 8.942153513431549 The number of items in train is: 8 The loss for epoch 2 1.1177691891789436 The running loss is: 8.300474107265472 The number of items in train is: 8 The loss for epoch 3 1.037559263408184 The running loss is: 8.66373461484909 The number of items in train is: 8 The loss for epoch 4 1.0829668268561363 The running loss is: 8.129843354225159 The number of items in train is: 8 The loss for epoch 5 1.0162304192781448 The running loss is: 8.375961810350418 The number of items in train is: 8 The loss for epoch 6 1.0469952262938023 The running loss is: 8.051367044448853 The number of items in train is: 8 The loss for epoch 7 1.0064208805561066 The running loss is: 7.816939502954483 The number of items in train is: 8 The loss for epoch 8 0.9771174378693104 The running loss is: 7.919642895460129 The number of items in train is: 8 The loss for epoch 9 0.9899553619325161 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 5.484890 48 30755 ... 1.870857 49 30756 ... -0.053274 50 30757 ... -1.245361 51 30758 ... -2.120337 52 30759 ... -2.857944 53 30760 ... -3.536042 54 30761 ... -1.678325 55 30762 ... -1.232160 56 30763 ... -1.397465 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 61yhxkr5 wandb: Agent Starting Run: 9gucol9n with config: batch_size: 5 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 9gucol9n
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.346777260303497 The number of items in train is: 9 The loss for epoch 0 1.2607530289226108 The running loss is: 27.95102945715189 The number of items in train is: 9 The loss for epoch 1 3.105669939683543 The running loss is: 10.551504634320736 The number of items in train is: 9 The loss for epoch 2 1.172389403813415 The running loss is: 13.874582648277283 The number of items in train is: 9 The loss for epoch 3 1.5416202942530315 The running loss is: 7.543052405118942 The number of items in train is: 9 The loss for epoch 4 0.8381169339021047 The running loss is: 6.931498184800148 The number of items in train is: 9 The loss for epoch 5 0.7701664649777942 The running loss is: 6.799338757991791 The number of items in train is: 9 The loss for epoch 6 0.7554820842213101 The running loss is: 6.961371675133705 The number of items in train is: 9 The loss for epoch 7 0.7734857416815228 The running loss is: 6.578679084777832 The number of items in train is: 9 The loss for epoch 8 0.7309643427530924 The running loss is: 6.714740738272667 The number of items in train is: 9 The loss for epoch 9 0.7460823042525185 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 11.563630 48 30755 ... 11.000370 49 30756 ... 10.793115 50 30757 ... 10.731018 51 30758 ... 10.728108 52 30759 ... 10.749331 53 30760 ... 10.780396 54 30761 ... 10.658602 55 30762 ... 10.631351 56 30763 ... 10.642650 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9gucol9n wandb: Agent Starting Run: 559j47n1 with config: batch_size: 5 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 559j47n1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.399379521608353 The number of items in train is: 9 The loss for epoch 0 1.7110421690675948 The running loss is: 28.239181756973267 The number of items in train is: 9 The loss for epoch 1 3.1376868618859186 The running loss is: 13.408493876457214 The number of items in train is: 9 The loss for epoch 2 1.4898326529396906 The running loss is: 15.628408044576645 The number of items in train is: 9 The loss for epoch 3 1.7364897827307384 The running loss is: 10.764084279537201 The number of items in train is: 9 The loss for epoch 4 1.1960093643930223 The running loss is: 10.060381978750229 The number of items in train is: 9 The loss for epoch 5 1.1178202198611364 The running loss is: 9.791651472449303 The number of items in train is: 9 The loss for epoch 6 1.0879612747165892 The running loss is: 9.179567664861679 The number of items in train is: 9 The loss for epoch 7 1.0199519627624087 The running loss is: 8.98176957666874 The number of items in train is: 9 The loss for epoch 8 0.9979743974076377 The running loss is: 8.864021956920624 The number of items in train is: 9 The loss for epoch 9 0.984891328546736 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 14.776108 48 30755 ... 15.912499 49 30756 ... 16.591112 50 30757 ... 16.942139 51 30758 ... 17.058744 52 30759 ... 17.007603 53 30760 ... 16.836418 54 30761 ... 17.521439 55 30762 ... 17.877050 56 30763 ... 17.996941 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 559j47n1 wandb: Agent Starting Run: nf7t2ie9 with config: batch_size: 5 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: nf7t2ie9
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.581223011016846 The number of items in train is: 8 The loss for epoch 0 1.1976528763771057 The running loss is: 35.83604419231415 The number of items in train is: 8 The loss for epoch 1 4.4795055240392685 The running loss is: 11.085575520992279 The number of items in train is: 8 The loss for epoch 2 1.3856969401240349 The running loss is: 14.026957333087921 The number of items in train is: 8 The loss for epoch 3 1.7533696666359901 The running loss is: 8.350571095943451 The number of items in train is: 8 The loss for epoch 4 1.0438213869929314 The running loss is: 8.114606499671936 The number of items in train is: 8 The loss for epoch 5 1.014325812458992 The running loss is: 8.154320061206818 The number of items in train is: 8 The loss for epoch 6 1.0192900076508522 The running loss is: 7.604051381349564 The number of items in train is: 8 The loss for epoch 7 0.9505064226686954 The running loss is: 7.602997928857803 The number of items in train is: 8 The loss for epoch 8 0.9503747411072254 The running loss is: 7.65183824300766 The number of items in train is: 8 The loss for epoch 9 0.9564797803759575 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 6.058468 48 30755 ... 2.848610 49 30756 ... 1.165785 50 30757 ... 0.107837 51 30758 ... -0.694407 52 30759 ... -1.392015 53 30760 ... -2.046804 54 30761 ... -0.098818 55 30762 ... 0.328994 56 30763 ... 0.134736 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nf7t2ie9 wandb: Agent Starting Run: cl1kzlwf with config: batch_size: 5 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: cl1kzlwf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 29.115166932344437 The number of items in train is: 9 The loss for epoch 0 3.235018548038271 The running loss is: 10.516705513000488 The number of items in train is: 9 The loss for epoch 1 1.168522834777832 The running loss is: 8.51107770204544 The number of items in train is: 9 The loss for epoch 2 0.9456753002272712 The running loss is: 8.960445433855057 The number of items in train is: 9 The loss for epoch 3 0.9956050482061174 The running loss is: 13.343494325876236 The number of items in train is: 9 The loss for epoch 4 1.482610480652915 The running loss is: 8.549514725804329 The number of items in train is: 9 The loss for epoch 5 0.9499460806449255 The running loss is: 12.743834301829338 The number of items in train is: 9 The loss for epoch 6 1.4159815890921488 The running loss is: 11.443218156695366 The number of items in train is: 9 The loss for epoch 7 1.2714686840772629 The running loss is: 7.235250249505043 The number of items in train is: 9 The loss for epoch 8 0.8039166943894492 The running loss is: 8.449952185153961 The number of items in train is: 9 The loss for epoch 9 0.9388835761282179 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 9.708012 48 30755 ... 8.497513 49 30756 ... 8.352589 50 30757 ... 8.753163 51 30758 ... 9.432993 52 30759 ... 10.255782 53 30760 ... 11.151757 54 30761 ... 8.761843 55 30762 ... 8.013142 56 30763 ... 8.104626 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cl1kzlwf wandb: Agent Starting Run: pdmnlk1y with config: batch_size: 5 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: pdmnlk1y
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 26.819443345069885 The number of items in train is: 9 The loss for epoch 0 2.9799381494522095 The running loss is: 14.902421951293945 The number of items in train is: 9 The loss for epoch 1 1.6558246612548828 The running loss is: 17.069870591163635 The number of items in train is: 9 The loss for epoch 2 1.8966522879070706 The running loss is: 11.382362842559814 The number of items in train is: 9 The loss for epoch 3 1.2647069825066461 The running loss is: 11.657361149787903 The number of items in train is: 9 The loss for epoch 4 1.2952623499764337 The running loss is: 13.20745787024498 The number of items in train is: 9 The loss for epoch 5 1.4674953189161088 The running loss is: 9.443842113018036 The number of items in train is: 9 The loss for epoch 6 1.0493157903353374 The running loss is: 11.438809677958488 The number of items in train is: 9 The loss for epoch 7 1.2709788531064987 The running loss is: 8.55271452665329 The number of items in train is: 9 The loss for epoch 8 0.9503016140725877 The running loss is: 10.242311969399452 The number of items in train is: 9 The loss for epoch 9 1.1380346632666059 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 16.249252 48 30755 ... 17.867855 49 30756 ... 18.567770 50 30757 ... 18.750107 51 30758 ... 18.640844 52 30759 ... 18.367302 53 30760 ... 18.001202 54 30761 ... 19.066870 55 30762 ... 19.455267 56 30763 ... 19.462097 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pdmnlk1y wandb: Agent Starting Run: v4p1w5d6 with config: batch_size: 5 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: v4p1w5d6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 29.159477710723877 The number of items in train is: 8 The loss for epoch 0 3.6449347138404846 The running loss is: 10.356956481933594 The number of items in train is: 8 The loss for epoch 1 1.2946195602416992 The running loss is: 17.295407086610794 The number of items in train is: 8 The loss for epoch 2 2.1619258858263493 The running loss is: 10.114732325077057 The number of items in train is: 8 The loss for epoch 3 1.264341540634632 The running loss is: 9.823338657617569 The number of items in train is: 8 The loss for epoch 4 1.2279173322021961 The running loss is: 8.202937006950378 The number of items in train is: 8 The loss for epoch 5 1.0253671258687973 The running loss is: 8.357675984501839 The number of items in train is: 8 The loss for epoch 6 1.0447094980627298 The running loss is: 7.424637317657471 The number of items in train is: 8 The loss for epoch 7 0.9280796647071838 The running loss is: 7.2614090740680695 The number of items in train is: 8 The loss for epoch 8 0.9076761342585087 The running loss is: 7.0375045388937 The number of items in train is: 8 The loss for epoch 9 0.8796880673617125 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 46 30753 ... 0.000000 47 30754 ... 7.158503 48 30755 ... 4.625562 49 30756 ... 3.375854 50 30757 ... 2.623850 51 30758 ... 2.064883 52 30759 ... 1.580785 53 30760 ... 1.125725 54 30761 ... 2.553036 55 30762 ... 2.839321 56 30763 ... 2.683055 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v4p1w5d6 wandb: Agent Starting Run: xx7hdryc with config: batch_size: 5 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: xx7hdryc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.653952911496162 The number of items in train is: 9 The loss for epoch 0 1.294883656832907 The running loss is: 6.35406494140625 The number of items in train is: 9 The loss for epoch 1 0.7060072157118056 The running loss is: 6.448800578713417 The number of items in train is: 9 The loss for epoch 2 0.7165333976348242 The running loss is: 6.175214782357216 The number of items in train is: 9 The loss for epoch 3 0.6861349758174684 The running loss is: 6.013192266225815 The number of items in train is: 9 The loss for epoch 4 0.6681324740250906 The running loss is: 6.216562658548355 The number of items in train is: 9 The loss for epoch 5 0.6907291842831506 The running loss is: 5.737043023109436 The number of items in train is: 9 The loss for epoch 6 0.6374492247899374 The running loss is: 5.503724917769432 The number of items in train is: 9 The loss for epoch 7 0.6115249908632703 The running loss is: 4.904528111219406 The number of items in train is: 9 The loss for epoch 8 0.5449475679132674 The running loss is: 5.226170241832733 The number of items in train is: 9 The loss for epoch 9 0.5806855824258592 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.194837 48 30755 ... 16.856466 49 30756 ... 16.424501 50 30757 ... 17.301683 51 30758 ... 16.259554 52 30759 ... 15.276786 53 30760 ... 13.607736 54 30761 ... 13.129473 55 30762 ... 17.536375 56 30763 ... 17.261248 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xx7hdryc wandb: Agent Starting Run: 5gp21eq4 with config: batch_size: 5 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 5gp21eq4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.606136918067932 The number of items in train is: 8 The loss for epoch 0 1.3257671147584915 The running loss is: 7.5615354180336 The number of items in train is: 8 The loss for epoch 1 0.9451919272542 The running loss is: 7.4385921359062195 The number of items in train is: 8 The loss for epoch 2 0.9298240169882774 The running loss is: 7.043540298938751 The number of items in train is: 8 The loss for epoch 3 0.8804425373673439 The running loss is: 6.746666252613068 The number of items in train is: 8 The loss for epoch 4 0.8433332815766335 The running loss is: 6.270362347364426 The number of items in train is: 8 The loss for epoch 5 0.7837952934205532 The running loss is: 6.0092626214027405 The number of items in train is: 8 The loss for epoch 6 0.7511578276753426 The running loss is: 6.145449280738831 The number of items in train is: 8 The loss for epoch 7 0.7681811600923538 The running loss is: 5.825879514217377 The number of items in train is: 8 The loss for epoch 8 0.7282349392771721 The running loss is: 5.999978452920914 The number of items in train is: 8 The loss for epoch 9 0.7499973066151142 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.111321 48 30755 ... 6.885062 49 30756 ... 3.949093 50 30757 ... 1.974898 51 30758 ... -1.738332 52 30759 ... -5.849308 53 30760 ... -11.026432 54 30761 ... -15.751204 55 30762 ... -15.569290 56 30763 ... -18.938940 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5gp21eq4 wandb: Agent Starting Run: v7w14fvq with config: batch_size: 5 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: v7w14fvq
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.157624810934067 The number of items in train is: 8 The loss for epoch 0 1.2697031013667583 The running loss is: 6.297411605715752 The number of items in train is: 8 The loss for epoch 1 0.787176450714469 The running loss is: 6.1504600048065186 The number of items in train is: 8 The loss for epoch 2 0.7688075006008148 The running loss is: 6.285173416137695 The number of items in train is: 8 The loss for epoch 3 0.7856466770172119 The running loss is: 5.583762004971504 The number of items in train is: 8 The loss for epoch 4 0.697970250621438 The running loss is: 5.8202831000089645 The number of items in train is: 8 The loss for epoch 5 0.7275353875011206 The running loss is: 5.58960173279047 The number of items in train is: 8 The loss for epoch 6 0.6987002165988088 The running loss is: 5.187306389212608 The number of items in train is: 8 The loss for epoch 7 0.648413298651576 The running loss is: 5.519324317574501 The number of items in train is: 8 The loss for epoch 8 0.6899155396968126 The running loss is: 5.479003980755806 The number of items in train is: 8 The loss for epoch 9 0.6848754975944757 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.505090 48 30755 ... 8.611543 49 30756 ... 7.433668 50 30757 ... 6.379976 51 30758 ... 4.317859 52 30759 ... 1.654876 53 30760 ... -1.738726 54 30761 ... -2.300702 55 30762 ... -1.567690 56 30763 ... -2.170553 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v7w14fvq wandb: Agent Starting Run: ukec4csi with config: batch_size: 5 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ukec4csi
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.871211767196655 The number of items in train is: 9 The loss for epoch 0 1.3190235296885173 The running loss is: 11.86011016368866 The number of items in train is: 9 The loss for epoch 1 1.3177900181876288 The running loss is: 6.418770670890808 The number of items in train is: 9 The loss for epoch 2 0.7131967412100898 The running loss is: 6.4102838188409805 The number of items in train is: 9 The loss for epoch 3 0.7122537576489978 The running loss is: 6.108351901173592 The number of items in train is: 9 The loss for epoch 4 0.6787057667970657 The running loss is: 5.973604336380959 The number of items in train is: 9 The loss for epoch 5 0.6637338151534399 The running loss is: 5.5479738265275955 The number of items in train is: 9 The loss for epoch 6 0.616441536280844 The running loss is: 5.1741392612457275 The number of items in train is: 9 The loss for epoch 7 0.5749043623606364 The running loss is: 4.4630467891693115 The number of items in train is: 9 The loss for epoch 8 0.49589408768547905 The running loss is: 4.964875191450119 The number of items in train is: 9 The loss for epoch 9 0.5516527990500132 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.930080 48 30755 ... 16.040146 49 30756 ... 15.320904 50 30757 ... 15.965147 51 30758 ... 14.722304 52 30759 ... 13.738050 53 30760 ... 11.988651 54 30761 ... 10.827065 55 30762 ... 15.583311 56 30763 ... 15.162140 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ukec4csi wandb: Agent Starting Run: ft4g04qn with config: batch_size: 5 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ft4g04qn
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.880632519721985 The number of items in train is: 8 The loss for epoch 0 1.360079064965248 The running loss is: 9.620780944824219 The number of items in train is: 8 The loss for epoch 1 1.2025976181030273 The running loss is: 7.736795485019684 The number of items in train is: 8 The loss for epoch 2 0.9670994356274605 The running loss is: 6.95757669210434 The number of items in train is: 8 The loss for epoch 3 0.8696970865130424 The running loss is: 6.781202018260956 The number of items in train is: 8 The loss for epoch 4 0.8476502522826195 The running loss is: 6.057494938373566 The number of items in train is: 8 The loss for epoch 5 0.7571868672966957 The running loss is: 5.54942125082016 The number of items in train is: 8 The loss for epoch 6 0.69367765635252 The running loss is: 5.526401251554489 The number of items in train is: 8 The loss for epoch 7 0.6908001564443111 The running loss is: 5.341130912303925 The number of items in train is: 8 The loss for epoch 8 0.6676413640379906 The running loss is: 5.290408372879028 The number of items in train is: 8 The loss for epoch 9 0.6613010466098785 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.421013 48 30755 ... 7.693488 49 30756 ... 4.838378 50 30757 ... 2.830646 51 30758 ... -1.172961 52 30759 ... -5.462883 53 30760 ... -11.114449 54 30761 ... -16.412426 55 30762 ... -16.639225 56 30763 ... -20.939789 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ft4g04qn wandb: Agent Starting Run: u1wlcs5o with config: batch_size: 5 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: u1wlcs5o
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.196498736739159 The number of items in train is: 8 The loss for epoch 0 1.3995623420923948 The running loss is: 8.67428719997406 The number of items in train is: 8 The loss for epoch 1 1.0842858999967575 The running loss is: 6.3885288536548615 The number of items in train is: 8 The loss for epoch 2 0.7985661067068577 The running loss is: 6.005099095404148 The number of items in train is: 8 The loss for epoch 3 0.7506373869255185 The running loss is: 5.570761099457741 The number of items in train is: 8 The loss for epoch 4 0.6963451374322176 The running loss is: 5.671713694930077 The number of items in train is: 8 The loss for epoch 5 0.7089642118662596 The running loss is: 5.326850637793541 The number of items in train is: 8 The loss for epoch 6 0.6658563297241926 The running loss is: 4.999603778123856 The number of items in train is: 8 The loss for epoch 7 0.624950472265482 The running loss is: 5.124610349535942 The number of items in train is: 8 The loss for epoch 8 0.6405762936919928 The running loss is: 5.118088111281395 The number of items in train is: 8 The loss for epoch 9 0.6397610139101744 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.308200 48 30755 ... 5.241625 49 30756 ... 3.383986 50 30757 ... 0.737024 51 30758 ... -2.849844 52 30759 ... -7.332001 53 30760 ... -12.688560 54 30761 ... -12.326498 55 30762 ... -14.071939 56 30763 ... -16.703213 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u1wlcs5o wandb: Agent Starting Run: pi8csar3 with config: batch_size: 5 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: pi8csar3
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.041293114423752 The number of items in train is: 9 The loss for epoch 0 1.1156992349359725 The running loss is: 24.0467449426651 The number of items in train is: 9 The loss for epoch 1 2.671860549185011 The running loss is: 11.829259186983109 The number of items in train is: 9 The loss for epoch 2 1.314362131887012 The running loss is: 8.914239928126335 The number of items in train is: 9 The loss for epoch 3 0.9904711031251483 The running loss is: 6.624034374952316 The number of items in train is: 9 The loss for epoch 4 0.7360038194391463 The running loss is: 6.917576104402542 The number of items in train is: 9 The loss for epoch 5 0.768619567155838 The running loss is: 5.983533605933189 The number of items in train is: 9 The loss for epoch 6 0.66483706732591 The running loss is: 5.81503838300705 The number of items in train is: 9 The loss for epoch 7 0.6461153758896722 The running loss is: 5.106647074222565 The number of items in train is: 9 The loss for epoch 8 0.5674052304691739 The running loss is: 5.564130909740925 The number of items in train is: 9 The loss for epoch 9 0.6182367677489916 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 15.471273 48 30755 ... 17.168171 49 30756 ... 17.622458 50 30757 ... 17.658239 51 30758 ... 17.125072 52 30759 ... 16.369062 53 30760 ... 15.348657 54 30761 ... 16.736712 55 30762 ... 18.282732 56 30763 ... 18.265202 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pi8csar3 wandb: Agent Starting Run: 4hehj93f with config: batch_size: 5 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4hehj93f
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.713887721300125 The number of items in train is: 8 The loss for epoch 0 1.0892359651625156 The running loss is: 22.801980674266815 The number of items in train is: 8 The loss for epoch 1 2.850247584283352 The running loss is: 8.347535133361816 The number of items in train is: 8 The loss for epoch 2 1.043441891670227 The running loss is: 9.818920910358429 The number of items in train is: 8 The loss for epoch 3 1.2273651137948036 The running loss is: 7.308171451091766 The number of items in train is: 8 The loss for epoch 4 0.9135214313864708 The running loss is: 6.845404148101807 The number of items in train is: 8 The loss for epoch 5 0.8556755185127258 The running loss is: 6.43958380818367 The number of items in train is: 8 The loss for epoch 6 0.8049479760229588 The running loss is: 6.40879088640213 The number of items in train is: 8 The loss for epoch 7 0.8010988608002663 The running loss is: 6.1408664882183075 The number of items in train is: 8 The loss for epoch 8 0.7676083110272884 The running loss is: 5.660664469003677 The number of items in train is: 8 The loss for epoch 9 0.7075830586254597 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.766214 48 30755 ... 6.847561 49 30756 ... 3.781909 50 30757 ... 2.416294 51 30758 ... 0.047228 52 30759 ... -1.721929 53 30760 ... -3.810858 54 30761 ... -6.423064 55 30762 ... -5.039513 56 30763 ... -5.555659 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4hehj93f wandb: Agent Starting Run: 6cko91sl with config: batch_size: 5 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 6cko91sl
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.506135255098343 The number of items in train is: 8 The loss for epoch 0 1.0632669068872929 The running loss is: 24.01819033920765 The number of items in train is: 8 The loss for epoch 1 3.002273792400956 The running loss is: 10.206629455089569 The number of items in train is: 8 The loss for epoch 2 1.2758286818861961 The running loss is: 9.913901567459106 The number of items in train is: 8 The loss for epoch 3 1.2392376959323883 The running loss is: 6.586266487836838 The number of items in train is: 8 The loss for epoch 4 0.8232833109796047 The running loss is: 6.10785585641861 The number of items in train is: 8 The loss for epoch 5 0.7634819820523262 The running loss is: 5.772560715675354 The number of items in train is: 8 The loss for epoch 6 0.7215700894594193 The running loss is: 5.264330431818962 The number of items in train is: 8 The loss for epoch 7 0.6580413039773703 The running loss is: 5.442826643586159 The number of items in train is: 8 The loss for epoch 8 0.6803533304482698 The running loss is: 4.980601117014885 The number of items in train is: 8 The loss for epoch 9 0.6225751396268606 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.926193 48 30755 ... 9.950300 49 30756 ... 9.398391 50 30757 ... 8.685193 51 30758 ... 7.131873 52 30759 ... 4.907981 53 30760 ... 1.956089 54 30761 ... 1.788214 55 30762 ... 2.207295 56 30763 ... 1.670653 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6cko91sl wandb: Agent Starting Run: 1y5z9zl3 with config: batch_size: 5 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 1y5z9zl3
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 34.98532968759537 The number of items in train is: 9 The loss for epoch 0 3.8872588541772632 The running loss is: 12.941614404320717 The number of items in train is: 9 The loss for epoch 1 1.4379571560356352 The running loss is: 11.81175396591425 The number of items in train is: 9 The loss for epoch 2 1.3124171073238056 The running loss is: 13.589459389448166 The number of items in train is: 9 The loss for epoch 3 1.5099399321609073 The running loss is: 10.549855262041092 The number of items in train is: 9 The loss for epoch 4 1.172206140226788 The running loss is: 12.399509191513062 The number of items in train is: 9 The loss for epoch 5 1.3777232435014513 The running loss is: 13.321157723665237 The number of items in train is: 9 The loss for epoch 6 1.480128635962804 The running loss is: 8.162745237350464 The number of items in train is: 9 The loss for epoch 7 0.9069716930389404 The running loss is: 8.067213207483292 The number of items in train is: 9 The loss for epoch 8 0.896357023053699 The running loss is: 7.0703848749399185 The number of items in train is: 9 The loss for epoch 9 0.7855983194377687 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.806156 48 30755 ... 14.069129 49 30756 ... 13.659444 50 30757 ... 13.352436 51 30758 ... 12.880804 52 30759 ... 12.412155 53 30760 ... 11.924775 54 30761 ... 12.530951 55 30762 ... 13.979243 56 30763 ... 13.637586 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1y5z9zl3 wandb: Agent Starting Run: bv342o38 with config: batch_size: 5 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: bv342o38
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.1297847032547 The number of items in train is: 8 The loss for epoch 0 2.8912230879068375 The running loss is: 9.419984936714172 The number of items in train is: 8 The loss for epoch 1 1.1774981170892715 The running loss is: 15.98174238204956 The number of items in train is: 8 The loss for epoch 2 1.997717797756195 The running loss is: 9.02855908870697 The number of items in train is: 8 The loss for epoch 3 1.1285698860883713 The running loss is: 7.561536103487015 The number of items in train is: 8 The loss for epoch 4 0.9451920129358768 The running loss is: 6.622726082801819 The number of items in train is: 8 The loss for epoch 5 0.8278407603502274 The running loss is: 6.519628286361694 The number of items in train is: 8 The loss for epoch 6 0.8149535357952118 The running loss is: 5.425025045871735 The number of items in train is: 8 The loss for epoch 7 0.6781281307339668 The running loss is: 7.119292467832565 The number of items in train is: 8 The loss for epoch 8 0.8899115584790707 The running loss is: 6.246462732553482 The number of items in train is: 8 The loss for epoch 9 0.7808078415691853 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.322372 48 30755 ... 6.233348 49 30756 ... 5.780288 50 30757 ... 5.569169 51 30758 ... 5.308512 52 30759 ... 5.067289 53 30760 ... 4.781678 54 30761 ... 2.610401 55 30762 ... 4.669430 56 30763 ... 4.904677 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bv342o38 wandb: Agent Starting Run: v6al9cws with config: batch_size: 5 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: v6al9cws
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.912554055452347 The number of items in train is: 8 The loss for epoch 0 2.8640692569315434 The running loss is: 7.984839051961899 The number of items in train is: 8 The loss for epoch 1 0.9981048814952374 The running loss is: 8.602033376693726 The number of items in train is: 8 The loss for epoch 2 1.0752541720867157 The running loss is: 9.541735291481018 The number of items in train is: 8 The loss for epoch 3 1.1927169114351273 The running loss is: 6.243432849645615 The number of items in train is: 8 The loss for epoch 4 0.7804291062057018 The running loss is: 7.455722868442535 The number of items in train is: 8 The loss for epoch 5 0.9319653585553169 The running loss is: 6.309693947434425 The number of items in train is: 8 The loss for epoch 6 0.7887117434293032 The running loss is: 6.356328025460243 The number of items in train is: 8 The loss for epoch 7 0.7945410031825304 The running loss is: 6.21287739276886 The number of items in train is: 8 The loss for epoch 8 0.7766096740961075 The running loss is: 5.354219913482666 The number of items in train is: 8 The loss for epoch 9 0.6692774891853333 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.646266 48 30755 ... 10.808380 49 30756 ... 10.536748 50 30757 ... 10.119283 51 30758 ... 9.140769 52 30759 ... 7.776768 53 30760 ... 6.020148 54 30761 ... 6.451089 55 30762 ... 7.264283 56 30763 ... 7.389930 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v6al9cws wandb: Agent Starting Run: o3oq5f4z with config: batch_size: 5 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: o3oq5f4z
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.30842438340187 The number of items in train is: 8 The loss for epoch 0 1.1635530479252338 The running loss is: 9.48618969321251 The number of items in train is: 8 The loss for epoch 1 1.1857737116515636 The running loss is: 5.621234282851219 The number of items in train is: 8 The loss for epoch 2 0.7026542853564024 The running loss is: 4.817091893404722 The number of items in train is: 8 The loss for epoch 3 0.6021364866755903 The running loss is: 4.489563524723053 The number of items in train is: 8 The loss for epoch 4 0.5611954405903816 The running loss is: 4.262367948889732 The number of items in train is: 8 The loss for epoch 5 0.5327959936112165 The running loss is: 4.1890451312065125 The number of items in train is: 8 The loss for epoch 6 0.5236306414008141 The running loss is: 4.206894904375076 The number of items in train is: 8 The loss for epoch 7 0.5258618630468845 The running loss is: 4.1976680383086205 The number of items in train is: 8 The loss for epoch 8 0.5247085047885776 The running loss is: 3.844587281346321 The number of items in train is: 8 The loss for epoch 9 0.48057341016829014 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.245362 48 30755 ... 7.406672 49 30756 ... 13.971702 50 30757 ... 13.071504 51 30758 ... 12.476460 52 30759 ... 12.218643 53 30760 ... 10.048891 54 30761 ... 9.944292 55 30762 ... 10.011600 56 30763 ... 15.057905 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: o3oq5f4z wandb: Agent Starting Run: l7gk8jk5 with config: batch_size: 5 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: l7gk8jk5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.721231788396835 The number of items in train is: 8 The loss for epoch 0 1.3401539735496044 The running loss is: 6.999983549118042 The number of items in train is: 8 The loss for epoch 1 0.8749979436397552 The running loss is: 6.762904524803162 The number of items in train is: 8 The loss for epoch 2 0.8453630656003952 The running loss is: 6.13987572491169 The number of items in train is: 8 The loss for epoch 3 0.7674844656139612 The running loss is: 5.951361909508705 The number of items in train is: 8 The loss for epoch 4 0.7439202386885881 The running loss is: 5.882794544100761 The number of items in train is: 8 The loss for epoch 5 0.7353493180125952 The running loss is: 5.625875897705555 The number of items in train is: 8 The loss for epoch 6 0.7032344872131944 The running loss is: 5.734223559498787 The number of items in train is: 8 The loss for epoch 7 0.7167779449373484 The running loss is: 5.470184274017811 The number of items in train is: 8 The loss for epoch 8 0.6837730342522264 The running loss is: 4.977894231677055 The number of items in train is: 8 The loss for epoch 9 0.6222367789596319 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.194105 48 30755 ... 6.603125 49 30756 ... 11.639103 50 30757 ... 11.402129 51 30758 ... 11.610652 52 30759 ... 11.500878 53 30760 ... 9.903611 54 30761 ... 9.999037 55 30762 ... 10.313538 56 30763 ... 14.491574 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l7gk8jk5 wandb: Agent Starting Run: n40k40ot with config: batch_size: 5 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: n40k40ot
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.84519910812378 The number of items in train is: 8 The loss for epoch 0 1.2306498885154724 The running loss is: 6.748609364032745 The number of items in train is: 8 The loss for epoch 1 0.8435761705040932 The running loss is: 6.234087198972702 The number of items in train is: 8 The loss for epoch 2 0.7792608998715878 The running loss is: 5.676519811153412 The number of items in train is: 8 The loss for epoch 3 0.7095649763941765 The running loss is: 5.602851450443268 The number of items in train is: 8 The loss for epoch 4 0.7003564313054085 The running loss is: 5.303595423698425 The number of items in train is: 8 The loss for epoch 5 0.6629494279623032 The running loss is: 5.084870457649231 The number of items in train is: 8 The loss for epoch 6 0.6356088072061539 The running loss is: 5.002656936645508 The number of items in train is: 8 The loss for epoch 7 0.6253321170806885 The running loss is: 4.769860535860062 The number of items in train is: 8 The loss for epoch 8 0.5962325669825077 The running loss is: 4.391438692808151 The number of items in train is: 8 The loss for epoch 9 0.5489298366010189 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.658195 48 30755 ... 10.081340 49 30756 ... 15.058569 50 30757 ... 15.923815 51 30758 ... 16.395542 52 30759 ... 17.664595 53 30760 ... 17.107052 54 30761 ... 22.228762 55 30762 ... 23.952763 56 30763 ... 29.323387 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: n40k40ot wandb: Agent Starting Run: 9tt63aws with config: batch_size: 5 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 9tt63aws
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.10678744316101 The number of items in train is: 8 The loss for epoch 0 1.0133484303951263 The running loss is: 27.54156595468521 The number of items in train is: 8 The loss for epoch 1 3.4426957443356514 The running loss is: 6.247965717688203 The number of items in train is: 8 The loss for epoch 2 0.7809957147110254 The running loss is: 6.217851877212524 The number of items in train is: 8 The loss for epoch 3 0.7772314846515656 The running loss is: 5.920749947428703 The number of items in train is: 8 The loss for epoch 4 0.7400937434285879 The running loss is: 4.904174625873566 The number of items in train is: 8 The loss for epoch 5 0.6130218282341957 The running loss is: 4.424663543701172 The number of items in train is: 8 The loss for epoch 6 0.5530829429626465 The running loss is: 4.41470830142498 The number of items in train is: 8 The loss for epoch 7 0.5518385376781225 The running loss is: 4.161341153085232 The number of items in train is: 8 The loss for epoch 8 0.520167644135654 The running loss is: 3.9557350426912308 The number of items in train is: 8 The loss for epoch 9 0.49446688033640385 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.901354 48 30755 ... 7.838363 49 30756 ... 13.712195 50 30757 ... 12.818233 51 30758 ... 12.069808 52 30759 ... 11.796654 53 30760 ... 9.732699 54 30761 ... 9.699532 55 30762 ... 9.651850 56 30763 ... 14.155675 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9tt63aws wandb: Agent Starting Run: dzxow86q with config: batch_size: 5 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: dzxow86q
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.758483454585075 The number of items in train is: 8 The loss for epoch 0 1.3448104318231344 The running loss is: 11.171189188957214 The number of items in train is: 8 The loss for epoch 1 1.3963986486196518 The running loss is: 6.5673965737223625 The number of items in train is: 8 The loss for epoch 2 0.8209245717152953 The running loss is: 6.287336528301239 The number of items in train is: 8 The loss for epoch 3 0.7859170660376549 The running loss is: 5.87205146253109 The number of items in train is: 8 The loss for epoch 4 0.7340064328163862 The running loss is: 5.778154879808426 The number of items in train is: 8 The loss for epoch 5 0.7222693599760532 The running loss is: 5.273692026734352 The number of items in train is: 8 The loss for epoch 6 0.659211503341794 The running loss is: 5.136383637785912 The number of items in train is: 8 The loss for epoch 7 0.642047954723239 The running loss is: 4.941792532801628 The number of items in train is: 8 The loss for epoch 8 0.6177240666002035 The running loss is: 4.391803033649921 The number of items in train is: 8 The loss for epoch 9 0.5489753792062402 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.843055 48 30755 ... 8.735225 49 30756 ... 11.784624 50 30757 ... 11.745650 51 30758 ... 11.402711 52 30759 ... 10.388110 53 30760 ... 8.058597 54 30761 ... 9.430935 55 30762 ... 10.906927 56 30763 ... 13.199764 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: dzxow86q wandb: Agent Starting Run: oyieacp4 with config: batch_size: 5 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: oyieacp4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.876974672079086 The number of items in train is: 8 The loss for epoch 0 1.2346218340098858 The running loss is: 10.934117525815964 The number of items in train is: 8 The loss for epoch 1 1.3667646907269955 The running loss is: 6.11262384057045 The number of items in train is: 8 The loss for epoch 2 0.7640779800713062 The running loss is: 5.829475224018097 The number of items in train is: 8 The loss for epoch 3 0.7286844030022621 The running loss is: 5.622194975614548 The number of items in train is: 8 The loss for epoch 4 0.7027743719518185 The running loss is: 5.299667567014694 The number of items in train is: 8 The loss for epoch 5 0.6624584458768368 The running loss is: 4.95116651058197 The number of items in train is: 8 The loss for epoch 6 0.6188958138227463 The running loss is: 4.8218607902526855 The number of items in train is: 8 The loss for epoch 7 0.6027325987815857 The running loss is: 4.772080212831497 The number of items in train is: 8 The loss for epoch 8 0.5965100266039371 The running loss is: 3.9954182356595993 The number of items in train is: 8 The loss for epoch 9 0.4994272794574499 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.704037 48 30755 ... 7.192714 49 30756 ... 10.031803 50 30757 ... 10.899514 51 30758 ... 11.257930 52 30759 ... 11.452247 53 30760 ... 10.973282 54 30761 ... 12.872341 55 30762 ... 12.492766 56 30763 ... 16.084013 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: oyieacp4 wandb: Agent Starting Run: caveqhc6 with config: batch_size: 5 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: caveqhc6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.880411952733994 The number of items in train is: 8 The loss for epoch 0 1.3600514940917492 The running loss is: 43.80143243074417 The number of items in train is: 8 The loss for epoch 1 5.475179053843021 The running loss is: 15.616842031478882 The number of items in train is: 8 The loss for epoch 2 1.9521052539348602 The running loss is: 9.589914422482252 The number of items in train is: 8 The loss for epoch 3 1.1987393028102815 The running loss is: 6.671413034200668 The number of items in train is: 8 The loss for epoch 4 0.8339266292750835 The running loss is: 7.4757488667964935 The number of items in train is: 8 The loss for epoch 5 0.9344686083495617 The running loss is: 4.646433234214783 The number of items in train is: 8 The loss for epoch 6 0.5808041542768478 The running loss is: 5.482744470238686 The number of items in train is: 8 The loss for epoch 7 0.6853430587798357 The running loss is: 4.8297248259186745 The number of items in train is: 8 The loss for epoch 8 0.6037156032398343 The running loss is: 4.43698213994503 The number of items in train is: 8 The loss for epoch 9 0.5546227674931288 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.569696 48 30755 ... 9.416870 49 30756 ... 13.286760 50 30757 ... 12.562493 51 30758 ... 11.830906 52 30759 ... 11.178302 53 30760 ... 9.640971 54 30761 ... 9.453139 55 30762 ... 9.259923 56 30763 ... 12.173406 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: caveqhc6 wandb: Agent Starting Run: nceedklu with config: batch_size: 5 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: nceedklu
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.912759125232697 The number of items in train is: 8 The loss for epoch 0 1.114094890654087 The running loss is: 25.029663145542145 The number of items in train is: 8 The loss for epoch 1 3.128707893192768 The running loss is: 10.025477290153503 The number of items in train is: 8 The loss for epoch 2 1.253184661269188 The running loss is: 14.02464845776558 The number of items in train is: 8 The loss for epoch 3 1.7530810572206974 The running loss is: 7.915584564208984 The number of items in train is: 8 The loss for epoch 4 0.989448070526123 The running loss is: 6.710186213254929 The number of items in train is: 8 The loss for epoch 5 0.8387732766568661 The running loss is: 6.474571600556374 The number of items in train is: 8 The loss for epoch 6 0.8093214500695467 The running loss is: 6.211176082491875 The number of items in train is: 8 The loss for epoch 7 0.7763970103114843 The running loss is: 6.195676773786545 The number of items in train is: 8 The loss for epoch 8 0.7744595967233181 The running loss is: 5.697741895914078 The number of items in train is: 8 The loss for epoch 9 0.7122177369892597 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.836226 48 30755 ... 10.511021 49 30756 ... 14.086117 50 30757 ... 13.573318 51 30758 ... 13.186073 52 30759 ... 13.511204 53 30760 ... 12.587166 54 30761 ... 13.003458 55 30762 ... 13.056839 56 30763 ... 15.238908 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nceedklu wandb: Agent Starting Run: 0eqou6e5 with config: batch_size: 5 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 0eqou6e5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 7.586898952722549 The number of items in train is: 8 The loss for epoch 0 0.9483623690903187 The running loss is: 25.946052193641663 The number of items in train is: 8 The loss for epoch 1 3.243256524205208 The running loss is: 7.6804980635643005 The number of items in train is: 8 The loss for epoch 2 0.9600622579455376 The running loss is: 9.825101613998413 The number of items in train is: 8 The loss for epoch 3 1.2281377017498016 The running loss is: 7.51312929391861 The number of items in train is: 8 The loss for epoch 4 0.9391411617398262 The running loss is: 6.463720321655273 The number of items in train is: 8 The loss for epoch 5 0.8079650402069092 The running loss is: 6.129735618829727 The number of items in train is: 8 The loss for epoch 6 0.7662169523537159 The running loss is: 5.783123850822449 The number of items in train is: 8 The loss for epoch 7 0.7228904813528061 The running loss is: 5.273890644311905 The number of items in train is: 8 The loss for epoch 8 0.6592363305389881 The running loss is: 4.53999987244606 The number of items in train is: 8 The loss for epoch 9 0.5674999840557575 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.657432 48 30755 ... 8.412302 49 30756 ... 10.765085 50 30757 ... 11.026249 51 30758 ... 10.217522 52 30759 ... 8.858908 53 30760 ... 6.510315 54 30761 ... 9.282034 55 30762 ... 8.430615 56 30763 ... 10.268279 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0eqou6e5 wandb: Agent Starting Run: 5pne6ual with config: batch_size: 5 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5pne6ual
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 77.71084105968475 The number of items in train is: 8 The loss for epoch 0 9.713855132460594 The running loss is: 5.338430866599083 The number of items in train is: 8 The loss for epoch 1 0.6673038583248854 The running loss is: 27.426336839795113 The number of items in train is: 8 The loss for epoch 2 3.428292104974389 The running loss is: 74.70189869403839 The number of items in train is: 8 The loss for epoch 3 9.337737336754799 The running loss is: 16.624776780605316 The number of items in train is: 8 The loss for epoch 4 2.0780970975756645 The running loss is: 22.714191049337387 The number of items in train is: 8 The loss for epoch 5 2.8392738811671734 The running loss is: 8.933165550231934 The number of items in train is: 8 The loss for epoch 6 1.1166456937789917 The running loss is: 10.674087047576904 The number of items in train is: 8 The loss for epoch 7 1.334260880947113 The running loss is: 7.016788870096207 The number of items in train is: 8 The loss for epoch 8 0.8770986087620258 The running loss is: 5.2304157465696335 The number of items in train is: 8 The loss for epoch 9 0.6538019683212042 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.728264 48 30755 ... 12.739908 49 30756 ... 15.023680 50 30757 ... 15.135052 51 30758 ... 14.314179 52 30759 ... 13.451766 53 30760 ... 12.209122 54 30761 ... 15.023045 55 30762 ... 15.040199 56 30763 ... 15.918568 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5pne6ual wandb: Agent Starting Run: uwmkpwjd with config: batch_size: 5 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: uwmkpwjd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 40.486722499132156 The number of items in train is: 8 The loss for epoch 0 5.0608403123915195 The running loss is: 7.990162819623947 The number of items in train is: 8 The loss for epoch 1 0.9987703524529934 The running loss is: 16.418078929185867 The number of items in train is: 8 The loss for epoch 2 2.0522598661482334 The running loss is: 37.9519681930542 The number of items in train is: 8 The loss for epoch 3 4.743996024131775 The running loss is: 15.55551365017891 The number of items in train is: 8 The loss for epoch 4 1.9444392062723637 The running loss is: 8.367789804935455 The number of items in train is: 8 The loss for epoch 5 1.045973725616932 The running loss is: 11.206081509590149 The number of items in train is: 8 The loss for epoch 6 1.4007601886987686 The running loss is: 9.642450213432312 The number of items in train is: 8 The loss for epoch 7 1.205306276679039 The running loss is: 9.567102372646332 The number of items in train is: 8 The loss for epoch 8 1.1958877965807915 The running loss is: 6.858975321054459 The number of items in train is: 8 The loss for epoch 9 0.8573719151318073 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.748694 48 30755 ... 8.776375 49 30756 ... 8.766631 50 30757 ... 8.860359 51 30758 ... 9.283177 52 30759 ... 9.806849 53 30760 ... 10.339288 54 30761 ... 8.879484 55 30762 ... 8.919710 56 30763 ... 8.532740 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: uwmkpwjd wandb: Agent Starting Run: nqs19zfh with config: batch_size: 5 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: nqs19zfh
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 30.585171580314636 The number of items in train is: 8 The loss for epoch 0 3.8231464475393295 The running loss is: 7.479733049869537 The number of items in train is: 8 The loss for epoch 1 0.9349666312336922 The running loss is: 14.812964379787445 The number of items in train is: 8 The loss for epoch 2 1.8516205474734306 The running loss is: 23.101281613111496 The number of items in train is: 8 The loss for epoch 3 2.887660201638937 The running loss is: 8.297429740428925 The number of items in train is: 8 The loss for epoch 4 1.0371787175536156 The running loss is: 11.319238305091858 The number of items in train is: 8 The loss for epoch 5 1.4149047881364822 The running loss is: 15.387986540794373 The number of items in train is: 8 The loss for epoch 6 1.9234983175992966 The running loss is: 7.361476421356201 The number of items in train is: 8 The loss for epoch 7 0.9201845526695251 The running loss is: 7.971918612718582 The number of items in train is: 8 The loss for epoch 8 0.9964898265898228 The running loss is: 7.466582655906677 The number of items in train is: 8 The loss for epoch 9 0.9333228319883347 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.595874 48 30755 ... 7.394851 49 30756 ... 9.121369 50 30757 ... 8.088429 51 30758 ... 7.770226 52 30759 ... 7.506985 53 30760 ... 7.117284 54 30761 ... 6.944593 55 30762 ... 6.501761 56 30763 ... 8.242576 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nqs19zfh wandb: Agent Starting Run: bvh1t9d2 with config: batch_size: 5 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: bvh1t9d2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.538057163357735 The number of items in train is: 8 The loss for epoch 0 1.1922571454197168 The running loss is: 5.761137902736664 The number of items in train is: 8 The loss for epoch 1 0.720142237842083 The running loss is: 5.462558537721634 The number of items in train is: 8 The loss for epoch 2 0.6828198172152042 The running loss is: 4.668862268328667 The number of items in train is: 8 The loss for epoch 3 0.5836077835410833 The running loss is: 4.292478419840336 The number of items in train is: 8 The loss for epoch 4 0.536559802480042 The running loss is: 4.50324796885252 The number of items in train is: 8 The loss for epoch 5 0.562905996106565 The running loss is: 4.087679527699947 The number of items in train is: 8 The loss for epoch 6 0.5109599409624934 The running loss is: 4.086334981024265 The number of items in train is: 8 The loss for epoch 7 0.5107918726280332 The running loss is: 3.8916722163558006 The number of items in train is: 8 The loss for epoch 8 0.4864590270444751 The running loss is: 3.467552863061428 The number of items in train is: 8 The loss for epoch 9 0.4334441078826785 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.701126 48 30755 ... 10.617829 49 30756 ... 12.164164 50 30757 ... 13.254706 51 30758 ... 13.646997 52 30759 ... 14.125133 53 30760 ... 14.707135 54 30761 ... 15.274608 55 30762 ... 16.445068 56 30763 ... 17.851898 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bvh1t9d2 wandb: Agent Starting Run: 9s62j1js with config: batch_size: 5 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 9s62j1js
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.855386734008789 The number of items in train is: 8 The loss for epoch 0 1.2319233417510986 The running loss is: 6.053606033325195 The number of items in train is: 8 The loss for epoch 1 0.7567007541656494 The running loss is: 5.227531760931015 The number of items in train is: 8 The loss for epoch 2 0.6534414701163769 The running loss is: 4.913850545883179 The number of items in train is: 8 The loss for epoch 3 0.6142313182353973 The running loss is: 4.2742534428834915 The number of items in train is: 8 The loss for epoch 4 0.5342816803604364 The running loss is: 4.127818286418915 The number of items in train is: 8 The loss for epoch 5 0.5159772858023643 The running loss is: 3.93484203517437 The number of items in train is: 8 The loss for epoch 6 0.4918552543967962 The running loss is: 3.8864687383174896 The number of items in train is: 8 The loss for epoch 7 0.4858085922896862 The running loss is: 3.5512097850441933 The number of items in train is: 8 The loss for epoch 8 0.44390122313052416 The running loss is: 3.7246112003922462 The number of items in train is: 8 The loss for epoch 9 0.4655764000490308 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.418179 48 30755 ... 11.002016 49 30756 ... 12.337150 50 30757 ... 14.577664 51 30758 ... 16.363276 52 30759 ... 18.793327 53 30760 ... 21.699623 54 30761 ... 22.705818 55 30762 ... 23.938343 56 30763 ... 26.309530 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9s62j1js wandb: Agent Starting Run: cgoy7ndt with config: batch_size: 5 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: cgoy7ndt
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.800299257040024 The number of items in train is: 8 The loss for epoch 0 1.350037407130003 The running loss is: 6.719909101724625 The number of items in train is: 8 The loss for epoch 1 0.8399886377155781 The running loss is: 6.147316336631775 The number of items in train is: 8 The loss for epoch 2 0.7684145420789719 The running loss is: 5.55186402797699 The number of items in train is: 8 The loss for epoch 3 0.6939830034971237 The running loss is: 5.256973952054977 The number of items in train is: 8 The loss for epoch 4 0.6571217440068722 The running loss is: 4.77255941927433 The number of items in train is: 8 The loss for epoch 5 0.5965699274092913 The running loss is: 4.5062213987112045 The number of items in train is: 8 The loss for epoch 6 0.5632776748389006 The running loss is: 4.393381476402283 The number of items in train is: 8 The loss for epoch 7 0.5491726845502853 The running loss is: 4.38474141061306 The number of items in train is: 8 The loss for epoch 8 0.5480926763266325 The running loss is: 4.287996828556061 The number of items in train is: 8 The loss for epoch 9 0.5359996035695076 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.864444 48 30755 ... 11.327341 49 30756 ... 12.577684 50 30757 ... 14.237209 51 30758 ... 15.412471 52 30759 ... 17.135647 53 30760 ... 19.146513 54 30761 ... 20.154495 55 30762 ... 21.093636 56 30763 ... 22.628614 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cgoy7ndt wandb: Agent Starting Run: rtci6z3m with config: batch_size: 5 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: rtci6z3m
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.546842649579048 The number of items in train is: 8 The loss for epoch 0 1.193355331197381 The running loss is: 8.43789367377758 The number of items in train is: 8 The loss for epoch 1 1.0547367092221975 The running loss is: 4.924015037715435 The number of items in train is: 8 The loss for epoch 2 0.6155018797144294 The running loss is: 4.314315214753151 The number of items in train is: 8 The loss for epoch 3 0.5392894018441439 The running loss is: 4.0485982075333595 The number of items in train is: 8 The loss for epoch 4 0.5060747759416699 The running loss is: 4.1723093539476395 The number of items in train is: 8 The loss for epoch 5 0.5215386692434549 The running loss is: 3.7383037842810154 The number of items in train is: 8 The loss for epoch 6 0.4672879730351269 The running loss is: 3.931921534240246 The number of items in train is: 8 The loss for epoch 7 0.4914901917800307 The running loss is: 3.2728704884648323 The number of items in train is: 8 The loss for epoch 8 0.40910881105810404 The running loss is: 2.915392220020294 The number of items in train is: 8 The loss for epoch 9 0.3644240275025368 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.045798 48 30755 ... 10.157353 49 30756 ... 12.095802 50 30757 ... 12.449658 51 30758 ... 13.165064 52 30759 ... 13.813021 53 30760 ... 14.683218 54 30761 ... 14.160168 55 30762 ... 16.617773 56 30763 ... 18.648075 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rtci6z3m wandb: Agent Starting Run: w4b6zyi6 with config: batch_size: 5 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: w4b6zyi6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.17788852751255 The number of items in train is: 8 The loss for epoch 0 1.3972360659390688 The running loss is: 7.812009304761887 The number of items in train is: 8 The loss for epoch 1 0.9765011630952358 The running loss is: 5.429758012294769 The number of items in train is: 8 The loss for epoch 2 0.6787197515368462 The running loss is: 4.718441881239414 The number of items in train is: 8 The loss for epoch 3 0.5898052351549268 The running loss is: 4.047854967415333 The number of items in train is: 8 The loss for epoch 4 0.5059818709269166 The running loss is: 4.080165818333626 The number of items in train is: 8 The loss for epoch 5 0.5100207272917032 The running loss is: 3.7863672226667404 The number of items in train is: 8 The loss for epoch 6 0.47329590283334255 The running loss is: 3.964346893131733 The number of items in train is: 8 The loss for epoch 7 0.4955433616414666 The running loss is: 3.737635724246502 The number of items in train is: 8 The loss for epoch 8 0.46720446553081274 The running loss is: 3.944605380296707 The number of items in train is: 8 The loss for epoch 9 0.4930756725370884 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.542191 48 30755 ... 11.410826 49 30756 ... 11.835811 50 30757 ... 13.282190 51 30758 ... 14.953685 52 30759 ... 17.249598 53 30760 ... 20.018517 54 30761 ... 21.872402 55 30762 ... 22.083441 56 30763 ... 23.206171 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: w4b6zyi6 wandb: Agent Starting Run: 72mdqylc with config: batch_size: 5 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 72mdqylc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.393648847937584 The number of items in train is: 8 The loss for epoch 0 1.424206105992198 The running loss is: 9.387817233800888 The number of items in train is: 8 The loss for epoch 1 1.173477154225111 The running loss is: 5.967179387807846 The number of items in train is: 8 The loss for epoch 2 0.7458974234759808 The running loss is: 5.219222843647003 The number of items in train is: 8 The loss for epoch 3 0.6524028554558754 The running loss is: 5.00519023835659 The number of items in train is: 8 The loss for epoch 4 0.6256487797945738 The running loss is: 4.8075766414403915 The number of items in train is: 8 The loss for epoch 5 0.6009470801800489 The running loss is: 4.8459101021289825 The number of items in train is: 8 The loss for epoch 6 0.6057387627661228 The running loss is: 4.758179634809494 The number of items in train is: 8 The loss for epoch 7 0.5947724543511868 The running loss is: 4.346340090036392 The number of items in train is: 8 The loss for epoch 8 0.543292511254549 The running loss is: 4.356025725603104 The number of items in train is: 8 The loss for epoch 9 0.544503215700388 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.593064 48 30755 ... 11.480613 49 30756 ... 12.681897 50 30757 ... 13.842297 51 30758 ... 15.154292 52 30759 ... 17.142323 53 30760 ... 19.458761 54 30761 ... 19.006266 55 30762 ... 20.721127 56 30763 ... 22.308397 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 72mdqylc wandb: Agent Starting Run: 2zunql63 with config: batch_size: 5 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 2zunql63
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 7.381741419434547 The number of items in train is: 8 The loss for epoch 0 0.9227176774293184 The running loss is: 25.146740198135376 The number of items in train is: 8 The loss for epoch 1 3.143342524766922 The running loss is: 6.870392799377441 The number of items in train is: 8 The loss for epoch 2 0.8587990999221802 The running loss is: 8.847517043352127 The number of items in train is: 8 The loss for epoch 3 1.1059396304190159 The running loss is: 6.185571424663067 The number of items in train is: 8 The loss for epoch 4 0.7731964280828834 The running loss is: 5.277693450450897 The number of items in train is: 8 The loss for epoch 5 0.6597116813063622 The running loss is: 4.669010818004608 The number of items in train is: 8 The loss for epoch 6 0.583626352250576 The running loss is: 4.379348270595074 The number of items in train is: 8 The loss for epoch 7 0.5474185338243842 The running loss is: 4.096095941960812 The number of items in train is: 8 The loss for epoch 8 0.5120119927451015 The running loss is: 3.4440850913524628 The number of items in train is: 8 The loss for epoch 9 0.43051063641905785 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.933676 48 30755 ... 12.289965 49 30756 ... 13.424484 50 30757 ... 16.420580 51 30758 ... 15.872095 52 30759 ... 16.816118 53 30760 ... 16.920258 54 30761 ... 17.218924 55 30762 ... 19.419926 56 30763 ... 20.266211 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2zunql63 wandb: Agent Starting Run: ktoorkl6 with config: batch_size: 5 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ktoorkl6
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.426167532801628 The number of items in train is: 8 The loss for epoch 0 1.0532709416002035 The running loss is: 19.593581795692444 The number of items in train is: 8 The loss for epoch 1 2.4491977244615555 The running loss is: 7.231603503227234 The number of items in train is: 8 The loss for epoch 2 0.9039504379034042 The running loss is: 7.827229708433151 The number of items in train is: 8 The loss for epoch 3 0.9784037135541439 The running loss is: 6.041022434830666 The number of items in train is: 8 The loss for epoch 4 0.7551278043538332 The running loss is: 5.206323370337486 The number of items in train is: 8 The loss for epoch 5 0.6507904212921858 The running loss is: 4.792576283216476 The number of items in train is: 8 The loss for epoch 6 0.5990720354020596 The running loss is: 4.740285784006119 The number of items in train is: 8 The loss for epoch 7 0.5925357230007648 The running loss is: 4.0978415086865425 The number of items in train is: 8 The loss for epoch 8 0.5122301885858178 The running loss is: 4.568242058157921 The number of items in train is: 8 The loss for epoch 9 0.5710302572697401 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 19.106853 48 30755 ... 13.079176 49 30756 ... 16.165695 50 30757 ... 16.851734 51 30758 ... 19.214518 52 30759 ... 20.072746 53 30760 ... 22.310108 54 30761 ... 26.341103 55 30762 ... 25.220377 56 30763 ... 26.363348 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ktoorkl6 wandb: Agent Starting Run: ve8frys1 with config: batch_size: 5 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ve8frys1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.473036348819733 The number of items in train is: 8 The loss for epoch 0 1.0591295436024666 The running loss is: 29.853841066360474 The number of items in train is: 8 The loss for epoch 1 3.731730133295059 The running loss is: 7.707319617271423 The number of items in train is: 8 The loss for epoch 2 0.9634149521589279 The running loss is: 9.419616043567657 The number of items in train is: 8 The loss for epoch 3 1.1774520054459572 The running loss is: 6.854966193437576 The number of items in train is: 8 The loss for epoch 4 0.856870774179697 The running loss is: 6.6577427089214325 The number of items in train is: 8 The loss for epoch 5 0.8322178386151791 The running loss is: 5.656194299459457 The number of items in train is: 8 The loss for epoch 6 0.7070242874324322 The running loss is: 4.75788351893425 The number of items in train is: 8 The loss for epoch 7 0.5947354398667812 The running loss is: 4.642626956105232 The number of items in train is: 8 The loss for epoch 8 0.580328369513154 The running loss is: 4.646610513329506 The number of items in train is: 8 The loss for epoch 9 0.5808263141661882 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.130877 48 30755 ... 9.629366 49 30756 ... 11.600607 50 30757 ... 13.214843 51 30758 ... 13.308360 52 30759 ... 13.217094 53 30760 ... 13.293304 54 30761 ... 13.836164 55 30762 ... 15.439205 56 30763 ... 15.485834 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ve8frys1 wandb: Agent Starting Run: y3b1pfx7 with config: batch_size: 5 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: y3b1pfx7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 31.35861313343048 The number of items in train is: 8 The loss for epoch 0 3.91982664167881 The running loss is: 7.149083212018013 The number of items in train is: 8 The loss for epoch 1 0.8936354015022516 The running loss is: 20.340464413166046 The number of items in train is: 8 The loss for epoch 2 2.5425580516457558 The running loss is: 9.993232488632202 The number of items in train is: 8 The loss for epoch 3 1.2491540610790253 The running loss is: 6.315747439861298 The number of items in train is: 8 The loss for epoch 4 0.7894684299826622 The running loss is: 6.914129972457886 The number of items in train is: 8 The loss for epoch 5 0.8642662465572357 The running loss is: 8.855332881212234 The number of items in train is: 8 The loss for epoch 6 1.1069166101515293 The running loss is: 7.344175457954407 The number of items in train is: 8 The loss for epoch 7 0.9180219322443008 The running loss is: 6.533271104097366 The number of items in train is: 8 The loss for epoch 8 0.8166588880121708 The running loss is: 6.510418713092804 The number of items in train is: 8 The loss for epoch 9 0.8138023391366005 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.678343 48 30755 ... 10.423984 49 30756 ... 10.337050 50 30757 ... 9.651506 51 30758 ... 9.475930 52 30759 ... 9.294815 53 30760 ... 9.063562 54 30761 ... 9.299700 55 30762 ... 9.436070 56 30763 ... 9.489004 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: y3b1pfx7 wandb: Agent Starting Run: 2a35yhra with config: batch_size: 5 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 2a35yhra
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 24.757554709911346 The number of items in train is: 8 The loss for epoch 0 3.0946943387389183 The running loss is: 8.207798480987549 The number of items in train is: 8 The loss for epoch 1 1.0259748101234436 The running loss is: 17.192712485790253 The number of items in train is: 8 The loss for epoch 2 2.1490890607237816 The running loss is: 8.110509365797043 The number of items in train is: 8 The loss for epoch 3 1.0138136707246304 The running loss is: 8.176392793655396 The number of items in train is: 8 The loss for epoch 4 1.0220490992069244 The running loss is: 6.2795825600624084 The number of items in train is: 8 The loss for epoch 5 0.7849478200078011 The running loss is: 5.406195282936096 The number of items in train is: 8 The loss for epoch 6 0.675774410367012 The running loss is: 6.565752103924751 The number of items in train is: 8 The loss for epoch 7 0.8207190129905939 The running loss is: 4.730227127671242 The number of items in train is: 8 The loss for epoch 8 0.5912783909589052 The running loss is: 5.622362457215786 The number of items in train is: 8 The loss for epoch 9 0.7027953071519732 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.653543 48 30755 ... 11.666175 49 30756 ... 12.358805 50 30757 ... 12.517196 51 30758 ... 10.681630 52 30759 ... 11.495918 53 30760 ... 12.448450 54 30761 ... 13.540613 55 30762 ... 13.895693 56 30763 ... 14.009988 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2a35yhra wandb: Agent Starting Run: wi4kd4m5 with config: batch_size: 5 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: wi4kd4m5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 28.664043128490448 The number of items in train is: 8 The loss for epoch 0 3.583005391061306 The running loss is: 9.607732936739922 The number of items in train is: 8 The loss for epoch 1 1.2009666170924902 The running loss is: 20.923362255096436 The number of items in train is: 8 The loss for epoch 2 2.6154202818870544 The running loss is: 10.49313597381115 The number of items in train is: 8 The loss for epoch 3 1.3116419967263937 The running loss is: 8.878450512886047 The number of items in train is: 8 The loss for epoch 4 1.109806314110756 The running loss is: 7.381859600543976 The number of items in train is: 8 The loss for epoch 5 0.922732450067997 The running loss is: 7.193650335073471 The number of items in train is: 8 The loss for epoch 6 0.8992062918841839 The running loss is: 7.023971408605576 The number of items in train is: 8 The loss for epoch 7 0.877996426075697 The running loss is: 7.099064201116562 The number of items in train is: 8 The loss for epoch 8 0.8873830251395702 The running loss is: 7.1568794548511505 The number of items in train is: 8 The loss for epoch 9 0.8946099318563938 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.627852 48 30755 ... 9.286406 49 30756 ... 9.280918 50 30757 ... 9.513455 51 30758 ... 9.275638 52 30759 ... 9.122575 53 30760 ... 8.958853 54 30761 ... 9.268032 55 30762 ... 9.285326 56 30763 ... 9.277149 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wi4kd4m5 wandb: Agent Starting Run: pkhq8vpm with config: batch_size: 5 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: pkhq8vpm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.593297243118286 The number of items in train is: 8 The loss for epoch 0 1.1991621553897858 The running loss is: 5.726599365472794 The number of items in train is: 8 The loss for epoch 1 0.7158249206840992 The running loss is: 5.369395866990089 The number of items in train is: 8 The loss for epoch 2 0.6711744833737612 The running loss is: 4.905842535197735 The number of items in train is: 8 The loss for epoch 3 0.6132303168997169 The running loss is: 4.665864020586014 The number of items in train is: 8 The loss for epoch 4 0.5832330025732517 The running loss is: 4.398593630641699 The number of items in train is: 8 The loss for epoch 5 0.5498242038302124 The running loss is: 4.1014852412045 The number of items in train is: 8 The loss for epoch 6 0.5126856551505625 The running loss is: 4.372003979980946 The number of items in train is: 8 The loss for epoch 7 0.5465004974976182 The running loss is: 4.193980306386948 The number of items in train is: 8 The loss for epoch 8 0.5242475382983685 The running loss is: 4.117913290858269 The number of items in train is: 8 The loss for epoch 9 0.5147391613572836 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.286014 48 30755 ... 9.692314 49 30756 ... 10.136795 50 30757 ... 11.271959 51 30758 ... 14.237857 52 30759 ... 14.391908 53 30760 ... 14.427896 54 30761 ... 14.958170 55 30762 ... 14.813080 56 30763 ... 16.110613 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pkhq8vpm wandb: Agent Starting Run: sxces3b8 with config: batch_size: 5 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sxces3b8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.55923479795456 The number of items in train is: 8 The loss for epoch 0 1.31990434974432 The running loss is: 6.29985573887825 The number of items in train is: 8 The loss for epoch 1 0.7874819673597813 The running loss is: 5.972567766904831 The number of items in train is: 8 The loss for epoch 2 0.7465709708631039 The running loss is: 5.386669382452965 The number of items in train is: 8 The loss for epoch 3 0.6733336728066206 The running loss is: 5.082741692662239 The number of items in train is: 8 The loss for epoch 4 0.6353427115827799 The running loss is: 4.794009312987328 The number of items in train is: 8 The loss for epoch 5 0.599251164123416 The running loss is: 4.415606319904327 The number of items in train is: 8 The loss for epoch 6 0.5519507899880409 The running loss is: 4.496867328882217 The number of items in train is: 8 The loss for epoch 7 0.5621084161102772 The running loss is: 4.166094034910202 The number of items in train is: 8 The loss for epoch 8 0.5207617543637753 The running loss is: 4.42698822170496 The number of items in train is: 8 The loss for epoch 9 0.55337352771312 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.020846 48 30755 ... 11.632212 49 30756 ... 10.593838 50 30757 ... 11.659601 51 30758 ... 13.485876 52 30759 ... 14.449990 53 30760 ... 15.599710 54 30761 ... 15.936440 55 30762 ... 16.600374 56 30763 ... 17.529819 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sxces3b8 wandb: Agent Starting Run: u6jqkn40 with config: batch_size: 5 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: u6jqkn40
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.690836369991302 The number of items in train is: 8 The loss for epoch 0 1.3363545462489128 The running loss is: 6.87058699131012 The number of items in train is: 8 The loss for epoch 1 0.858823373913765 The running loss is: 6.5186139941215515 The number of items in train is: 8 The loss for epoch 2 0.8148267492651939 The running loss is: 5.737721726298332 The number of items in train is: 8 The loss for epoch 3 0.7172152157872915 The running loss is: 5.308574818074703 The number of items in train is: 8 The loss for epoch 4 0.6635718522593379 The running loss is: 4.752960331737995 The number of items in train is: 8 The loss for epoch 5 0.5941200414672494 The running loss is: 5.247718453407288 The number of items in train is: 8 The loss for epoch 6 0.655964806675911 The running loss is: 5.271296665072441 The number of items in train is: 8 The loss for epoch 7 0.6589120831340551 The running loss is: 5.179829057306051 The number of items in train is: 8 The loss for epoch 8 0.6474786321632564 The running loss is: 4.976058304309845 The number of items in train is: 8 The loss for epoch 9 0.6220072880387306 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.681442 48 30755 ... 14.238687 49 30756 ... 6.291836 50 30757 ... 6.188722 51 30758 ... 4.669639 52 30759 ... 3.085255 53 30760 ... 1.716406 54 30761 ... 1.458660 55 30762 ... 1.863988 56 30763 ... 0.911042 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u6jqkn40 wandb: Agent Starting Run: 6zornv2x with config: batch_size: 5 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 6zornv2x
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.969246834516525 The number of items in train is: 8 The loss for epoch 0 1.3711558543145657 The running loss is: 7.660423636436462 The number of items in train is: 8 The loss for epoch 1 0.9575529545545578 The running loss is: 5.484717682003975 The number of items in train is: 8 The loss for epoch 2 0.6855897102504969 The running loss is: 4.548533156514168 The number of items in train is: 8 The loss for epoch 3 0.568566644564271 The running loss is: 4.64577092975378 The number of items in train is: 8 The loss for epoch 4 0.5807213662192225 The running loss is: 4.139353573322296 The number of items in train is: 8 The loss for epoch 5 0.517419196665287 The running loss is: 4.1177546083927155 The number of items in train is: 8 The loss for epoch 6 0.5147193260490894 The running loss is: 4.4892129227519035 The number of items in train is: 8 The loss for epoch 7 0.5611516153439879 The running loss is: 3.7275320515036583 The number of items in train is: 8 The loss for epoch 8 0.4659415064379573 The running loss is: 4.080616444349289 The number of items in train is: 8 The loss for epoch 9 0.5100770555436611 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.373961 48 30755 ... 9.177148 49 30756 ... 10.464656 50 30757 ... 11.428827 51 30758 ... 13.522120 52 30759 ... 14.078564 53 30760 ... 14.482571 54 30761 ... 14.862568 55 30762 ... 14.067533 56 30763 ... 16.003128 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6zornv2x wandb: Agent Starting Run: g32bev53 with config: batch_size: 5 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: g32bev53
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.977671682834625 The number of items in train is: 8 The loss for epoch 0 1.4972089603543282 The running loss is: 9.989576682448387 The number of items in train is: 8 The loss for epoch 1 1.2486970853060484 The running loss is: 6.243221879005432 The number of items in train is: 8 The loss for epoch 2 0.780402734875679 The running loss is: 5.672764778137207 The number of items in train is: 8 The loss for epoch 3 0.7090955972671509 The running loss is: 5.184059038758278 The number of items in train is: 8 The loss for epoch 4 0.6480073798447847 The running loss is: 4.671211451292038 The number of items in train is: 8 The loss for epoch 5 0.5839014314115047 The running loss is: 4.3249501734972 The number of items in train is: 8 The loss for epoch 6 0.54061877168715 The running loss is: 4.325228467583656 The number of items in train is: 8 The loss for epoch 7 0.540653558447957 The running loss is: 3.901700511574745 The number of items in train is: 8 The loss for epoch 8 0.48771256394684315 The running loss is: 4.088552720844746 The number of items in train is: 8 The loss for epoch 9 0.5110690901055932 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.630117 48 30755 ... 11.711292 49 30756 ... 11.650674 50 30757 ... 12.819802 51 30758 ... 13.787545 52 30759 ... 15.544405 53 30760 ... 17.753273 54 30761 ... 17.949461 55 30762 ... 17.935369 56 30763 ... 19.329866 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: g32bev53 wandb: Agent Starting Run: 392dutrx with config: batch_size: 5 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 392dutrx
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.297696448862553 The number of items in train is: 8 The loss for epoch 0 1.537212056107819 The running loss is: 8.727506756782532 The number of items in train is: 8 The loss for epoch 1 1.0909383445978165 The running loss is: 6.73730343580246 The number of items in train is: 8 The loss for epoch 2 0.8421629294753075 The running loss is: 5.71261340379715 The number of items in train is: 8 The loss for epoch 3 0.7140766754746437 The running loss is: 5.148693040013313 The number of items in train is: 8 The loss for epoch 4 0.6435866300016642 The running loss is: 4.604528576135635 The number of items in train is: 8 The loss for epoch 5 0.5755660720169544 The running loss is: 4.971816077828407 The number of items in train is: 8 The loss for epoch 6 0.6214770097285509 The running loss is: 5.4065783098340034 The number of items in train is: 8 The loss for epoch 7 0.6758222887292504 The running loss is: 6.092674419283867 The number of items in train is: 8 The loss for epoch 8 0.7615843024104834 The running loss is: 5.4708035588264465 The number of items in train is: 8 The loss for epoch 9 0.6838504448533058 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.954944 48 30755 ... 14.330663 49 30756 ... 7.776496 50 30757 ... 7.571167 51 30758 ... 6.841137 52 30759 ... 6.501884 53 30760 ... 6.554061 54 30761 ... 5.964196 55 30762 ... 6.573196 56 30763 ... 5.763231 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 392dutrx wandb: Agent Starting Run: 6bg9psl8 with config: batch_size: 5 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 6bg9psl8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.58815935254097 The number of items in train is: 8 The loss for epoch 0 1.1985199190676212 The running loss is: 19.209636002779007 The number of items in train is: 8 The loss for epoch 1 2.401204500347376 The running loss is: 7.738292142748833 The number of items in train is: 8 The loss for epoch 2 0.9672865178436041 The running loss is: 7.697542876005173 The number of items in train is: 8 The loss for epoch 3 0.9621928595006466 The running loss is: 6.6694705337285995 The number of items in train is: 8 The loss for epoch 4 0.8336838167160749 The running loss is: 4.881348237395287 The number of items in train is: 8 The loss for epoch 5 0.6101685296744108 The running loss is: 5.010814595967531 The number of items in train is: 8 The loss for epoch 6 0.6263518244959414 The running loss is: 5.574698239564896 The number of items in train is: 8 The loss for epoch 7 0.696837279945612 The running loss is: 4.987785197794437 The number of items in train is: 8 The loss for epoch 8 0.6234731497243047 The running loss is: 4.6631989777088165 The number of items in train is: 8 The loss for epoch 9 0.5828998722136021 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.443740 48 30755 ... 12.292900 49 30756 ... 12.623646 50 30757 ... 12.933738 51 30758 ... 14.440177 52 30759 ... 14.580387 53 30760 ... 13.962379 54 30761 ... 13.850780 55 30762 ... 11.960580 56 30763 ... 13.511158 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6bg9psl8 wandb: Agent Starting Run: v3ddsk1y with config: batch_size: 5 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: v3ddsk1y
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.516865834593773 The number of items in train is: 8 The loss for epoch 0 1.1896082293242216 The running loss is: 23.52896511554718 The number of items in train is: 8 The loss for epoch 1 2.9411206394433975 The running loss is: 7.973791569471359 The number of items in train is: 8 The loss for epoch 2 0.9967239461839199 The running loss is: 9.503426253795624 The number of items in train is: 8 The loss for epoch 3 1.187928281724453 The running loss is: 6.929812371730804 The number of items in train is: 8 The loss for epoch 4 0.8662265464663506 The running loss is: 6.647747039794922 The number of items in train is: 8 The loss for epoch 5 0.8309683799743652 The running loss is: 5.848790943622589 The number of items in train is: 8 The loss for epoch 6 0.7310988679528236 The running loss is: 5.039943665266037 The number of items in train is: 8 The loss for epoch 7 0.6299929581582546 The running loss is: 5.0003694742918015 The number of items in train is: 8 The loss for epoch 8 0.6250461842864752 The running loss is: 4.339855998754501 The number of items in train is: 8 The loss for epoch 9 0.5424819998443127 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.040102 48 30755 ... 10.688581 49 30756 ... 11.481241 50 30757 ... 12.348065 51 30758 ... 13.985934 52 30759 ... 14.072204 53 30760 ... 13.699750 54 30761 ... 15.169630 55 30762 ... 14.083228 56 30763 ... 15.484697 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v3ddsk1y wandb: Agent Starting Run: 2s9xavbj with config: batch_size: 5 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 2s9xavbj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.567524492740631 The number of items in train is: 8 The loss for epoch 0 1.1959405615925789 The running loss is: 21.582385897636414 The number of items in train is: 8 The loss for epoch 1 2.6977982372045517 The running loss is: 8.409520030021667 The number of items in train is: 8 The loss for epoch 2 1.0511900037527084 The running loss is: 8.695797711610794 The number of items in train is: 8 The loss for epoch 3 1.0869747139513493 The running loss is: 7.450117468833923 The number of items in train is: 8 The loss for epoch 4 0.9312646836042404 The running loss is: 7.004117637872696 The number of items in train is: 8 The loss for epoch 5 0.875514704734087 The running loss is: 6.92552524805069 The number of items in train is: 8 The loss for epoch 6 0.8656906560063362 The running loss is: 6.250691711902618 The number of items in train is: 8 The loss for epoch 7 0.7813364639878273 The running loss is: 6.194503873586655 The number of items in train is: 8 The loss for epoch 8 0.7743129841983318 The running loss is: 6.021981239318848 The number of items in train is: 8 The loss for epoch 9 0.752747654914856 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.852979 48 30755 ... 10.419504 49 30756 ... 7.349399 50 30757 ... 7.643004 51 30758 ... 8.218159 52 30759 ... 7.719066 53 30760 ... 7.764626 54 30761 ... 5.754187 55 30762 ... 3.776912 56 30763 ... 4.989199 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2s9xavbj wandb: Agent Starting Run: bsztwaei with config: batch_size: 5 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: bsztwaei
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.21518623828888 The number of items in train is: 8 The loss for epoch 0 2.77689827978611 The running loss is: 7.293961197137833 The number of items in train is: 8 The loss for epoch 1 0.9117451496422291 The running loss is: 11.329310700297356 The number of items in train is: 8 The loss for epoch 2 1.4161638375371695 The running loss is: 8.372911632061005 The number of items in train is: 8 The loss for epoch 3 1.0466139540076256 The running loss is: 7.673612356185913 The number of items in train is: 8 The loss for epoch 4 0.9592015445232391 The running loss is: 6.563172549009323 The number of items in train is: 8 The loss for epoch 5 0.8203965686261654 The running loss is: 7.0265980660915375 The number of items in train is: 8 The loss for epoch 6 0.8783247582614422 The running loss is: 7.765732854604721 The number of items in train is: 8 The loss for epoch 7 0.9707166068255901 The running loss is: 5.755122497677803 The number of items in train is: 8 The loss for epoch 8 0.7193903122097254 The running loss is: 6.191661715507507 The number of items in train is: 8 The loss for epoch 9 0.7739577144384384 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.349856 48 30755 ... 14.594925 49 30756 ... 8.787890 50 30757 ... 10.063706 51 30758 ... 12.845061 52 30759 ... 11.149172 53 30760 ... 12.277591 54 30761 ... 10.631094 55 30762 ... 7.704789 56 30763 ... 11.401577 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bsztwaei wandb: Agent Starting Run: 0bra3ihp with config: batch_size: 5 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 0bra3ihp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 30.714923441410065 The number of items in train is: 8 The loss for epoch 0 3.839365430176258 The running loss is: 8.897786349058151 The number of items in train is: 8 The loss for epoch 1 1.112223293632269 The running loss is: 14.070866167545319 The number of items in train is: 8 The loss for epoch 2 1.7588582709431648 The running loss is: 6.147258788347244 The number of items in train is: 8 The loss for epoch 3 0.7684073485434055 The running loss is: 8.751449584960938 The number of items in train is: 8 The loss for epoch 4 1.0939311981201172 The running loss is: 6.525316268205643 The number of items in train is: 8 The loss for epoch 5 0.8156645335257053 The running loss is: 6.006653621792793 The number of items in train is: 8 The loss for epoch 6 0.7508317027240992 The running loss is: 5.657045960426331 The number of items in train is: 8 The loss for epoch 7 0.7071307450532913 The running loss is: 5.266755282878876 The number of items in train is: 8 The loss for epoch 8 0.6583444103598595 The running loss is: 4.700027108192444 The number of items in train is: 8 The loss for epoch 9 0.5875033885240555 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 13.381409 48 30755 ... 11.875984 49 30756 ... 7.917060 50 30757 ... 8.531528 51 30758 ... 9.563288 52 30759 ... 10.676108 53 30760 ... 9.577621 54 30761 ... 7.140139 55 30762 ... 5.638883 56 30763 ... 8.996849 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0bra3ihp wandb: Agent Starting Run: llavyg4a with config: batch_size: 5 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: llavyg4a
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 25.851928889751434 The number of items in train is: 8 The loss for epoch 0 3.2314911112189293 The running loss is: 9.666099555790424 The number of items in train is: 8 The loss for epoch 1 1.208262444473803 The running loss is: 17.461497962474823 The number of items in train is: 8 The loss for epoch 2 2.182687245309353 The running loss is: 11.974535584449768 The number of items in train is: 8 The loss for epoch 3 1.496816948056221 The running loss is: 7.328074067831039 The number of items in train is: 8 The loss for epoch 4 0.9160092584788799 The running loss is: 7.055084586143494 The number of items in train is: 8 The loss for epoch 5 0.8818855732679367 The running loss is: 7.310244619846344 The number of items in train is: 8 The loss for epoch 6 0.913780577480793 The running loss is: 8.090441286563873 The number of items in train is: 8 The loss for epoch 7 1.0113051608204842 The running loss is: 6.187301903963089 The number of items in train is: 8 The loss for epoch 8 0.7734127379953861 The running loss is: 7.4150442481040955 The number of items in train is: 8 The loss for epoch 9 0.9268805310130119 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.429152 48 30755 ... 9.470564 49 30756 ... 7.614705 50 30757 ... 7.615232 51 30758 ... 6.435814 52 30759 ... 6.161608 53 30760 ... 6.723379 54 30761 ... 6.004760 55 30762 ... 5.973912 56 30763 ... 6.007796 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: llavyg4a wandb: Agent Starting Run: cva4oexj with config: batch_size: 5 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: cva4oexj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.988087236881256 The number of items in train is: 8 The loss for epoch 0 1.373510904610157 The running loss is: 6.130865275859833 The number of items in train is: 8 The loss for epoch 1 0.7663581594824791 The running loss is: 6.174404188990593 The number of items in train is: 8 The loss for epoch 2 0.7718005236238241 The running loss is: 5.187673270702362 The number of items in train is: 8 The loss for epoch 3 0.6484591588377953 The running loss is: 4.837460793554783 The number of items in train is: 8 The loss for epoch 4 0.6046825991943479 The running loss is: 4.544721320271492 The number of items in train is: 8 The loss for epoch 5 0.5680901650339365 The running loss is: 4.069583348929882 The number of items in train is: 8 The loss for epoch 6 0.5086979186162353 The running loss is: 3.594746358692646 The number of items in train is: 8 The loss for epoch 7 0.44934329483658075 The running loss is: 3.7067486941814423 The number of items in train is: 8 The loss for epoch 8 0.4633435867726803 The running loss is: 4.295153647661209 The number of items in train is: 8 The loss for epoch 9 0.5368942059576511 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 4.944542 48 30755 ... 9.224927 49 30756 ... 15.323524 50 30757 ... 8.676831 51 30758 ... 7.893984 52 30759 ... 5.685059 53 30760 ... 7.073691 54 30761 ... 5.709319 55 30762 ... 6.393231 56 30763 ... 8.572709 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cva4oexj wandb: Agent Starting Run: t7i777b8 with config: batch_size: 5 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: t7i777b8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.518769428133965 The number of items in train is: 8 The loss for epoch 0 1.3148461785167456 The running loss is: 5.923578202724457 The number of items in train is: 8 The loss for epoch 1 0.7404472753405571 The running loss is: 5.645459771156311 The number of items in train is: 8 The loss for epoch 2 0.7056824713945389 The running loss is: 4.980411872267723 The number of items in train is: 8 The loss for epoch 3 0.6225514840334654 The running loss is: 4.530896496027708 The number of items in train is: 8 The loss for epoch 4 0.5663620620034635 The running loss is: 4.397785879671574 The number of items in train is: 8 The loss for epoch 5 0.5497232349589467 The running loss is: 4.29297462105751 The number of items in train is: 8 The loss for epoch 6 0.5366218276321888 The running loss is: 4.506956547498703 The number of items in train is: 8 The loss for epoch 7 0.5633695684373379 The running loss is: 4.146910917013884 The number of items in train is: 8 The loss for epoch 8 0.5183638646267354 The running loss is: 4.1442591547966 The number of items in train is: 8 The loss for epoch 9 0.518032394349575 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.146306 48 30755 ... 10.201323 49 30756 ... 10.728070 50 30757 ... 5.294060 51 30758 ... 4.995479 52 30759 ... 3.408786 53 30760 ... 1.815881 54 30761 ... 1.260006 55 30762 ... 0.527362 56 30763 ... -0.697772 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: t7i777b8 wandb: Agent Starting Run: 5w26imkb with config: batch_size: 5 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 5w26imkb
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.894125536084175 The number of items in train is: 7 The loss for epoch 0 1.2705893622977393 The running loss is: 5.564131408929825 The number of items in train is: 7 The loss for epoch 1 0.7948759155614036 The running loss is: 5.312940925359726 The number of items in train is: 7 The loss for epoch 2 0.7589915607656751 The running loss is: 5.099969863891602 The number of items in train is: 7 The loss for epoch 3 0.7285671234130859 The running loss is: 4.625931918621063 The number of items in train is: 7 The loss for epoch 4 0.6608474169458661 The running loss is: 4.33843432366848 The number of items in train is: 7 The loss for epoch 5 0.61977633195264 The running loss is: 4.1866855174303055 The number of items in train is: 7 The loss for epoch 6 0.5980979310614722 The running loss is: 3.9940166771411896 The number of items in train is: 7 The loss for epoch 7 0.5705738110201699 The running loss is: 3.970025137066841 The number of items in train is: 7 The loss for epoch 8 0.5671464481524059 The running loss is: 3.9160776883363724 The number of items in train is: 7 The loss for epoch 9 0.5594396697623389 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.635190 48 30755 ... 7.895287 49 30756 ... 8.697375 50 30757 ... 1.898233 51 30758 ... 0.671871 52 30759 ... -4.522796 53 30760 ... -9.575880 54 30761 ... -11.591200 55 30762 ... -12.904318 56 30763 ... -14.246117 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5w26imkb wandb: Agent Starting Run: ecutckzr with config: batch_size: 5 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ecutckzr
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.887800768017769 The number of items in train is: 8 The loss for epoch 0 1.485975096002221 The running loss is: 12.321395099163055 The number of items in train is: 8 The loss for epoch 1 1.540174387395382 The running loss is: 6.093603327870369 The number of items in train is: 8 The loss for epoch 2 0.7617004159837961 The running loss is: 5.896246939897537 The number of items in train is: 8 The loss for epoch 3 0.7370308674871922 The running loss is: 5.005269628018141 The number of items in train is: 8 The loss for epoch 4 0.6256587035022676 The running loss is: 4.166861433535814 The number of items in train is: 8 The loss for epoch 5 0.5208576791919768 The running loss is: 4.017287373542786 The number of items in train is: 8 The loss for epoch 6 0.5021609216928482 The running loss is: 3.493396818637848 The number of items in train is: 8 The loss for epoch 7 0.436674602329731 The running loss is: 3.3815640807151794 The number of items in train is: 8 The loss for epoch 8 0.42269551008939743 The running loss is: 3.7725103944540024 The number of items in train is: 8 The loss for epoch 9 0.4715637993067503 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 3.423247 48 30755 ... 7.961720 49 30756 ... 16.994312 50 30757 ... 8.721828 51 30758 ... 7.517489 52 30759 ... 5.470166 53 30760 ... 6.306812 54 30761 ... 4.383795 55 30762 ... 5.612186 56 30763 ... 9.138195 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ecutckzr wandb: Agent Starting Run: 1l8cw7d1 with config: batch_size: 5 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 1l8cw7d1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.111236214637756 The number of items in train is: 8 The loss for epoch 0 1.3889045268297195 The running loss is: 10.37959161400795 The number of items in train is: 8 The loss for epoch 1 1.2974489517509937 The running loss is: 5.6099735498428345 The number of items in train is: 8 The loss for epoch 2 0.7012466937303543 The running loss is: 5.337096557021141 The number of items in train is: 8 The loss for epoch 3 0.6671370696276426 The running loss is: 4.966018117964268 The number of items in train is: 8 The loss for epoch 4 0.6207522647455335 The running loss is: 4.362881056964397 The number of items in train is: 8 The loss for epoch 5 0.5453601321205497 The running loss is: 4.704715624451637 The number of items in train is: 8 The loss for epoch 6 0.5880894530564547 The running loss is: 4.736382022500038 The number of items in train is: 8 The loss for epoch 7 0.5920477528125048 The running loss is: 4.6529160887002945 The number of items in train is: 8 The loss for epoch 8 0.5816145110875368 The running loss is: 4.296320855617523 The number of items in train is: 8 The loss for epoch 9 0.5370401069521904 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.446108 48 30755 ... 11.343395 49 30756 ... 11.887388 50 30757 ... 7.717669 51 30758 ... 7.751965 52 30759 ... 7.669600 53 30760 ... 7.350806 54 30761 ... 7.241406 55 30762 ... 6.712784 56 30763 ... 5.831652 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1l8cw7d1 wandb: Agent Starting Run: nv44ow12 with config: batch_size: 5 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: nv44ow12
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.599854245781898 The number of items in train is: 7 The loss for epoch 0 1.3714077493974142 The running loss is: 7.652046352624893 The number of items in train is: 7 The loss for epoch 1 1.0931494789464133 The running loss is: 5.750150084495544 The number of items in train is: 7 The loss for epoch 2 0.821450012070792 The running loss is: 5.102803453803062 The number of items in train is: 7 The loss for epoch 3 0.7289719219718661 The running loss is: 4.570298731327057 The number of items in train is: 7 The loss for epoch 4 0.6528998187610081 The running loss is: 4.174758642911911 The number of items in train is: 7 The loss for epoch 5 0.5963940918445587 The running loss is: 4.100458398461342 The number of items in train is: 7 The loss for epoch 6 0.5857797712087631 The running loss is: 3.8777418956160545 The number of items in train is: 7 The loss for epoch 7 0.5539631279451507 The running loss is: 4.013542205095291 The number of items in train is: 7 The loss for epoch 8 0.5733631721564701 The running loss is: 3.7913883179426193 The number of items in train is: 7 The loss for epoch 9 0.5416269025632313 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.821921 48 30755 ... 7.197848 49 30756 ... 8.571998 50 30757 ... 2.402885 51 30758 ... 1.511044 52 30759 ... -4.203164 53 30760 ... -8.865639 54 30761 ... -11.548653 55 30762 ... -11.881847 56 30763 ... -11.955574 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nv44ow12 wandb: Agent Starting Run: obtghbzd with config: batch_size: 5 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: obtghbzd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.997101932764053 The number of items in train is: 8 The loss for epoch 0 1.2496377415955067 The running loss is: 25.993660151958466 The number of items in train is: 8 The loss for epoch 1 3.249207518994808 The running loss is: 8.482003197073936 The number of items in train is: 8 The loss for epoch 2 1.060250399634242 The running loss is: 9.39265489578247 The number of items in train is: 8 The loss for epoch 3 1.1740818619728088 The running loss is: 6.332621991634369 The number of items in train is: 8 The loss for epoch 4 0.7915777489542961 The running loss is: 6.0705039873719215 The number of items in train is: 8 The loss for epoch 5 0.7588129984214902 The running loss is: 4.406190410256386 The number of items in train is: 8 The loss for epoch 6 0.5507738012820482 The running loss is: 4.119934968650341 The number of items in train is: 8 The loss for epoch 7 0.5149918710812926 The running loss is: 3.609408460557461 The number of items in train is: 8 The loss for epoch 8 0.4511760575696826 The running loss is: 3.869946077466011 The number of items in train is: 8 The loss for epoch 9 0.4837432596832514 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 3.105083 48 30755 ... 7.483217 49 30756 ... 16.624786 50 30757 ... 13.093364 51 30758 ... 11.839172 52 30759 ... 8.308400 53 30760 ... 7.560250 54 30761 ... 4.328191 55 30762 ... 7.659884 56 30763 ... 15.055558 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: obtghbzd wandb: Agent Starting Run: zsuiwysp with config: batch_size: 5 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: zsuiwysp
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.068325817584991 The number of items in train is: 8 The loss for epoch 0 1.258540727198124 The running loss is: 24.007892698049545 The number of items in train is: 8 The loss for epoch 1 3.000986587256193 The running loss is: 9.265377074480057 The number of items in train is: 8 The loss for epoch 2 1.158172134310007 The running loss is: 8.75785793364048 The number of items in train is: 8 The loss for epoch 3 1.09473224170506 The running loss is: 6.427554905414581 The number of items in train is: 8 The loss for epoch 4 0.8034443631768227 The running loss is: 5.975850880146027 The number of items in train is: 8 The loss for epoch 5 0.7469813600182533 The running loss is: 5.8006473779678345 The number of items in train is: 8 The loss for epoch 6 0.7250809222459793 The running loss is: 5.041416525840759 The number of items in train is: 8 The loss for epoch 7 0.6301770657300949 The running loss is: 5.184276461601257 The number of items in train is: 8 The loss for epoch 8 0.6480345577001572 The running loss is: 4.828471004962921 The number of items in train is: 8 The loss for epoch 9 0.6035588756203651 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.685125 48 30755 ... 10.141446 49 30756 ... 10.176304 50 30757 ... 8.534622 51 30758 ... 8.422894 52 30759 ... 9.165926 53 30760 ... 8.473968 54 30761 ... 8.556828 55 30762 ... 8.253967 56 30763 ... 7.639414 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: zsuiwysp wandb: Agent Starting Run: becfxy1h with config: batch_size: 5 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: becfxy1h
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.460621416568756 The number of items in train is: 7 The loss for epoch 0 1.2086602023669653 The running loss is: 18.102233052253723 The number of items in train is: 7 The loss for epoch 1 2.5860332931791032 The running loss is: 6.512787103652954 The number of items in train is: 7 The loss for epoch 2 0.9303981576647077 The running loss is: 6.982966423034668 The number of items in train is: 7 The loss for epoch 3 0.9975666318620954 The running loss is: 6.328465700149536 The number of items in train is: 7 The loss for epoch 4 0.9040665285927909 The running loss is: 5.637281686067581 The number of items in train is: 7 The loss for epoch 5 0.8053259551525116 The running loss is: 5.099390223622322 The number of items in train is: 7 The loss for epoch 6 0.7284843176603317 The running loss is: 5.197691917419434 The number of items in train is: 7 The loss for epoch 7 0.7425274167742048 The running loss is: 4.571497932076454 The number of items in train is: 7 The loss for epoch 8 0.6530711331537792 The running loss is: 4.5052072405815125 The number of items in train is: 7 The loss for epoch 9 0.6436010343687875 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.477296 48 30755 ... 12.216771 49 30756 ... 16.080605 50 30757 ... 7.985258 51 30758 ... 5.157682 52 30759 ... 5.292890 53 30760 ... 8.751102 54 30761 ... 6.112296 55 30762 ... 5.893753 56 30763 ... 2.171442 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: becfxy1h wandb: Agent Starting Run: ft6dluaf with config: batch_size: 5 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ft6dluaf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 51.745544634759426 The number of items in train is: 8 The loss for epoch 0 6.468193079344928 The running loss is: 7.415382172912359 The number of items in train is: 8 The loss for epoch 1 0.9269227716140449 The running loss is: 26.316525518894196 The number of items in train is: 8 The loss for epoch 2 3.2895656898617744 The running loss is: 10.214841291308403 The number of items in train is: 8 The loss for epoch 3 1.2768551614135504 The running loss is: 8.170285634696484 The number of items in train is: 8 The loss for epoch 4 1.0212857043370605 The running loss is: 7.0604946203529835 The number of items in train is: 8 The loss for epoch 5 0.8825618275441229 The running loss is: 7.179498016834259 The number of items in train is: 8 The loss for epoch 6 0.8974372521042824 The running loss is: 6.191406540572643 The number of items in train is: 8 The loss for epoch 7 0.7739258175715804 The running loss is: 5.223570495843887 The number of items in train is: 8 The loss for epoch 8 0.6529463119804859 The running loss is: 4.520765490829945 The number of items in train is: 8 The loss for epoch 9 0.5650956863537431 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 4.974351 48 30755 ... 8.985002 49 30756 ... 12.309855 50 30757 ... 13.367251 51 30758 ... 9.941705 52 30759 ... 8.789341 53 30760 ... 6.738607 54 30761 ... 6.319057 55 30762 ... 8.400917 56 30763 ... 14.151873 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ft6dluaf wandb: Agent Starting Run: 2arfilkc with config: batch_size: 5 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 2arfilkc
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 41.46526186168194 The number of items in train is: 8 The loss for epoch 0 5.183157732710242 The running loss is: 9.50710366666317 The number of items in train is: 8 The loss for epoch 1 1.1883879583328962 The running loss is: 16.354243218898773 The number of items in train is: 8 The loss for epoch 2 2.0442804023623466 The running loss is: 13.173823714256287 The number of items in train is: 8 The loss for epoch 3 1.6467279642820358 The running loss is: 9.65525808930397 The number of items in train is: 8 The loss for epoch 4 1.2069072611629963 The running loss is: 8.45247933268547 The number of items in train is: 8 The loss for epoch 5 1.0565599165856838 The running loss is: 7.676742374897003 The number of items in train is: 8 The loss for epoch 6 0.9595927968621254 The running loss is: 7.17548294365406 The number of items in train is: 8 The loss for epoch 7 0.8969353679567575 The running loss is: 7.414336830377579 The number of items in train is: 8 The loss for epoch 8 0.9267921037971973 The running loss is: 7.242239236831665 The number of items in train is: 8 The loss for epoch 9 0.9052799046039581 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.665867 48 30755 ... 8.799163 49 30756 ... 8.671396 50 30757 ... 8.563816 51 30758 ... 8.574473 52 30759 ... 8.541787 53 30760 ... 8.166990 54 30761 ... 8.139524 55 30762 ... 8.140105 56 30763 ... 8.138222 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2arfilkc wandb: Agent Starting Run: 42em95oh with config: batch_size: 5 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 42em95oh
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 28.903275549411774 The number of items in train is: 7 The loss for epoch 0 4.129039364201682 The running loss is: 8.714233547449112 The number of items in train is: 7 The loss for epoch 1 1.2448905067784446 The running loss is: 10.163697183132172 The number of items in train is: 7 The loss for epoch 2 1.4519567404474532 The running loss is: 6.631345450878143 The number of items in train is: 7 The loss for epoch 3 0.9473350644111633 The running loss is: 8.022440493106842 The number of items in train is: 7 The loss for epoch 4 1.1460629275866918 The running loss is: 6.365507125854492 The number of items in train is: 7 The loss for epoch 5 0.909358160836356 The running loss is: 5.899640619754791 The number of items in train is: 7 The loss for epoch 6 0.842805802822113 The running loss is: 5.404639720916748 The number of items in train is: 7 The loss for epoch 7 0.7720913887023926 The running loss is: 4.700559139251709 The number of items in train is: 7 The loss for epoch 8 0.6715084484645298 The running loss is: 4.579154878854752 The number of items in train is: 7 The loss for epoch 9 0.654164982693536 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 14.387460 48 30755 ... 14.059313 49 30756 ... 16.322126 50 30757 ... 7.285743 51 30758 ... 7.333082 52 30759 ... 6.417980 53 30760 ... 8.817734 54 30761 ... 7.192719 55 30762 ... 7.644890 56 30763 ... 4.754567 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 42em95oh wandb: Agent Starting Run: v04iw04x with config: batch_size: 5 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: v04iw04x
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.009780496358871 The number of items in train is: 8 The loss for epoch 0 1.126222562044859 The running loss is: 8.815376043319702 The number of items in train is: 8 The loss for epoch 1 1.1019220054149628 The running loss is: 5.679255768656731 The number of items in train is: 8 The loss for epoch 2 0.7099069710820913 The running loss is: 5.220305755734444 The number of items in train is: 8 The loss for epoch 3 0.6525382194668055 The running loss is: 5.057030022144318 The number of items in train is: 8 The loss for epoch 4 0.6321287527680397 The running loss is: 5.1790468990802765 The number of items in train is: 8 The loss for epoch 5 0.6473808623850346 The running loss is: 4.504566803574562 The number of items in train is: 8 The loss for epoch 6 0.5630708504468203 The running loss is: 4.49835005402565 The number of items in train is: 8 The loss for epoch 7 0.5622937567532063 The running loss is: 4.113087989389896 The number of items in train is: 8 The loss for epoch 8 0.514135998673737 The running loss is: 4.175215393304825 The number of items in train is: 8 The loss for epoch 9 0.5219019241631031 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.973689 48 30755 ... 13.957306 49 30756 ... 14.184193 50 30757 ... 13.553813 51 30758 ... 9.452812 52 30759 ... 9.643188 53 30760 ... 9.692542 54 30761 ... 9.199206 55 30762 ... 8.749400 56 30763 ... 8.436934 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v04iw04x wandb: Agent Starting Run: z0gzzvz7 with config: batch_size: 5 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: z0gzzvz7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.857616066932678 The number of items in train is: 7 The loss for epoch 0 1.2653737238475256 The running loss is: 5.892047256231308 The number of items in train is: 7 The loss for epoch 1 0.8417210366044726 The running loss is: 5.294501721858978 The number of items in train is: 7 The loss for epoch 2 0.7563573888369969 The running loss is: 4.488193511962891 The number of items in train is: 7 The loss for epoch 3 0.6411705017089844 The running loss is: 4.085705995559692 The number of items in train is: 7 The loss for epoch 4 0.583672285079956 The running loss is: 3.9441015422344208 The number of items in train is: 7 The loss for epoch 5 0.5634430774620601 The running loss is: 3.6253725737333298 The number of items in train is: 7 The loss for epoch 6 0.5179103676761899 The running loss is: 3.4738786220550537 The number of items in train is: 7 The loss for epoch 7 0.4962683745792934 The running loss is: 3.252960652112961 The number of items in train is: 7 The loss for epoch 8 0.4647086645875658 The running loss is: 3.3102271109819412 The number of items in train is: 7 The loss for epoch 9 0.47288958728313446 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.235288 48 30755 ... 5.120963 49 30756 ... 6.150893 50 30757 ... 6.511737 51 30758 ... 0.237356 52 30759 ... -1.679703 53 30760 ... -7.668720 54 30761 ... -9.001451 55 30762 ... -10.168573 56 30763 ... -10.948854 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z0gzzvz7 wandb: Agent Starting Run: mg19jgh7 with config: batch_size: 5 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: mg19jgh7
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.379037261009216 The number of items in train is: 7 The loss for epoch 0 1.1970053230013167 The running loss is: 5.307533085346222 The number of items in train is: 7 The loss for epoch 1 0.7582190121923175 The running loss is: 4.932691335678101 The number of items in train is: 7 The loss for epoch 2 0.7046701908111572 The running loss is: 4.546344310045242 The number of items in train is: 7 The loss for epoch 3 0.6494777585778918 The running loss is: 4.347181588411331 The number of items in train is: 7 The loss for epoch 4 0.6210259412016187 The running loss is: 3.996902972459793 The number of items in train is: 7 The loss for epoch 5 0.5709861389228276 The running loss is: 3.996919736266136 The number of items in train is: 7 The loss for epoch 6 0.5709885337523052 The running loss is: 3.778156131505966 The number of items in train is: 7 The loss for epoch 7 0.539736590215138 The running loss is: 3.7420578598976135 The number of items in train is: 7 The loss for epoch 8 0.5345796942710876 The running loss is: 3.785576105117798 The number of items in train is: 7 The loss for epoch 9 0.5407965864453997 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.854308 48 30755 ... 5.433422 49 30756 ... 6.249044 50 30757 ... 6.006957 51 30758 ... 0.170424 52 30759 ... -1.708926 53 30760 ... -6.426423 54 30761 ... -8.075663 55 30762 ... -9.582035 56 30763 ... -10.701384 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mg19jgh7 wandb: Agent Starting Run: xujmq1wm with config: batch_size: 5 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: xujmq1wm
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.328620731830597 The number of items in train is: 8 The loss for epoch 0 1.2910775914788246 The running loss is: 17.95246112346649 The number of items in train is: 8 The loss for epoch 1 2.2440576404333115 The running loss is: 6.625293288379908 The number of items in train is: 8 The loss for epoch 2 0.8281616610474885 The running loss is: 6.007527709007263 The number of items in train is: 8 The loss for epoch 3 0.7509409636259079 The running loss is: 5.87974913418293 The number of items in train is: 8 The loss for epoch 4 0.7349686417728662 The running loss is: 5.40078030526638 The number of items in train is: 8 The loss for epoch 5 0.6750975381582975 The running loss is: 4.814377501606941 The number of items in train is: 8 The loss for epoch 6 0.6017971877008677 The running loss is: 4.766529709100723 The number of items in train is: 8 The loss for epoch 7 0.5958162136375904 The running loss is: 4.524849310517311 The number of items in train is: 8 The loss for epoch 8 0.5656061638146639 The running loss is: 4.09240049123764 The number of items in train is: 8 The loss for epoch 9 0.511550061404705 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.599988 48 30755 ... 14.127781 49 30756 ... 14.584249 50 30757 ... 14.020692 51 30758 ... 11.691189 52 30759 ... 11.752935 53 30760 ... 11.960830 54 30761 ... 11.773537 55 30762 ... 11.726958 56 30763 ... 11.685018 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xujmq1wm wandb: Agent Starting Run: 1mpruz7r with config: batch_size: 5 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 1mpruz7r
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.134911477565765 The number of items in train is: 7 The loss for epoch 0 1.3049873539379664 The running loss is: 11.372960567474365 The number of items in train is: 7 The loss for epoch 1 1.624708652496338 The running loss is: 4.703024297952652 The number of items in train is: 7 The loss for epoch 2 0.671860613993236 The running loss is: 4.89816290140152 The number of items in train is: 7 The loss for epoch 3 0.6997375573430743 The running loss is: 4.575336530804634 The number of items in train is: 7 The loss for epoch 4 0.653619504400662 The running loss is: 4.036156639456749 The number of items in train is: 7 The loss for epoch 5 0.5765938056366784 The running loss is: 3.7723549902439117 The number of items in train is: 7 The loss for epoch 6 0.5389078557491302 The running loss is: 3.553560823202133 The number of items in train is: 7 The loss for epoch 7 0.5076515461717334 The running loss is: 3.3667041957378387 The number of items in train is: 7 The loss for epoch 8 0.48095774224826265 The running loss is: 3.3663299083709717 The number of items in train is: 7 The loss for epoch 9 0.48090427262442453 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.382259 48 30755 ... 5.730763 49 30756 ... 6.944045 50 30757 ... 8.367525 51 30758 ... 3.260181 52 30759 ... 2.212879 53 30760 ... -2.212296 54 30761 ... -2.790353 55 30762 ... -3.146363 56 30763 ... -3.273260 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1mpruz7r wandb: Agent Starting Run: h98tjc97 with config: batch_size: 5 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: h98tjc97
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.568547546863556 The number of items in train is: 7 The loss for epoch 0 1.224078220980508 The running loss is: 7.439529746770859 The number of items in train is: 7 The loss for epoch 1 1.0627899638244085 The running loss is: 4.960866212844849 The number of items in train is: 7 The loss for epoch 2 0.7086951732635498 The running loss is: 4.659017026424408 The number of items in train is: 7 The loss for epoch 3 0.6655738609177726 The running loss is: 4.433339834213257 The number of items in train is: 7 The loss for epoch 4 0.6333342620304653 The running loss is: 3.8202225267887115 The number of items in train is: 7 The loss for epoch 5 0.5457460752555302 The running loss is: 3.9327641278505325 The number of items in train is: 7 The loss for epoch 6 0.5618234468357903 The running loss is: 3.604253336787224 The number of items in train is: 7 The loss for epoch 7 0.5148933338267463 The running loss is: 3.4691165685653687 The number of items in train is: 7 The loss for epoch 8 0.4955880812236241 The running loss is: 3.4035107642412186 The number of items in train is: 7 The loss for epoch 9 0.4862158234630312 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 5.711511 48 30755 ... 5.064266 49 30756 ... 5.884321 50 30757 ... 6.018492 51 30758 ... -0.261717 52 30759 ... -1.986962 53 30760 ... -7.378283 54 30761 ... -9.749792 55 30762 ... -11.496117 56 30763 ... -11.704885 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: h98tjc97 wandb: Agent Starting Run: os66dtsw with config: batch_size: 5 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: os66dtsw
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.596001714468002 The number of items in train is: 8 The loss for epoch 0 2.3245002143085003 The running loss is: 17.31740289926529 The number of items in train is: 8 The loss for epoch 1 2.164675362408161 The running loss is: 9.421775847673416 The number of items in train is: 8 The loss for epoch 2 1.177721980959177 The running loss is: 6.757692888379097 The number of items in train is: 8 The loss for epoch 3 0.8447116110473871 The running loss is: 6.253585696220398 The number of items in train is: 8 The loss for epoch 4 0.7816982120275497 The running loss is: 5.741266116499901 The number of items in train is: 8 The loss for epoch 5 0.7176582645624876 The running loss is: 4.830026730895042 The number of items in train is: 8 The loss for epoch 6 0.6037533413618803 The running loss is: 4.553853526711464 The number of items in train is: 8 The loss for epoch 7 0.569231690838933 The running loss is: 4.212658815085888 The number of items in train is: 8 The loss for epoch 8 0.526582351885736 The running loss is: 4.101347729563713 The number of items in train is: 8 The loss for epoch 9 0.5126684661954641 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.757821 48 30755 ... 14.091363 49 30756 ... 14.059839 50 30757 ... 13.189163 51 30758 ... 10.963506 52 30759 ... 10.853949 53 30760 ... 11.138344 54 30761 ... 11.210142 55 30762 ... 11.705401 56 30763 ... 11.253247 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: os66dtsw wandb: Agent Starting Run: dtx619mj with config: batch_size: 5 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: dtx619mj
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.538036316633224 The number of items in train is: 7 The loss for epoch 0 1.648290902376175 The running loss is: 27.30086961388588 The number of items in train is: 7 The loss for epoch 1 3.9001242305551256 The running loss is: 6.902018129825592 The number of items in train is: 7 The loss for epoch 2 0.9860025899750846 The running loss is: 8.486170530319214 The number of items in train is: 7 The loss for epoch 3 1.2123100757598877 The running loss is: 5.592561990022659 The number of items in train is: 7 The loss for epoch 4 0.7989374271460942 The running loss is: 5.384973257780075 The number of items in train is: 7 The loss for epoch 5 0.7692818939685822 The running loss is: 4.928272694349289 The number of items in train is: 7 The loss for epoch 6 0.7040389563356128 The running loss is: 4.354663372039795 The number of items in train is: 7 The loss for epoch 7 0.6220947674342564 The running loss is: 4.097138851881027 The number of items in train is: 7 The loss for epoch 8 0.5853055502687182 The running loss is: 3.9094666242599487 The number of items in train is: 7 The loss for epoch 9 0.5584952320371356 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.796641 48 30755 ... 9.342697 49 30756 ... 9.459212 50 30757 ... 9.968360 51 30758 ... 8.718388 52 30759 ... 8.447587 53 30760 ... 8.985465 54 30761 ... 8.420585 55 30762 ... 9.642568 56 30763 ... 9.002261 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: dtx619mj wandb: Agent Starting Run: ph3sz2jf with config: batch_size: 5 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ph3sz2jf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.805723547935486 The number of items in train is: 7 The loss for epoch 0 1.2579605068479265 The running loss is: 20.8605694770813 The number of items in train is: 7 The loss for epoch 1 2.980081353868757 The running loss is: 5.607284247875214 The number of items in train is: 7 The loss for epoch 2 0.8010406068393162 The running loss is: 6.950852543115616 The number of items in train is: 7 The loss for epoch 3 0.9929789347308022 The running loss is: 5.903511047363281 The number of items in train is: 7 The loss for epoch 4 0.8433587210518974 The running loss is: 5.360262036323547 The number of items in train is: 7 The loss for epoch 5 0.7657517194747925 The running loss is: 4.968137204647064 The number of items in train is: 7 The loss for epoch 6 0.709733886378152 The running loss is: 4.6906518042087555 The number of items in train is: 7 The loss for epoch 7 0.6700931148869651 The running loss is: 4.265324801206589 The number of items in train is: 7 The loss for epoch 8 0.6093321144580841 The running loss is: 4.243742972612381 The number of items in train is: 7 The loss for epoch 9 0.606248996087483 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.965941 48 30755 ... 7.205519 49 30756 ... 8.403504 50 30757 ... 9.476584 51 30758 ... 7.341923 52 30759 ... 7.236106 53 30760 ... 6.708858 54 30761 ... 3.748622 55 30762 ... 3.855751 56 30763 ... 3.793899 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ph3sz2jf wandb: Agent Starting Run: tl2ee0kx with config: batch_size: 5 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: tl2ee0kx
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 79.56610406935215 The number of items in train is: 8 The loss for epoch 0 9.945763008669019 The running loss is: 7.204314440488815 The number of items in train is: 8 The loss for epoch 1 0.9005393050611019 The running loss is: 34.79838861897588 The number of items in train is: 8 The loss for epoch 2 4.349798577371985 The running loss is: 13.492564976215363 The number of items in train is: 8 The loss for epoch 3 1.6865706220269203 The running loss is: 8.105150907533243 The number of items in train is: 8 The loss for epoch 4 1.0131438634416554 The running loss is: 17.24639244377613 The number of items in train is: 8 The loss for epoch 5 2.1557990554720163 The running loss is: 15.907869756221771 The number of items in train is: 8 The loss for epoch 6 1.9884837195277214 The running loss is: 9.063403755426407 The number of items in train is: 8 The loss for epoch 7 1.1329254694283009 The running loss is: 7.892887741327286 The number of items in train is: 8 The loss for epoch 8 0.9866109676659107 The running loss is: 7.113882530480623 The number of items in train is: 8 The loss for epoch 9 0.8892353163100779 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.513741 48 30755 ... 7.839818 49 30756 ... 7.624097 50 30757 ... 7.607502 51 30758 ... 6.127538 52 30759 ... 7.737118 53 30760 ... 7.606065 54 30761 ... 6.173356 55 30762 ... 6.936601 56 30763 ... 7.023078 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tl2ee0kx wandb: Agent Starting Run: 7fa9a6s1 with config: batch_size: 5 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 7fa9a6s1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 52.08390510082245 The number of items in train is: 7 The loss for epoch 0 7.440557871546064 The running loss is: 11.381277471780777 The number of items in train is: 7 The loss for epoch 1 1.6258967816829681 The running loss is: 25.816108763217926 The number of items in train is: 7 The loss for epoch 2 3.6880155376025607 The running loss is: 5.692464888095856 The number of items in train is: 7 The loss for epoch 3 0.8132092697279794 The running loss is: 12.835353791713715 The number of items in train is: 7 The loss for epoch 4 1.8336219702448164 The running loss is: 20.29457151889801 The number of items in train is: 7 The loss for epoch 5 2.899224502699716 The running loss is: 6.967081665992737 The number of items in train is: 7 The loss for epoch 6 0.9952973808561053 The running loss is: 7.198956787586212 The number of items in train is: 7 The loss for epoch 7 1.0284223982266016 The running loss is: 7.881454288959503 The number of items in train is: 7 The loss for epoch 8 1.1259220412799291 The running loss is: 7.26533517241478 The number of items in train is: 7 The loss for epoch 9 1.037905024630683 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.481693 48 30755 ... 7.128554 49 30756 ... 6.864052 50 30757 ... 6.029053 51 30758 ... 6.576490 52 30759 ... 6.761997 53 30760 ... 6.898374 54 30761 ... 7.043981 55 30762 ... 7.331190 56 30763 ... 6.609051 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7fa9a6s1 wandb: Agent Starting Run: 2g1uqyaf with config: batch_size: 5 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 2g1uqyaf
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 37.419967859983444 The number of items in train is: 7 The loss for epoch 0 5.345709694283349 The running loss is: 10.821948528289795 The number of items in train is: 7 The loss for epoch 1 1.545992646898542 The running loss is: 9.870258629322052 The number of items in train is: 7 The loss for epoch 2 1.4100369470460075 The running loss is: 5.8033487200737 The number of items in train is: 7 The loss for epoch 3 0.8290498171533857 The running loss is: 6.369944393634796 The number of items in train is: 7 The loss for epoch 4 0.9099920562335423 The running loss is: 5.617344975471497 The number of items in train is: 7 The loss for epoch 5 0.8024778536387852 The running loss is: 5.247073173522949 The number of items in train is: 7 The loss for epoch 6 0.7495818819318499 The running loss is: 5.167417734861374 The number of items in train is: 7 The loss for epoch 7 0.7382025335516248 The running loss is: 5.165225565433502 The number of items in train is: 7 The loss for epoch 8 0.7378893664905003 The running loss is: 4.82859468460083 The number of items in train is: 7 The loss for epoch 9 0.6897992406572614 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.674891 48 30755 ... 11.012010 49 30756 ... 10.963237 50 30757 ... 10.817793 51 30758 ... 5.869459 52 30759 ... 5.821937 53 30760 ... 5.026206 54 30761 ... 2.507891 55 30762 ... 2.534259 56 30763 ... 3.081643 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2g1uqyaf wandb: Agent Starting Run: fbzwgj5d with config: batch_size: 5 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fbzwgj5d
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.336233288049698 The number of items in train is: 7 The loss for epoch 0 1.3337476125785284 The running loss is: 5.11325016617775 The number of items in train is: 7 The loss for epoch 1 0.7304643094539642 The running loss is: 4.894846081733704 The number of items in train is: 7 The loss for epoch 2 0.6992637259619576 The running loss is: 4.361954137682915 The number of items in train is: 7 The loss for epoch 3 0.6231363053832736 The running loss is: 3.946231722831726 The number of items in train is: 7 The loss for epoch 4 0.5637473889759609 The running loss is: 4.036977797746658 The number of items in train is: 7 The loss for epoch 5 0.5767111139638084 The running loss is: 3.637524761259556 The number of items in train is: 7 The loss for epoch 6 0.5196463944656509 The running loss is: 3.5761826187372208 The number of items in train is: 7 The loss for epoch 7 0.5108832312481744 The running loss is: 3.4031307995319366 The number of items in train is: 7 The loss for epoch 8 0.4861615427902767 The running loss is: 3.205967530608177 The number of items in train is: 7 The loss for epoch 9 0.4579953615154539 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.806149 48 30755 ... 11.034535 49 30756 ... 14.467689 50 30757 ... 14.238250 51 30758 ... 10.971130 52 30759 ... 10.287059 53 30760 ... 10.894358 54 30761 ... 10.626654 55 30762 ... 10.909733 56 30763 ... 12.139064 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fbzwgj5d wandb: Agent Starting Run: z773q140 with config: batch_size: 5 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: z773q140
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.177690148353577 The number of items in train is: 7 The loss for epoch 0 1.3110985926219396 The running loss is: 5.94622865319252 The number of items in train is: 7 The loss for epoch 1 0.8494612361703601 The running loss is: 5.502836525440216 The number of items in train is: 7 The loss for epoch 2 0.7861195036343166 The running loss is: 4.882712662220001 The number of items in train is: 7 The loss for epoch 3 0.697530380317143 The running loss is: 4.823515743017197 The number of items in train is: 7 The loss for epoch 4 0.6890736775738853 The running loss is: 4.585278883576393 The number of items in train is: 7 The loss for epoch 5 0.6550398405109134 The running loss is: 4.415525987744331 The number of items in train is: 7 The loss for epoch 6 0.6307894268206188 The running loss is: 4.571172222495079 The number of items in train is: 7 The loss for epoch 7 0.6530246032135827 The running loss is: 4.134524956345558 The number of items in train is: 7 The loss for epoch 8 0.5906464223350797 The running loss is: 4.182448834180832 The number of items in train is: 7 The loss for epoch 9 0.5974926905972617 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.957873 48 30755 ... 10.888971 49 30756 ... 12.070364 50 30757 ... 12.814865 51 30758 ... 12.341984 52 30759 ... 10.130991 53 30760 ... 10.580561 54 30761 ... 11.226346 55 30762 ... 11.099922 56 30763 ... 11.260043 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z773q140 wandb: Agent Starting Run: c17omt6j with config: batch_size: 5 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: c17omt6j
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.464878857135773 The number of items in train is: 7 The loss for epoch 0 1.2092684081622533 The running loss is: 5.037981957197189 The number of items in train is: 7 The loss for epoch 1 0.719711708171027 The running loss is: 4.809891790151596 The number of items in train is: 7 The loss for epoch 2 0.6871273985930851 The running loss is: 4.0787065625190735 The number of items in train is: 7 The loss for epoch 3 0.5826723660741534 The running loss is: 4.271046087145805 The number of items in train is: 7 The loss for epoch 4 0.6101494410208294 The running loss is: 4.067079246044159 The number of items in train is: 7 The loss for epoch 5 0.5810113208634513 The running loss is: 4.014323055744171 The number of items in train is: 7 The loss for epoch 6 0.5734747222491673 The running loss is: 3.7231625616550446 The number of items in train is: 7 The loss for epoch 7 0.5318803659507206 The running loss is: 3.71854804456234 The number of items in train is: 7 The loss for epoch 8 0.5312211492231914 The running loss is: 3.612421989440918 The number of items in train is: 7 The loss for epoch 9 0.5160602842058454 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.139462 48 30755 ... 9.361436 49 30756 ... 10.952075 50 30757 ... 10.844501 51 30758 ... 9.159294 52 30759 ... 7.213850 53 30760 ... 7.122150 54 30761 ... 7.227113 55 30762 ... 6.614833 56 30763 ... 6.647117 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c17omt6j wandb: Agent Starting Run: dc420ovb with config: batch_size: 5 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: dc420ovb
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.042995542287827 The number of items in train is: 7 The loss for epoch 0 1.434713648898261 The running loss is: 7.474764108657837 The number of items in train is: 7 The loss for epoch 1 1.0678234440939767 The running loss is: 4.9013950526714325 The number of items in train is: 7 The loss for epoch 2 0.700199293238776 The running loss is: 4.431417480111122 The number of items in train is: 7 The loss for epoch 3 0.6330596400158746 The running loss is: 4.164117723703384 The number of items in train is: 7 The loss for epoch 4 0.594873960529055 The running loss is: 3.84988109767437 The number of items in train is: 7 The loss for epoch 5 0.5499830139534814 The running loss is: 3.5169313699007034 The number of items in train is: 7 The loss for epoch 6 0.502418767128672 The running loss is: 3.107982710003853 The number of items in train is: 7 The loss for epoch 7 0.4439975300005504 The running loss is: 3.3591590151190758 The number of items in train is: 7 The loss for epoch 8 0.4798798593027251 The running loss is: 3.0317525193095207 The number of items in train is: 7 The loss for epoch 9 0.43310750275850296 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.845029 48 30755 ... 11.769980 49 30756 ... 16.313171 50 30757 ... 15.718273 51 30758 ... 12.462557 52 30759 ... 11.991672 53 30760 ... 12.592597 54 30761 ... 12.409809 55 30762 ... 13.502852 56 30763 ... 15.533869 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: dc420ovb wandb: Agent Starting Run: 2lak3mf3 with config: batch_size: 5 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 2lak3mf3
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.486467003822327 The number of items in train is: 7 The loss for epoch 0 1.355209571974618 The running loss is: 7.774271607398987 The number of items in train is: 7 The loss for epoch 1 1.1106102296284266 The running loss is: 5.2772374749183655 The number of items in train is: 7 The loss for epoch 2 0.7538910678454808 The running loss is: 5.003746151924133 The number of items in train is: 7 The loss for epoch 3 0.7148208788463047 The running loss is: 4.869605340063572 The number of items in train is: 7 The loss for epoch 4 0.6956579057233674 The running loss is: 4.4538838267326355 The number of items in train is: 7 The loss for epoch 5 0.6362691181046622 The running loss is: 4.390820115804672 The number of items in train is: 7 The loss for epoch 6 0.6272600165435246 The running loss is: 4.38667120039463 The number of items in train is: 7 The loss for epoch 7 0.6266673143420901 The running loss is: 3.9946878850460052 The number of items in train is: 7 The loss for epoch 8 0.570669697863715 The running loss is: 3.964384078979492 The number of items in train is: 7 The loss for epoch 9 0.566340582711356 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.839034 48 30755 ... 11.101344 49 30756 ... 12.585072 50 30757 ... 13.072854 51 30758 ... 13.150121 52 30759 ... 10.736032 53 30760 ... 11.587616 54 30761 ... 11.559414 55 30762 ... 11.871531 56 30763 ... 12.667596 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2lak3mf3 wandb: Agent Starting Run: 1vfg1v1j with config: batch_size: 5 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1vfg1v1j
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.01353543996811 The number of items in train is: 7 The loss for epoch 0 1.2876479199954443 The running loss is: 8.305128276348114 The number of items in train is: 7 The loss for epoch 1 1.1864468966211592 The running loss is: 4.578442484140396 The number of items in train is: 7 The loss for epoch 2 0.6540632120200566 The running loss is: 4.405091732740402 The number of items in train is: 7 The loss for epoch 3 0.6292988189629146 The running loss is: 4.34169502556324 The number of items in train is: 7 The loss for epoch 4 0.6202421465090343 The running loss is: 3.9862598925828934 The number of items in train is: 7 The loss for epoch 5 0.5694656989404133 The running loss is: 3.979832261800766 The number of items in train is: 7 The loss for epoch 6 0.568547465971538 The running loss is: 3.5811107754707336 The number of items in train is: 7 The loss for epoch 7 0.5115872536386762 The running loss is: 3.5624044686555862 The number of items in train is: 7 The loss for epoch 8 0.5089149240936551 The running loss is: 3.448199100792408 The number of items in train is: 7 The loss for epoch 9 0.4925998715417726 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.244447 48 30755 ... 9.826646 49 30756 ... 11.896688 50 30757 ... 11.638386 51 30758 ... 9.964475 52 30759 ... 8.469487 53 30760 ... 8.533617 54 30761 ... 8.421778 55 30762 ... 8.096305 56 30763 ... 8.440117 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1vfg1v1j wandb: Agent Starting Run: j8qqp3c2 with config: batch_size: 5 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: j8qqp3c2
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.458968162536621 The number of items in train is: 7 The loss for epoch 0 1.3512811660766602 The running loss is: 21.075702905654907 The number of items in train is: 7 The loss for epoch 1 3.010814700807844 The running loss is: 5.451179146766663 The number of items in train is: 7 The loss for epoch 2 0.7787398781095233 The running loss is: 6.688863754272461 The number of items in train is: 7 The loss for epoch 3 0.9555519648960659 The running loss is: 6.188786864280701 The number of items in train is: 7 The loss for epoch 4 0.8841124091829572 The running loss is: 5.368324548006058 The number of items in train is: 7 The loss for epoch 5 0.7669035068580082 The running loss is: 4.517726391553879 The number of items in train is: 7 The loss for epoch 6 0.645389484507697 The running loss is: 4.753752812743187 The number of items in train is: 7 The loss for epoch 7 0.6791075446775982 The running loss is: 4.646036148071289 The number of items in train is: 7 The loss for epoch 8 0.6637194497244698 The running loss is: 4.074129417538643 The number of items in train is: 7 The loss for epoch 9 0.5820184882198062 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.402539 48 30755 ... 12.075924 49 30756 ... 15.184203 50 30757 ... 12.845176 51 30758 ... 8.898929 52 30759 ... 11.674198 53 30760 ... 11.553167 54 30761 ... 11.936520 55 30762 ... 12.232157 56 30763 ... 13.043743 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: j8qqp3c2 wandb: Agent Starting Run: zewye6m1 with config: batch_size: 5 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: zewye6m1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.001771569252014 The number of items in train is: 7 The loss for epoch 0 1.428824509893145 The running loss is: 20.346972823143005 The number of items in train is: 7 The loss for epoch 1 2.9067104033061435 The running loss is: 5.735487461090088 The number of items in train is: 7 The loss for epoch 2 0.8193553515842983 The running loss is: 6.7128947377204895 The number of items in train is: 7 The loss for epoch 3 0.9589849625314985 The running loss is: 6.372850209474564 The number of items in train is: 7 The loss for epoch 4 0.9104071727820805 The running loss is: 5.315346002578735 The number of items in train is: 7 The loss for epoch 5 0.7593351432255336 The running loss is: 4.923664838075638 The number of items in train is: 7 The loss for epoch 6 0.7033806911536625 The running loss is: 4.619252592325211 The number of items in train is: 7 The loss for epoch 7 0.6598932274750301 The running loss is: 4.849480867385864 The number of items in train is: 7 The loss for epoch 8 0.6927829810551235 The running loss is: 4.769946187734604 The number of items in train is: 7 The loss for epoch 9 0.6814208839620862 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.882496 48 30755 ... 12.364532 49 30756 ... 14.726078 50 30757 ... 13.591410 51 30758 ... 12.194124 52 30759 ... 12.492190 53 30760 ... 12.379921 54 30761 ... 12.688085 55 30762 ... 12.570847 56 30763 ... 12.598701 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: zewye6m1 wandb: Agent Starting Run: 6gwcnc5t with config: batch_size: 5 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 6gwcnc5t
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.065265715122223 The number of items in train is: 7 The loss for epoch 0 1.5807522450174605 The running loss is: 19.994363248348236 The number of items in train is: 7 The loss for epoch 1 2.856337606906891 The running loss is: 5.749635964632034 The number of items in train is: 7 The loss for epoch 2 0.8213765663760049 The running loss is: 6.598259687423706 The number of items in train is: 7 The loss for epoch 3 0.9426085267748151 The running loss is: 4.696272283792496 The number of items in train is: 7 The loss for epoch 4 0.6708960405417851 The running loss is: 4.804319143295288 The number of items in train is: 7 The loss for epoch 5 0.6863313061850411 The running loss is: 4.463131815195084 The number of items in train is: 7 The loss for epoch 6 0.6375902593135834 The running loss is: 4.612153172492981 The number of items in train is: 7 The loss for epoch 7 0.6588790246418544 The running loss is: 4.284528285264969 The number of items in train is: 7 The loss for epoch 8 0.6120754693235669 The running loss is: 4.153792500495911 The number of items in train is: 7 The loss for epoch 9 0.593398928642273 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.800093 48 30755 ... 11.202961 49 30756 ... 11.976234 50 30757 ... 11.460857 51 30758 ... 10.998887 52 30759 ... 10.735220 53 30760 ... 10.952649 54 30761 ... 10.644355 55 30762 ... 10.612105 56 30763 ... 11.144648 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6gwcnc5t wandb: Agent Starting Run: 1oow5e52 with config: batch_size: 5 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 1oow5e52
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 39.09426712989807 The number of items in train is: 7 The loss for epoch 0 5.584895304271153 The running loss is: 8.815387278795242 The number of items in train is: 7 The loss for epoch 1 1.2593410398278917 The running loss is: 10.441057562828064 The number of items in train is: 7 The loss for epoch 2 1.4915796518325806 The running loss is: 7.836777687072754 The number of items in train is: 7 The loss for epoch 3 1.119539669581822 The running loss is: 5.5894342958927155 The number of items in train is: 7 The loss for epoch 4 0.7984906136989594 The running loss is: 4.797979637980461 The number of items in train is: 7 The loss for epoch 5 0.6854256625686374 The running loss is: 5.106695920228958 The number of items in train is: 7 The loss for epoch 6 0.7295279886041369 The running loss is: 5.3624774515628815 The number of items in train is: 7 The loss for epoch 7 0.7660682073661259 The running loss is: 5.132751166820526 The number of items in train is: 7 The loss for epoch 8 0.7332501666886466 The running loss is: 4.637645840644836 The number of items in train is: 7 The loss for epoch 9 0.6625208343778338 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.461702 48 30755 ... 11.493561 49 30756 ... 7.273075 50 30757 ... 12.487080 51 30758 ... 11.164696 52 30759 ... 10.003759 53 30760 ... 9.965696 54 30761 ... 9.195720 55 30762 ... 9.681444 56 30763 ... 10.299913 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1oow5e52 wandb: Agent Starting Run: ervqlzd5 with config: batch_size: 5 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ervqlzd5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 36.73223286867142 The number of items in train is: 7 The loss for epoch 0 5.247461838381631 The running loss is: 8.665028989315033 The number of items in train is: 7 The loss for epoch 1 1.2378612841878618 The running loss is: 10.718747615814209 The number of items in train is: 7 The loss for epoch 2 1.53124965940203 The running loss is: 6.298239514231682 The number of items in train is: 7 The loss for epoch 3 0.8997485020330974 The running loss is: 6.406042277812958 The number of items in train is: 7 The loss for epoch 4 0.9151488968304226 The running loss is: 6.371782273054123 The number of items in train is: 7 The loss for epoch 5 0.9102546104363033 The running loss is: 6.079530298709869 The number of items in train is: 7 The loss for epoch 6 0.8685043283871242 The running loss is: 6.881429195404053 The number of items in train is: 7 The loss for epoch 7 0.9830613136291504 The running loss is: 5.822851479053497 The number of items in train is: 7 The loss for epoch 8 0.831835925579071 The running loss is: 5.205782949924469 The number of items in train is: 7 The loss for epoch 9 0.7436832785606384 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.829610 48 30755 ... 13.508774 49 30756 ... 13.238535 50 30757 ... 12.937251 51 30758 ... 12.953267 52 30759 ... 11.199141 53 30760 ... 11.241271 54 30761 ... 11.257262 55 30762 ... 11.259697 56 30763 ... 11.264960 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ervqlzd5 wandb: Agent Starting Run: 1csgx861 with config: batch_size: 5 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1csgx861
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 45.76984786987305 The number of items in train is: 7 The loss for epoch 0 6.538549695696149 The running loss is: 6.865525305271149 The number of items in train is: 7 The loss for epoch 1 0.9807893293244498 The running loss is: 13.207008957862854 The number of items in train is: 7 The loss for epoch 2 1.8867155654089791 The running loss is: 6.200265973806381 The number of items in train is: 7 The loss for epoch 3 0.8857522819723401 The running loss is: 7.200608611106873 The number of items in train is: 7 The loss for epoch 4 1.0286583730152674 The running loss is: 5.776394367218018 The number of items in train is: 7 The loss for epoch 5 0.8251991953168597 The running loss is: 5.003000259399414 The number of items in train is: 7 The loss for epoch 6 0.7147143227713448 The running loss is: 5.345502436161041 The number of items in train is: 7 The loss for epoch 7 0.763643205165863 The running loss is: 4.749779254198074 The number of items in train is: 7 The loss for epoch 8 0.6785398934568677 The running loss is: 4.6609319150447845 The number of items in train is: 7 The loss for epoch 9 0.6658474164349693 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.792873 48 30755 ... 9.695145 49 30756 ... 9.721715 50 30757 ... 10.123501 51 30758 ... 9.551498 52 30759 ... 9.261765 53 30760 ... 9.297737 54 30761 ... 9.213287 55 30762 ... 8.607971 56 30763 ... 8.690456 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1csgx861 wandb: Agent Starting Run: qf1wsozx with config: batch_size: 5 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: qf1wsozx
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.453750848770142 The number of items in train is: 7 The loss for epoch 0 1.207678692681449 The running loss is: 5.78881973028183 The number of items in train is: 7 The loss for epoch 1 0.8269742471831185 The running loss is: 4.940449774265289 The number of items in train is: 7 The loss for epoch 2 0.7057785391807556 The running loss is: 4.20541875064373 The number of items in train is: 7 The loss for epoch 3 0.6007741072348186 The running loss is: 3.9624558836221695 The number of items in train is: 7 The loss for epoch 4 0.5660651262317385 The running loss is: 3.706973645836115 The number of items in train is: 7 The loss for epoch 5 0.5295676636908736 The running loss is: 3.901065617799759 The number of items in train is: 7 The loss for epoch 6 0.5572950882571084 The running loss is: 3.821559399366379 The number of items in train is: 7 The loss for epoch 7 0.5459370570523399 The running loss is: 3.222411021590233 The number of items in train is: 7 The loss for epoch 8 0.46034443165574757 The running loss is: 3.5929430425167084 The number of items in train is: 7 The loss for epoch 9 0.5132775775023869 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.300883 48 30755 ... 7.877327 49 30756 ... 9.205451 50 30757 ... 11.192038 51 30758 ... 10.560779 52 30759 ... 8.089823 53 30760 ... 6.922207 54 30761 ... 6.764965 55 30762 ... 6.743966 56 30763 ... 6.344927 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qf1wsozx wandb: Agent Starting Run: 9y7auasy with config: batch_size: 5 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 9y7auasy
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 7.978905558586121 The number of items in train is: 7 The loss for epoch 0 1.1398436512265886 The running loss is: 5.127258628606796 The number of items in train is: 7 The loss for epoch 1 0.7324655183723995 The running loss is: 4.72313766181469 The number of items in train is: 7 The loss for epoch 2 0.6747339516878128 The running loss is: 4.185404866933823 The number of items in train is: 7 The loss for epoch 3 0.5979149809905461 The running loss is: 4.080670237541199 The number of items in train is: 7 The loss for epoch 4 0.5829528910773141 The running loss is: 3.9133199751377106 The number of items in train is: 7 The loss for epoch 5 0.5590457107339587 The running loss is: 3.774104356765747 The number of items in train is: 7 The loss for epoch 6 0.5391577652522496 The running loss is: 3.395247310400009 The number of items in train is: 7 The loss for epoch 7 0.48503533005714417 The running loss is: 3.3610329627990723 The number of items in train is: 7 The loss for epoch 8 0.48014756611415316 The running loss is: 3.049194633960724 The number of items in train is: 7 The loss for epoch 9 0.43559923342296053 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.223148 48 30755 ... 8.128177 49 30756 ... 9.358207 50 30757 ... 11.647758 51 30758 ... 10.551282 52 30759 ... 6.696947 53 30760 ... 4.689186 54 30761 ... 4.889297 55 30762 ... 4.608911 56 30763 ... 4.071383 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9y7auasy wandb: Agent Starting Run: notixq7k with config: batch_size: 5 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: notixq7k
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.997486591339111 The number of items in train is: 7 The loss for epoch 0 1.2853552273341589 The running loss is: 7.690601214766502 The number of items in train is: 7 The loss for epoch 1 1.0986573163952147 The running loss is: 5.448296874761581 The number of items in train is: 7 The loss for epoch 2 0.7783281249659402 The running loss is: 4.938282564282417 The number of items in train is: 7 The loss for epoch 3 0.705468937754631 The running loss is: 4.373410284519196 The number of items in train is: 7 The loss for epoch 4 0.6247728977884565 The running loss is: 4.2776922807097435 The number of items in train is: 7 The loss for epoch 5 0.611098897244249 The running loss is: 4.26933291554451 The number of items in train is: 7 The loss for epoch 6 0.6099047022206443 The running loss is: 4.139234617352486 The number of items in train is: 7 The loss for epoch 7 0.5913192310503551 The running loss is: 4.1257902681827545 The number of items in train is: 7 The loss for epoch 8 0.5893986097403935 The running loss is: 4.044198751449585 The number of items in train is: 7 The loss for epoch 9 0.5777426787785122 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.824650 48 30755 ... 8.085434 49 30756 ... 8.181070 50 30757 ... 8.486726 51 30758 ... 8.320390 52 30759 ... 6.810356 53 30760 ... 4.630260 54 30761 ... 4.928142 55 30762 ... 5.116070 56 30763 ... 4.218055 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: notixq7k wandb: Agent Starting Run: w9adv0f5 with config: batch_size: 5 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: w9adv0f5
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.615247905254364 The number of items in train is: 7 The loss for epoch 0 1.3736068436077662 The running loss is: 10.547258883714676 The number of items in train is: 7 The loss for epoch 1 1.5067512691020966 The running loss is: 4.555299267172813 The number of items in train is: 7 The loss for epoch 2 0.6507570381675448 The running loss is: 4.357711434364319 The number of items in train is: 7 The loss for epoch 3 0.6225302049091884 The running loss is: 4.136801086366177 The number of items in train is: 7 The loss for epoch 4 0.5909715837665966 The running loss is: 3.620665431022644 The number of items in train is: 7 The loss for epoch 5 0.5172379187175206 The running loss is: 3.600349932909012 The number of items in train is: 7 The loss for epoch 6 0.5143357047012874 The running loss is: 3.7059518694877625 The number of items in train is: 7 The loss for epoch 7 0.529421695641109 The running loss is: 3.25237987190485 The number of items in train is: 7 The loss for epoch 8 0.46462569598640713 The running loss is: 3.219434306025505 The number of items in train is: 7 The loss for epoch 9 0.45991918657507214 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.156307 48 30755 ... 7.571031 49 30756 ... 9.347271 50 30757 ... 11.671964 51 30758 ... 10.866534 52 30759 ... 8.150193 53 30760 ... 7.649214 54 30761 ... 7.405383 55 30762 ... 6.930293 56 30763 ... 6.566906 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: w9adv0f5 wandb: Agent Starting Run: gacyucuv with config: batch_size: 5 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: gacyucuv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.557386875152588 The number of items in train is: 7 The loss for epoch 0 1.2224838393075126 The running loss is: 7.062704995274544 The number of items in train is: 7 The loss for epoch 1 1.008957856467792 The running loss is: 4.506389617919922 The number of items in train is: 7 The loss for epoch 2 0.6437699454171317 The running loss is: 4.436160206794739 The number of items in train is: 7 The loss for epoch 3 0.6337371723992484 The running loss is: 4.230875015258789 The number of items in train is: 7 The loss for epoch 4 0.6044107164655413 The running loss is: 3.8724400401115417 The number of items in train is: 7 The loss for epoch 5 0.5532057200159345 The running loss is: 3.7256204038858414 The number of items in train is: 7 The loss for epoch 6 0.5322314862694059 The running loss is: 3.1940614581108093 The number of items in train is: 7 The loss for epoch 7 0.4562944940158299 The running loss is: 3.305657684803009 The number of items in train is: 7 The loss for epoch 8 0.4722368121147156 The running loss is: 2.8400733023881912 The number of items in train is: 7 The loss for epoch 9 0.4057247574840273 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.997660 48 30755 ... 8.063605 49 30756 ... 9.996701 50 30757 ... 12.595577 51 30758 ... 10.900799 52 30759 ... 6.122150 53 30760 ... 5.258817 54 30761 ... 5.399448 55 30762 ... 4.413244 56 30763 ... 4.609431 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gacyucuv wandb: Agent Starting Run: 8ioil8pg with config: batch_size: 5 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8ioil8pg
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.57857894897461 The number of items in train is: 7 The loss for epoch 0 1.6540827069963728 The running loss is: 15.518137007951736 The number of items in train is: 7 The loss for epoch 1 2.2168767154216766 The running loss is: 5.213935896754265 The number of items in train is: 7 The loss for epoch 2 0.7448479852506092 The running loss is: 5.0660145208239555 The number of items in train is: 7 The loss for epoch 3 0.7237163601177079 The running loss is: 5.008541256189346 The number of items in train is: 7 The loss for epoch 4 0.7155058937413352 The running loss is: 4.271195217967033 The number of items in train is: 7 The loss for epoch 5 0.610170745423862 The running loss is: 4.4964863657951355 The number of items in train is: 7 The loss for epoch 6 0.6423551951135907 The running loss is: 4.307799831032753 The number of items in train is: 7 The loss for epoch 7 0.6153999758618218 The running loss is: 4.247691720724106 The number of items in train is: 7 The loss for epoch 8 0.6068131029605865 The running loss is: 4.0502769947052 The number of items in train is: 7 The loss for epoch 9 0.5786109992436 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.857596 48 30755 ... 8.346721 49 30756 ... 8.373069 50 30757 ... 8.797526 51 30758 ... 8.479051 52 30759 ... 6.737048 53 30760 ... 5.295413 54 30761 ... 5.722424 55 30762 ... 5.626678 56 30763 ... 4.922710 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8ioil8pg wandb: Agent Starting Run: v2jkyt2t with config: batch_size: 5 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: v2jkyt2t
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.313868522644043 The number of items in train is: 7 The loss for epoch 0 2.0448383603777205 The running loss is: 21.173898339271545 The number of items in train is: 7 The loss for epoch 1 3.024842619895935 The running loss is: 8.537031590938568 The number of items in train is: 7 The loss for epoch 2 1.2195759415626526 The running loss is: 9.553512573242188 The number of items in train is: 7 The loss for epoch 3 1.3647875104631697 The running loss is: 5.124066233634949 The number of items in train is: 7 The loss for epoch 4 0.7320094619478498 The running loss is: 4.670688271522522 The number of items in train is: 7 The loss for epoch 5 0.6672411816460746 The running loss is: 4.281704246997833 The number of items in train is: 7 The loss for epoch 6 0.6116720352854047 The running loss is: 3.969690963625908 The number of items in train is: 7 The loss for epoch 7 0.5670987090894154 The running loss is: 4.173694938421249 The number of items in train is: 7 The loss for epoch 8 0.5962421340601785 The running loss is: 3.5966562777757645 The number of items in train is: 7 The loss for epoch 9 0.5138080396822521 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 11.959491 48 30755 ... 7.152155 49 30756 ... 11.036368 50 30757 ... 14.112470 51 30758 ... 12.477591 52 30759 ... 9.832200 53 30760 ... 10.799255 54 30761 ... 11.602201 55 30762 ... 9.996349 56 30763 ... 10.044203 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v2jkyt2t wandb: Agent Starting Run: b7cia89b with config: batch_size: 5 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: b7cia89b
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.498386919498444 The number of items in train is: 7 The loss for epoch 0 1.4997695599283491 The running loss is: 16.961153388023376 The number of items in train is: 7 The loss for epoch 1 2.423021912574768 The running loss is: 6.070439994335175 The number of items in train is: 7 The loss for epoch 2 0.8672057134764535 The running loss is: 7.044522300362587 The number of items in train is: 7 The loss for epoch 3 1.0063603286232268 The running loss is: 5.524796187877655 The number of items in train is: 7 The loss for epoch 4 0.7892565982682365 The running loss is: 5.174478992819786 The number of items in train is: 7 The loss for epoch 5 0.7392112846885409 The running loss is: 5.18627268075943 The number of items in train is: 7 The loss for epoch 6 0.7408960972513471 The running loss is: 4.556998088955879 The number of items in train is: 7 The loss for epoch 7 0.650999726993697 The running loss is: 4.025437951087952 The number of items in train is: 7 The loss for epoch 8 0.5750625644411359 The running loss is: 3.7488027215003967 The number of items in train is: 7 The loss for epoch 9 0.5355432459286281 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.350999 48 30755 ... 8.313608 49 30756 ... 9.650146 50 30757 ... 13.457047 51 30758 ... 11.586737 52 30759 ... 7.641543 53 30760 ... 7.716665 54 30761 ... 8.501719 55 30762 ... 7.343888 56 30763 ... 6.925780 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: b7cia89b wandb: Agent Starting Run: msl0siip with config: batch_size: 5 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: msl0siip
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.923059403896332 The number of items in train is: 7 The loss for epoch 0 2.8461513434137617 The running loss is: 21.545911133289337 The number of items in train is: 7 The loss for epoch 1 3.0779873047556197 The running loss is: 14.83446341753006 The number of items in train is: 7 The loss for epoch 2 2.1192090596471513 The running loss is: 9.760437935590744 The number of items in train is: 7 The loss for epoch 3 1.3943482765129633 The running loss is: 5.346604257822037 The number of items in train is: 7 The loss for epoch 4 0.763800608260291 The running loss is: 6.062074542045593 The number of items in train is: 7 The loss for epoch 5 0.8660106488636562 The running loss is: 5.347100764513016 The number of items in train is: 7 The loss for epoch 6 0.7638715377875737 The running loss is: 4.903612896800041 The number of items in train is: 7 The loss for epoch 7 0.7005161281142916 The running loss is: 4.763592883944511 The number of items in train is: 7 The loss for epoch 8 0.6805132691349302 The running loss is: 4.394327566027641 The number of items in train is: 7 The loss for epoch 9 0.6277610808610916 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.194539 48 30755 ... 8.257804 49 30756 ... 8.486530 50 30757 ... 8.778533 51 30758 ... 8.804259 52 30759 ... 8.143517 53 30760 ... 7.652658 54 30761 ... 7.324890 55 30762 ... 7.184923 56 30763 ... 6.334022 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: msl0siip wandb: Agent Starting Run: j25gdui1 with config: batch_size: 5 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: j25gdui1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 67.53127729892731 The number of items in train is: 7 The loss for epoch 0 9.647325328418187 The running loss is: 8.399534657597542 The number of items in train is: 7 The loss for epoch 1 1.1999335225139345 The running loss is: 19.160128891468048 The number of items in train is: 7 The loss for epoch 2 2.737161270209721 The running loss is: 6.752385526895523 The number of items in train is: 7 The loss for epoch 3 0.9646265038422176 The running loss is: 10.865512549877167 The number of items in train is: 7 The loss for epoch 4 1.552216078553881 The running loss is: 8.864420533180237 The number of items in train is: 7 The loss for epoch 5 1.2663457904543196 The running loss is: 6.685234010219574 The number of items in train is: 7 The loss for epoch 6 0.9550334300313678 The running loss is: 5.997121214866638 The number of items in train is: 7 The loss for epoch 7 0.8567316021238055 The running loss is: 6.7596277594566345 The number of items in train is: 7 The loss for epoch 8 0.9656611084938049 The running loss is: 6.355755656957626 The number of items in train is: 7 The loss for epoch 9 0.9079650938510895 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.615163 48 30755 ... 9.802985 49 30756 ... 9.741320 50 30757 ... 9.703117 51 30758 ... 9.675394 52 30759 ... 9.667830 53 30760 ... 9.622468 54 30761 ... 9.616317 55 30762 ... 9.702218 56 30763 ... 9.624327 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: j25gdui1 wandb: Agent Starting Run: r2ml7nx8 with config: batch_size: 5 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: r2ml7nx8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 43.192112147808075 The number of items in train is: 7 The loss for epoch 0 6.170301735401154 The running loss is: 9.303201377391815 The number of items in train is: 7 The loss for epoch 1 1.3290287681988306 The running loss is: 15.101940214633942 The number of items in train is: 7 The loss for epoch 2 2.1574200306619917 The running loss is: 6.0063003450632095 The number of items in train is: 7 The loss for epoch 3 0.8580429064376014 The running loss is: 5.982577458024025 The number of items in train is: 7 The loss for epoch 4 0.8546539225748607 The running loss is: 6.759203761816025 The number of items in train is: 7 The loss for epoch 5 0.9656005374022892 The running loss is: 4.7542779594659805 The number of items in train is: 7 The loss for epoch 6 0.6791825656379972 The running loss is: 5.1109654903411865 The number of items in train is: 7 The loss for epoch 7 0.7301379271915981 The running loss is: 6.155610501766205 The number of items in train is: 7 The loss for epoch 8 0.8793729288237435 The running loss is: 4.374343603849411 The number of items in train is: 7 The loss for epoch 9 0.6249062291213444 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.731800 48 30755 ... 12.378132 49 30756 ... 11.761867 50 30757 ... 11.758492 51 30758 ... 11.453133 52 30759 ... 11.467014 53 30760 ... 11.495632 54 30761 ... 11.227182 55 30762 ... 11.354984 56 30763 ... 11.109964 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r2ml7nx8 wandb: Agent Starting Run: e5h01qn1 with config: batch_size: 5 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: e5h01qn1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 90.54687196016312 The number of items in train is: 7 The loss for epoch 0 12.935267422880445 The running loss is: 8.523807942867279 The number of items in train is: 7 The loss for epoch 1 1.21768684898104 The running loss is: 28.74505126476288 The number of items in train is: 7 The loss for epoch 2 4.1064358949661255 The running loss is: 11.200783550739288 The number of items in train is: 7 The loss for epoch 3 1.6001119358198983 The running loss is: 18.60291025042534 The number of items in train is: 7 The loss for epoch 4 2.6575586072036197 The running loss is: 29.870601654052734 The number of items in train is: 7 The loss for epoch 5 4.2672288077218195 The running loss is: 6.606499120593071 The number of items in train is: 7 The loss for epoch 6 0.943785588656153 The running loss is: 7.695777118206024 The number of items in train is: 7 The loss for epoch 7 1.0993967311722892 The running loss is: 6.955000162124634 The number of items in train is: 7 The loss for epoch 8 0.9935714517320905 The running loss is: 6.869924068450928 The number of items in train is: 7 The loss for epoch 9 0.9814177240644183 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.303787 48 30755 ... 7.303229 49 30756 ... 7.191536 50 30757 ... 7.176568 51 30758 ... 7.345643 52 30759 ... 7.316633 53 30760 ... 6.877242 54 30761 ... 6.870254 55 30762 ... 6.869648 56 30763 ... 7.055112 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: e5h01qn1 wandb: Agent Starting Run: 51pgmxyd with config: batch_size: 5 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 51pgmxyd
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.386345356702805 The number of items in train is: 7 The loss for epoch 0 1.1980493366718292 The running loss is: 5.305130660533905 The number of items in train is: 7 The loss for epoch 1 0.7578758086477008 The running loss is: 5.040349066257477 The number of items in train is: 7 The loss for epoch 2 0.720049866608211 The running loss is: 4.216301918029785 The number of items in train is: 7 The loss for epoch 3 0.6023288454328265 The running loss is: 4.013143762946129 The number of items in train is: 7 The loss for epoch 4 0.573306251849447 The running loss is: 4.111067958176136 The number of items in train is: 7 The loss for epoch 5 0.5872954225965908 The running loss is: 3.9650451093912125 The number of items in train is: 7 The loss for epoch 6 0.566435015627316 The running loss is: 3.8456651866436005 The number of items in train is: 7 The loss for epoch 7 0.5493807409490857 The running loss is: 3.4701995626091957 The number of items in train is: 7 The loss for epoch 8 0.49574279465845655 The running loss is: 3.600193105638027 The number of items in train is: 7 The loss for epoch 9 0.5143133008054325 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.014473 48 30755 ... 9.291738 49 30756 ... 10.382364 50 30757 ... 10.538802 51 30758 ... 10.259753 52 30759 ... 10.314054 53 30760 ... 9.395301 54 30761 ... 6.940967 55 30762 ... 7.337349 56 30763 ... 8.289805 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 51pgmxyd wandb: Agent Starting Run: gx05z4h0 with config: batch_size: 5 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: gx05z4h0
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.603733956813812 The number of items in train is: 7 The loss for epoch 0 1.2291048509734017 The running loss is: 5.768532857298851 The number of items in train is: 7 The loss for epoch 1 0.8240761224712644 The running loss is: 5.064010441303253 The number of items in train is: 7 The loss for epoch 2 0.7234300630433219 The running loss is: 4.223667658865452 The number of items in train is: 7 The loss for epoch 3 0.6033810941236359 The running loss is: 4.201617494225502 The number of items in train is: 7 The loss for epoch 4 0.6002310706036431 The running loss is: 4.033991657197475 The number of items in train is: 7 The loss for epoch 5 0.5762845224567822 The running loss is: 3.9912275075912476 The number of items in train is: 7 The loss for epoch 6 0.5701753582273211 The running loss is: 3.7576887756586075 The number of items in train is: 7 The loss for epoch 7 0.5368126822369439 The running loss is: 3.7496463656425476 The number of items in train is: 7 The loss for epoch 8 0.535663766520364 The running loss is: 3.759747177362442 The number of items in train is: 7 The loss for epoch 9 0.537106739623206 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 6.349306 48 30755 ... 6.258404 49 30756 ... 7.824118 50 30757 ... 7.399878 51 30758 ... 6.525862 52 30759 ... 6.587952 53 30760 ... 5.459343 54 30761 ... 1.024171 55 30762 ... 0.872965 56 30763 ... 1.004691 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gx05z4h0 wandb: Agent Starting Run: kua0nnmv with config: batch_size: 5 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: kua0nnmv
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 8.157315015792847 The number of items in train is: 7 The loss for epoch 0 1.1653307165418352 The running loss is: 5.333026871085167 The number of items in train is: 7 The loss for epoch 1 0.7618609815835953 The running loss is: 4.923013836145401 The number of items in train is: 7 The loss for epoch 2 0.7032876908779144 The running loss is: 4.182542055845261 The number of items in train is: 7 The loss for epoch 3 0.5975060079778943 The running loss is: 3.877619966864586 The number of items in train is: 7 The loss for epoch 4 0.5539457095520837 The running loss is: 4.020708501338959 The number of items in train is: 7 The loss for epoch 5 0.5743869287627084 The running loss is: 3.8042884171009064 The number of items in train is: 7 The loss for epoch 6 0.543469773871558 The running loss is: 3.4904306679964066 The number of items in train is: 7 The loss for epoch 7 0.4986329525709152 The running loss is: 3.805373951792717 The number of items in train is: 7 The loss for epoch 8 0.5436248502561024 The running loss is: 3.578959584236145 The number of items in train is: 7 The loss for epoch 9 0.5112799406051636 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.411602 48 30755 ... 8.892941 49 30756 ... 7.403359 50 30757 ... 8.140916 51 30758 ... 9.077764 52 30759 ... 8.763077 53 30760 ... 7.171425 54 30761 ... 4.151009 55 30762 ... 4.456970 56 30763 ... 4.688587 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: kua0nnmv wandb: Agent Starting Run: 9nb3qucq with config: batch_size: 5 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 9nb3qucq
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.452470779418945 The number of items in train is: 7 The loss for epoch 0 1.3503529684884208 The running loss is: 8.573224395513535 The number of items in train is: 7 The loss for epoch 1 1.2247463422162193 The running loss is: 4.582139626145363 The number of items in train is: 7 The loss for epoch 2 0.6545913751636233 The running loss is: 4.537662208080292 The number of items in train is: 7 The loss for epoch 3 0.6482374582971845 The running loss is: 4.334219105541706 The number of items in train is: 7 The loss for epoch 4 0.6191741579345295 The running loss is: 3.8650491908192635 The number of items in train is: 7 The loss for epoch 5 0.5521498844027519 The running loss is: 4.087241470813751 The number of items in train is: 7 The loss for epoch 6 0.5838916386876788 The running loss is: 3.7244302183389664 The number of items in train is: 7 The loss for epoch 7 0.5320614597627095 The running loss is: 3.0911393761634827 The number of items in train is: 7 The loss for epoch 8 0.4415913394519261 The running loss is: 3.1409634202718735 The number of items in train is: 7 The loss for epoch 9 0.4487090600388391 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 8.991542 48 30755 ... 7.977815 49 30756 ... 11.552586 50 30757 ... 11.382884 51 30758 ... 9.104527 52 30759 ... 10.094441 53 30760 ... 10.687099 54 30761 ... 6.068766 55 30762 ... 6.669483 56 30763 ... 6.720552 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9nb3qucq wandb: Agent Starting Run: 2d77dsds with config: batch_size: 5 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 2d77dsds
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 10.341898024082184 The number of items in train is: 7 The loss for epoch 0 1.477414003440312 The running loss is: 9.692167803645134 The number of items in train is: 7 The loss for epoch 1 1.3845954005207335 The running loss is: 4.67776694893837 The number of items in train is: 7 The loss for epoch 2 0.66825242127691 The running loss is: 4.513872340321541 The number of items in train is: 7 The loss for epoch 3 0.6448389057602201 The running loss is: 4.335822895169258 The number of items in train is: 7 The loss for epoch 4 0.6194032707384655 The running loss is: 4.105712324380875 The number of items in train is: 7 The loss for epoch 5 0.5865303320544106 The running loss is: 4.100954279303551 The number of items in train is: 7 The loss for epoch 6 0.5858506113290787 The running loss is: 3.741816997528076 The number of items in train is: 7 The loss for epoch 7 0.5345452853611538 The running loss is: 3.687743529677391 The number of items in train is: 7 The loss for epoch 8 0.5268205042396273 The running loss is: 3.4706184715032578 The number of items in train is: 7 The loss for epoch 9 0.4958026387861797 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.107794 48 30755 ... 6.300855 49 30756 ... 8.690669 50 30757 ... 8.066691 51 30758 ... 6.239733 52 30759 ... 6.995705 53 30760 ... 7.065566 54 30761 ... 1.747199 55 30762 ... 1.620586 56 30763 ... 1.295900 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2d77dsds wandb: Agent Starting Run: kv3ugs2f with config: batch_size: 5 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: kv3ugs2f
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 9.399968564510345 The number of items in train is: 7 The loss for epoch 0 1.3428526520729065 The running loss is: 8.328093975782394 The number of items in train is: 7 The loss for epoch 1 1.1897277108260564 The running loss is: 4.483197212219238 The number of items in train is: 7 The loss for epoch 2 0.6404567446027484 The running loss is: 4.404286772012711 The number of items in train is: 7 The loss for epoch 3 0.6291838245732444 The running loss is: 4.283157721161842 The number of items in train is: 7 The loss for epoch 4 0.6118796744516918 The running loss is: 4.080961152911186 The number of items in train is: 7 The loss for epoch 5 0.5829944504158837 The running loss is: 3.922510102391243 The number of items in train is: 7 The loss for epoch 6 0.5603585860558918 The running loss is: 3.649494081735611 The number of items in train is: 7 The loss for epoch 7 0.5213562973908016 The running loss is: 4.0167796313762665 The number of items in train is: 7 The loss for epoch 8 0.5738256616251809 The running loss is: 3.7649319767951965 The number of items in train is: 7 The loss for epoch 9 0.5378474252564567 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.075241 48 30755 ... 9.679935 49 30756 ... 7.270753 50 30757 ... 8.642411 51 30758 ... 9.739583 52 30759 ... 9.584579 53 30760 ... 8.186583 54 30761 ... 6.058244 55 30762 ... 6.880507 56 30763 ... 6.824042 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: kv3ugs2f wandb: Agent Starting Run: s1dkmad8 with config: batch_size: 5 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: s1dkmad8
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.163711488246918 The number of items in train is: 7 The loss for epoch 0 2.0233873554638455 The running loss is: 17.172690749168396 The number of items in train is: 7 The loss for epoch 1 2.453241535595485 The running loss is: 7.470961958169937 The number of items in train is: 7 The loss for epoch 2 1.0672802797385625 The running loss is: 7.662623822689056 The number of items in train is: 7 The loss for epoch 3 1.0946605460984367 The running loss is: 4.7404936999082565 The number of items in train is: 7 The loss for epoch 4 0.6772133857011795 The running loss is: 4.622741907835007 The number of items in train is: 7 The loss for epoch 5 0.6603917011192867 The running loss is: 4.599970698356628 The number of items in train is: 7 The loss for epoch 6 0.6571386711938041 The running loss is: 4.118006765842438 The number of items in train is: 7 The loss for epoch 7 0.588286680834634 The running loss is: 3.2050129547715187 The number of items in train is: 7 The loss for epoch 8 0.4578589935387884 The running loss is: 3.9961725622415543 The number of items in train is: 7 The loss for epoch 9 0.5708817946059364 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.272706 48 30755 ... 10.734841 49 30756 ... 9.385545 50 30757 ... 11.560097 51 30758 ... 11.946331 52 30759 ... 12.485663 53 30760 ... 14.132852 54 30761 ... 12.056442 55 30762 ... 12.276989 56 30763 ... 12.371525 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: s1dkmad8 wandb: Agent Starting Run: ftcthxo3 with config: batch_size: 5 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ftcthxo3
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.386868000030518 The number of items in train is: 7 The loss for epoch 0 2.1981240000043596 The running loss is: 20.018226504325867 The number of items in train is: 7 The loss for epoch 1 2.8597466434751238 The running loss is: 8.846402645111084 The number of items in train is: 7 The loss for epoch 2 1.2637718064444405 The running loss is: 8.188300907611847 The number of items in train is: 7 The loss for epoch 3 1.1697572725159782 The running loss is: 5.718660831451416 The number of items in train is: 7 The loss for epoch 4 0.8169515473502023 The running loss is: 4.988060265779495 The number of items in train is: 7 The loss for epoch 5 0.7125800379684993 The running loss is: 4.967563331127167 The number of items in train is: 7 The loss for epoch 6 0.7096519044467381 The running loss is: 4.434747152030468 The number of items in train is: 7 The loss for epoch 7 0.633535307432924 The running loss is: 4.422097831964493 The number of items in train is: 7 The loss for epoch 8 0.6317282617092133 The running loss is: 4.5411578714847565 The number of items in train is: 7 The loss for epoch 9 0.6487368387835366 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 7.052814 48 30755 ... 7.284422 49 30756 ... 7.511244 50 30757 ... 8.769793 51 30758 ... 9.044814 52 30759 ... 9.060470 53 30760 ... 8.379431 54 30761 ... 7.380647 55 30762 ... 8.095577 56 30763 ... 8.026391 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ftcthxo3 wandb: Agent Starting Run: nfbfbmg4 with config: batch_size: 5 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: nfbfbmg4
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.547432959079742 The number of items in train is: 7 The loss for epoch 0 1.9353475655828203 The running loss is: 16.23163253068924 The number of items in train is: 7 The loss for epoch 1 2.3188046472413197 The running loss is: 6.393091231584549 The number of items in train is: 7 The loss for epoch 2 0.9132987473692212 The running loss is: 6.579031050205231 The number of items in train is: 7 The loss for epoch 3 0.9398615786007473 The running loss is: 5.11293551325798 The number of items in train is: 7 The loss for epoch 4 0.7304193590368543 The running loss is: 4.956169933080673 The number of items in train is: 7 The loss for epoch 5 0.7080242761543819 The running loss is: 4.477589040994644 The number of items in train is: 7 The loss for epoch 6 0.6396555772849492 The running loss is: 3.994989514350891 The number of items in train is: 7 The loss for epoch 7 0.570712787764413 The running loss is: 3.823404371738434 The number of items in train is: 7 The loss for epoch 8 0.5462006245340619 The running loss is: 4.004239939153194 The number of items in train is: 7 The loss for epoch 9 0.5720342770218849 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 10.857925 48 30755 ... 8.150393 49 30756 ... 0.958358 50 30757 ... 5.166536 51 30758 ... 7.655322 52 30759 ... 9.013206 53 30760 ... 7.398972 54 30761 ... 4.278189 55 30762 ... 6.075479 56 30763 ... 8.513471 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nfbfbmg4 wandb: Agent Starting Run: cbzag821 with config: batch_size: 5 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: cbzag821
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 67.39246386289597 The number of items in train is: 7 The loss for epoch 0 9.627494837556567 The running loss is: 9.074194252490997 The number of items in train is: 7 The loss for epoch 1 1.296313464641571 The running loss is: 10.388038083910942 The number of items in train is: 7 The loss for epoch 2 1.484005440558706 The running loss is: 10.391907647252083 The number of items in train is: 7 The loss for epoch 3 1.4845582353217261 The running loss is: 5.420821771025658 The number of items in train is: 7 The loss for epoch 4 0.7744031101465225 The running loss is: 5.024749353528023 The number of items in train is: 7 The loss for epoch 5 0.7178213362182889 The running loss is: 4.97475703060627 The number of items in train is: 7 The loss for epoch 6 0.7106795758008957 The running loss is: 4.761862933635712 The number of items in train is: 7 The loss for epoch 7 0.6802661333765302 The running loss is: 4.68121574819088 The number of items in train is: 7 The loss for epoch 8 0.6687451068844114 The running loss is: 5.033755451440811 The number of items in train is: 7 The loss for epoch 9 0.7191079216344016 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 12.181989 48 30755 ... 11.518135 49 30756 ... 11.462760 50 30757 ... 11.136217 51 30758 ... 10.741853 52 30759 ... 10.793540 53 30760 ... 12.484796 54 30761 ... 9.014488 55 30762 ... 9.239480 56 30763 ... 8.877860 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cbzag821 wandb: Agent Starting Run: bdyp6lnn with config: batch_size: 5 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: bdyp6lnn
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 67.81293976306915 The number of items in train is: 7 The loss for epoch 0 9.687562823295593 The running loss is: 9.99773907661438 The number of items in train is: 7 The loss for epoch 1 1.42824843951634 The running loss is: 15.24121206998825 The number of items in train is: 7 The loss for epoch 2 2.1773160099983215 The running loss is: 7.703388452529907 The number of items in train is: 7 The loss for epoch 3 1.1004840646471297 The running loss is: 7.230520695447922 The number of items in train is: 7 The loss for epoch 4 1.0329315279211317 The running loss is: 5.7543908059597015 The number of items in train is: 7 The loss for epoch 5 0.8220558294228145 The running loss is: 6.086855813860893 The number of items in train is: 7 The loss for epoch 6 0.8695508305515561 The running loss is: 6.224896281957626 The number of items in train is: 7 The loss for epoch 7 0.8892708974225181 The running loss is: 5.51524843275547 The number of items in train is: 7 The loss for epoch 8 0.7878926332507815 The running loss is: 5.073978707194328 The number of items in train is: 7 The loss for epoch 9 0.7248541010277612 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.048117 48 30755 ... 10.169812 49 30756 ... 4.386463 50 30757 ... 8.051113 51 30758 ... 12.294018 52 30759 ... 9.637958 53 30760 ... 7.130473 54 30761 ... 8.857204 55 30762 ... 9.039351 56 30763 ... 8.967212 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bdyp6lnn wandb: Agent Starting Run: pml2qhh1 with config: batch_size: 5 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: pml2qhh1
interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv interpolate should be below Now loading and scaling Colorado_Douglas County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 5 dataset_params: desc: null value: batch_size: 5 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Douglas County.csv train_end: 45 training_path: Colorado_Douglas County.csv valid_end: 58 valid_start: 46 validation_path: Colorado_Douglas County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Douglas County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Douglas County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 5 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 56.04367220401764 The number of items in train is: 7 The loss for epoch 0 8.006238886288234 The running loss is: 10.853782594203949 The number of items in train is: 7 The loss for epoch 1 1.550540370600564 The running loss is: 13.280152201652527 The number of items in train is: 7 The loss for epoch 2 1.8971646002360754 The running loss is: 7.083515048027039 The number of items in train is: 7 The loss for epoch 3 1.01193072114672 The running loss is: 5.93258336186409 The number of items in train is: 7 The loss for epoch 4 0.8475119088377271 The running loss is: 5.776451528072357 The number of items in train is: 7 The loss for epoch 5 0.8252073611531939 The running loss is: 5.619628816843033 The number of items in train is: 7 The loss for epoch 6 0.8028041166918618 The running loss is: 6.114215791225433 The number of items in train is: 7 The loss for epoch 7 0.8734593987464905 The running loss is: 5.572997599840164 The number of items in train is: 7 The loss for epoch 8 0.7961425142628806 The running loss is: 5.289255976676941 The number of items in train is: 7 The loss for epoch 9 0.7556079966681344 interpolate should be below Now loading and scaling Colorado_Douglas County.csv CSV Path below Colorado_Douglas County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30744 ... 0.000000 38 30745 ... 0.000000 39 30746 ... 0.000000 40 30747 ... 0.000000 41 30748 ... 0.000000 42 30749 ... 0.000000 43 30750 ... 0.000000 44 30751 ... 0.000000 45 30752 ... 0.000000 46 30753 ... 0.000000 47 30754 ... 9.162136 48 30755 ... 9.868551 49 30756 ... 8.345331 50 30757 ... 9.502460 51 30758 ... 9.210078 52 30759 ... 9.329942 53 30760 ... 9.226681 54 30761 ... 9.408814 55 30762 ... 9.454621 56 30763 ... 9.417312 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pml2qhh1 Colorado_Eagle County Create sweep with ID: izk6f8yh Sweep URL: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:13: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy del sys.path[0] /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:14: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy from ipykernel import kernelapp as app /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:18: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
wandb: Agent Starting Run: 3md9qfjj with config: batch_size: 2 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3md9qfjj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 24.994310602545738 The number of items in train is: 21 The loss for epoch 0 1.1902052667878924 The running loss is: 31.338150784373283 The number of items in train is: 21 The loss for epoch 1 1.492292894493966 The running loss is: 23.230982203036547 The number of items in train is: 21 The loss for epoch 2 1.106237247763645 The running loss is: 22.80511908652261 The number of items in train is: 21 The loss for epoch 3 1.0859580517391718 The running loss is: 21.484980678884313 The number of items in train is: 21 The loss for epoch 4 1.0230943180421102 The running loss is: 22.467626813799143 The number of items in train is: 21 The loss for epoch 5 1.0698869911332924 The running loss is: 22.521564692491665 The number of items in train is: 21 The loss for epoch 6 1.0724554615472222 The running loss is: 21.74733708333224 The number of items in train is: 21 The loss for epoch 7 1.0355874801586782 The running loss is: 21.972762659657747 The number of items in train is: 21 The loss for epoch 8 1.0463220314122736 The running loss is: 21.711856733076274 The number of items in train is: 21 The loss for epoch 9 1.0338979396702987 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 9.320036 47 30819 ... 10.372439 48 30820 ... 10.091675 49 30821 ... 9.566354 50 30822 ... 8.996174 51 30823 ... 8.417763 52 30824 ... 7.837843 53 30825 ... 10.574365 54 30826 ... 10.602532 55 30827 ... 10.133883 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3md9qfjj wandb: Agent Starting Run: jedyojoo with config: batch_size: 2 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: jedyojoo
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 30.50091978907585 The number of items in train is: 20 The loss for epoch 0 1.5250459894537927 The running loss is: 35.48609974980354 The number of items in train is: 20 The loss for epoch 1 1.774304987490177 The running loss is: 28.23683187365532 The number of items in train is: 20 The loss for epoch 2 1.411841593682766 The running loss is: 28.132872357964516 The number of items in train is: 20 The loss for epoch 3 1.4066436178982258 The running loss is: 27.100994661450386 The number of items in train is: 20 The loss for epoch 4 1.3550497330725193 The running loss is: 26.87871690094471 The number of items in train is: 20 The loss for epoch 5 1.3439358450472354 The running loss is: 26.260645911097527 The number of items in train is: 20 The loss for epoch 6 1.3130322955548763 The running loss is: 26.076900631189346 The number of items in train is: 20 The loss for epoch 7 1.3038450315594674 The running loss is: 25.671136647462845 The number of items in train is: 20 The loss for epoch 8 1.2835568323731423 The running loss is: 25.587705582380295 The number of items in train is: 20 The loss for epoch 9 1.2793852791190148 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 16.139271 47 30819 ... 18.936136 48 30820 ... 18.685638 49 30821 ... 17.682741 50 30822 ... 16.494076 51 30823 ... 15.259542 52 30824 ... 14.013685 53 30825 ... 19.352375 54 30826 ... 19.729458 55 30827 ... 18.881512 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jedyojoo wandb: Agent Starting Run: ha9jzb1p with config: batch_size: 2 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ha9jzb1p
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 30.087819531559944 The number of items in train is: 20 The loss for epoch 0 1.5043909765779973 The running loss is: 38.96592804789543 The number of items in train is: 20 The loss for epoch 1 1.9482964023947715 The running loss is: 29.03825269639492 The number of items in train is: 20 The loss for epoch 2 1.451912634819746 The running loss is: 27.82487864047289 The number of items in train is: 20 The loss for epoch 3 1.3912439320236445 The running loss is: 26.97020795941353 The number of items in train is: 20 The loss for epoch 4 1.3485103979706765 The running loss is: 26.578218407928944 The number of items in train is: 20 The loss for epoch 5 1.328910920396447 The running loss is: 26.662743851542473 The number of items in train is: 20 The loss for epoch 6 1.3331371925771236 The running loss is: 26.146022632718086 The number of items in train is: 20 The loss for epoch 7 1.3073011316359042 The running loss is: 25.915332719683647 The number of items in train is: 20 The loss for epoch 8 1.2957666359841824 The running loss is: 25.717713937163353 The number of items in train is: 20 The loss for epoch 9 1.2858856968581676 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 1.090912 47 30819 Eagle County, Colorado, United States ... 47 0.957550 48 30820 Eagle County, Colorado, United States ... 48 0.796825 49 30821 Eagle County, Colorado, United States ... 49 0.632762 50 30822 Eagle County, Colorado, United States ... 50 0.468292 51 30823 Eagle County, Colorado, United States ... 51 0.303773 52 30824 Eagle County, Colorado, United States ... 52 0.139247 53 30825 Eagle County, Colorado, United States ... 53 0.985899 54 30826 Eagle County, Colorado, United States ... 54 0.944738 55 30827 Eagle County, Colorado, United States ... 55 0.795262 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ha9jzb1p wandb: Agent Starting Run: guveixrq with config: batch_size: 2 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: guveixrq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.42800808791071 The number of items in train is: 21 The loss for epoch 0 1.0203813375195576 The running loss is: 33.97634669393301 The number of items in train is: 21 The loss for epoch 1 1.617921271139667 The running loss is: 32.660160295665264 The number of items in train is: 21 The loss for epoch 2 1.5552457283650125 The running loss is: 26.03447231533937 The number of items in train is: 21 The loss for epoch 3 1.2397367769209224 The running loss is: 22.19169175659772 The number of items in train is: 21 The loss for epoch 4 1.0567472265046534 The running loss is: 22.451023087836802 The number of items in train is: 21 The loss for epoch 5 1.0690963375160383 The running loss is: 21.957806181162596 The number of items in train is: 21 The loss for epoch 6 1.0456098181505997 The running loss is: 22.098417993169278 The number of items in train is: 21 The loss for epoch 7 1.0523056187223465 The running loss is: 21.93328778957948 The number of items in train is: 21 The loss for epoch 8 1.044442275694261 The running loss is: 21.70377436140552 The number of items in train is: 21 The loss for epoch 9 1.0335130648288344 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 9.462493 47 30819 ... 10.482204 48 30820 ... 10.290704 49 30821 ... 9.902096 50 30822 ... 9.481412 51 30823 ... 9.055507 52 30824 ... 8.628753 53 30825 ... 10.703968 54 30826 ... 10.684237 55 30827 ... 10.323583 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: guveixrq wandb: Agent Starting Run: m6nbqbmq with config: batch_size: 2 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: m6nbqbmq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 26.785726577043533 The number of items in train is: 20 The loss for epoch 0 1.3392863288521766 The running loss is: 39.627033829689026 The number of items in train is: 20 The loss for epoch 1 1.9813516914844513 The running loss is: 33.684926599264145 The number of items in train is: 20 The loss for epoch 2 1.6842463299632073 The running loss is: 27.56533844769001 The number of items in train is: 20 The loss for epoch 3 1.3782669223845005 The running loss is: 26.230642080307007 The number of items in train is: 20 The loss for epoch 4 1.3115321040153503 The running loss is: 25.43548308312893 The number of items in train is: 20 The loss for epoch 5 1.2717741541564465 The running loss is: 24.62746013700962 The number of items in train is: 20 The loss for epoch 6 1.2313730068504811 The running loss is: 24.4681788533926 The number of items in train is: 20 The loss for epoch 7 1.22340894266963 The running loss is: 23.801658302545547 The number of items in train is: 20 The loss for epoch 8 1.1900829151272774 The running loss is: 23.667554318904877 The number of items in train is: 20 The loss for epoch 9 1.1833777159452439 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 15.175662 47 30819 ... 17.513287 48 30820 ... 17.114977 49 30821 ... 16.084354 50 30822 ... 14.907595 51 30823 ... 13.697062 52 30824 ... 12.478723 53 30825 ... 17.828556 54 30826 ... 18.126408 55 30827 ... 17.256680 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: m6nbqbmq wandb: Agent Starting Run: 3ff31iqc with config: batch_size: 2 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 3ff31iqc
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 26.19386227428913 The number of items in train is: 20 The loss for epoch 0 1.3096931137144565 The running loss is: 42.867518559098244 The number of items in train is: 20 The loss for epoch 1 2.1433759279549123 The running loss is: 34.7266606092453 The number of items in train is: 20 The loss for epoch 2 1.736333030462265 The running loss is: 27.950618222355843 The number of items in train is: 20 The loss for epoch 3 1.397530911117792 The running loss is: 26.19993595778942 The number of items in train is: 20 The loss for epoch 4 1.309996797889471 The running loss is: 25.272186301648617 The number of items in train is: 20 The loss for epoch 5 1.2636093150824308 The running loss is: 25.510257616639137 The number of items in train is: 20 The loss for epoch 6 1.275512880831957 The running loss is: 24.659199744462967 The number of items in train is: 20 The loss for epoch 7 1.2329599872231483 The running loss is: 24.421232596039772 The number of items in train is: 20 The loss for epoch 8 1.2210616298019885 The running loss is: 24.122598320245743 The number of items in train is: 20 The loss for epoch 9 1.2061299160122871 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 2.737662 47 30819 Eagle County, Colorado, United States ... 47 2.728444 48 30820 Eagle County, Colorado, United States ... 48 2.546297 49 30821 Eagle County, Colorado, United States ... 49 2.347031 50 30822 Eagle County, Colorado, United States ... 50 2.146070 51 30823 Eagle County, Colorado, United States ... 51 1.944941 52 30824 Eagle County, Colorado, United States ... 52 1.743796 53 30825 Eagle County, Colorado, United States ... 53 2.811293 54 30826 Eagle County, Colorado, United States ... 54 2.735733 55 30827 Eagle County, Colorado, United States ... 55 2.547019 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3ff31iqc wandb: Agent Starting Run: jbvxtyo1 with config: batch_size: 2 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: jbvxtyo1
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 28.431543273851275 The number of items in train is: 21 The loss for epoch 0 1.3538830130405368 The running loss is: 24.86347783706151 The number of items in train is: 21 The loss for epoch 1 1.183975135098167 The running loss is: 27.93423504382372 The number of items in train is: 21 The loss for epoch 2 1.3302016687535105 The running loss is: 35.81483320891857 The number of items in train is: 21 The loss for epoch 3 1.7054682480437415 The running loss is: 36.937019128352404 The number of items in train is: 21 The loss for epoch 4 1.7589056727786858 The running loss is: 32.27701100707054 The number of items in train is: 21 The loss for epoch 5 1.5370005241462164 The running loss is: 27.327979074791074 The number of items in train is: 21 The loss for epoch 6 1.301332336894813 The running loss is: 22.494237068109214 The number of items in train is: 21 The loss for epoch 7 1.0711541461004388 The running loss is: 22.358194688451476 The number of items in train is: 21 The loss for epoch 8 1.0646759375453083 The running loss is: 21.776387142948806 The number of items in train is: 21 The loss for epoch 9 1.0369708163308955 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 9.246925 47 30819 ... 10.244971 48 30820 ... 10.100391 49 30821 ... 9.775701 50 30822 ... 9.422621 51 30823 ... 9.065064 52 30824 ... 8.706804 53 30825 ... 10.461733 54 30826 ... 10.436459 55 30827 ... 10.130575 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jbvxtyo1 wandb: Agent Starting Run: xrtaxjua with config: batch_size: 2 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: xrtaxjua
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 29.28187485039234 The number of items in train is: 20 The loss for epoch 0 1.464093742519617 The running loss is: 33.413817927241325 The number of items in train is: 20 The loss for epoch 1 1.6706908963620664 The running loss is: 32.58062018454075 The number of items in train is: 20 The loss for epoch 2 1.6290310092270375 The running loss is: 29.036787658929825 The number of items in train is: 20 The loss for epoch 3 1.4518393829464913 The running loss is: 33.49508434534073 The number of items in train is: 20 The loss for epoch 4 1.6747542172670364 The running loss is: 31.11882695555687 The number of items in train is: 20 The loss for epoch 5 1.5559413477778434 The running loss is: 27.91164129972458 The number of items in train is: 20 The loss for epoch 6 1.395582064986229 The running loss is: 24.096679963171482 The number of items in train is: 20 The loss for epoch 7 1.204833998158574 The running loss is: 22.1046689376235 The number of items in train is: 20 The loss for epoch 8 1.105233446881175 The running loss is: 22.059589117765427 The number of items in train is: 20 The loss for epoch 9 1.1029794558882713 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 13.587997 47 30819 ... 15.503042 48 30820 ... 15.083281 49 30821 ... 14.152758 50 30822 ... 13.110500 51 30823 ... 12.043802 52 30824 ... 10.971756 53 30825 ... 15.769411 54 30826 ... 15.980247 55 30827 ... 15.187674 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xrtaxjua wandb: Agent Starting Run: 0v9zhmnb with config: batch_size: 2 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 0v9zhmnb
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 31.78796711564064 The number of items in train is: 20 The loss for epoch 0 1.589398355782032 The running loss is: 33.291881904006004 The number of items in train is: 20 The loss for epoch 1 1.6645940952003002 The running loss is: 32.06749828159809 The number of items in train is: 20 The loss for epoch 2 1.6033749140799045 The running loss is: 28.367174096405506 The number of items in train is: 20 The loss for epoch 3 1.4183587048202753 The running loss is: 33.985155656933784 The number of items in train is: 20 The loss for epoch 4 1.6992577828466893 The running loss is: 34.81114760041237 The number of items in train is: 20 The loss for epoch 5 1.7405573800206184 The running loss is: 27.80887019634247 The number of items in train is: 20 The loss for epoch 6 1.3904435098171235 The running loss is: 39.12357208132744 The number of items in train is: 20 The loss for epoch 7 1.956178604066372 The running loss is: 27.10132560878992 The number of items in train is: 20 The loss for epoch 8 1.355066280439496 The running loss is: 25.432943373918533 The number of items in train is: 20 The loss for epoch 9 1.2716471686959268 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.820832 47 30819 Eagle County, Colorado, United States ... 47 6.710801 48 30820 Eagle County, Colorado, United States ... 48 6.761901 49 30821 Eagle County, Colorado, United States ... 49 6.808624 50 30822 Eagle County, Colorado, United States ... 50 6.855465 51 30823 Eagle County, Colorado, United States ... 51 6.902304 52 30824 Eagle County, Colorado, United States ... 52 6.949142 53 30825 Eagle County, Colorado, United States ... 53 6.659204 54 30826 Eagle County, Colorado, United States ... 54 6.715192 55 30827 Eagle County, Colorado, United States ... 55 6.761782 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0v9zhmnb wandb: Agent Starting Run: lx2yib44 with config: batch_size: 2 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: lx2yib44
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 48.09504758147523 The number of items in train is: 21 The loss for epoch 0 2.29024036102263 The running loss is: 22.480513457208872 The number of items in train is: 21 The loss for epoch 1 1.0705006408194702 The running loss is: 41.80015133321285 The number of items in train is: 21 The loss for epoch 2 1.9904833968196596 The running loss is: 40.18148048967123 The number of items in train is: 21 The loss for epoch 3 1.913403832841487 The running loss is: 27.97383632697165 The number of items in train is: 21 The loss for epoch 4 1.3320874441415071 The running loss is: 31.400769567117095 The number of items in train is: 21 The loss for epoch 5 1.4952747412912903 The running loss is: 32.24099379777908 The number of items in train is: 21 The loss for epoch 6 1.5352854189418612 The running loss is: 24.44546188414097 The number of items in train is: 21 The loss for epoch 7 1.1640696135305224 The running loss is: 22.073538778349757 The number of items in train is: 21 The loss for epoch 8 1.0511208942071313 The running loss is: 21.668216380290687 The number of items in train is: 21 The loss for epoch 9 1.0318198276328898 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 10.249763 47 30819 ... 10.780683 48 30820 ... 10.627822 49 30821 ... 10.421335 50 30822 ... 10.210644 51 30823 ... 9.999621 52 30824 ... 9.788574 53 30825 ... 10.939012 54 30826 ... 10.834738 55 30827 ... 10.632061 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lx2yib44 wandb: Agent Starting Run: rpc2w1fl with config: batch_size: 2 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: rpc2w1fl
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 57.4059556722641 The number of items in train is: 20 The loss for epoch 0 2.870297783613205 The running loss is: 40.249125987291336 The number of items in train is: 20 The loss for epoch 1 2.0124562993645667 The running loss is: 27.546720668673515 The number of items in train is: 20 The loss for epoch 2 1.3773360334336757 The running loss is: 39.57624187320471 The number of items in train is: 20 The loss for epoch 3 1.9788120936602354 The running loss is: 26.22379694879055 The number of items in train is: 20 The loss for epoch 4 1.3111898474395276 The running loss is: 26.18321020901203 The number of items in train is: 20 The loss for epoch 5 1.3091605104506017 The running loss is: 22.03504551947117 The number of items in train is: 20 The loss for epoch 6 1.1017522759735585 The running loss is: 21.372891955077648 The number of items in train is: 20 The loss for epoch 7 1.0686445977538823 The running loss is: 20.670882388949394 The number of items in train is: 20 The loss for epoch 8 1.0335441194474697 The running loss is: 20.363346807658672 The number of items in train is: 20 The loss for epoch 9 1.0181673403829337 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 11.920742 47 30819 ... 13.835093 48 30820 ... 13.454808 49 30821 ... 12.489900 50 30822 ... 11.376041 51 30823 ... 10.224234 52 30824 ... 9.062757 53 30825 ... 13.974960 54 30826 ... 14.358463 55 30827 ... 13.588152 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rpc2w1fl wandb: Agent Starting Run: 71uwwud0 with config: batch_size: 2 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 71uwwud0
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 65.11059759557247 The number of items in train is: 20 The loss for epoch 0 3.2555298797786234 The running loss is: 28.523036420345306 The number of items in train is: 20 The loss for epoch 1 1.4261518210172652 The running loss is: 33.405703380703926 The number of items in train is: 20 The loss for epoch 2 1.6702851690351963 The running loss is: 24.232465356588364 The number of items in train is: 20 The loss for epoch 3 1.211623267829418 The running loss is: 34.218861397355795 The number of items in train is: 20 The loss for epoch 4 1.7109430698677897 The running loss is: 25.364171378314495 The number of items in train is: 20 The loss for epoch 5 1.2682085689157248 The running loss is: 36.61564963310957 The number of items in train is: 20 The loss for epoch 6 1.8307824816554785 The running loss is: 22.46705986559391 The number of items in train is: 20 The loss for epoch 7 1.1233529932796955 The running loss is: 27.24634464085102 The number of items in train is: 20 The loss for epoch 8 1.362317232042551 The running loss is: 23.25190670788288 The number of items in train is: 20 The loss for epoch 9 1.162595335394144 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 10.090479 47 30819 ... 11.080034 48 30820 ... 11.165306 49 30821 ... 11.149635 50 30822 ... 11.122695 51 30823 ... 11.094498 52 30824 ... 11.066160 53 30825 ... 11.214138 54 30826 ... 11.205466 55 30827 ... 11.179308 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 71uwwud0 wandb: Agent Starting Run: 3rvnt4hr with config: batch_size: 2 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3rvnt4hr
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.894857458304614 The number of items in train is: 20 The loss for epoch 0 1.1447428729152307 The running loss is: 32.818418147042394 The number of items in train is: 20 The loss for epoch 1 1.6409209073521196 The running loss is: 22.32921899855137 The number of items in train is: 20 The loss for epoch 2 1.1164609499275684 The running loss is: 19.03028530627489 The number of items in train is: 20 The loss for epoch 3 0.9515142653137445 The running loss is: 17.922462274320424 The number of items in train is: 20 The loss for epoch 4 0.8961231137160212 The running loss is: 16.806524269282818 The number of items in train is: 20 The loss for epoch 5 0.8403262134641409 The running loss is: 17.183919344097376 The number of items in train is: 20 The loss for epoch 6 0.8591959672048688 The running loss is: 16.498050395399332 The number of items in train is: 20 The loss for epoch 7 0.8249025197699666 The running loss is: 16.132734179496765 The number of items in train is: 20 The loss for epoch 8 0.8066367089748383 The running loss is: 16.202645121142268 The number of items in train is: 20 The loss for epoch 9 0.8101322560571134 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 2.556585 47 30819 ... 9.645228 48 30820 ... 11.145407 49 30821 ... 10.554946 50 30822 ... 9.139843 51 30823 ... 7.114215 52 30824 ... 4.747508 53 30825 ... 5.182785 54 30826 ... 11.098437 55 30827 ... 11.842958 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3rvnt4hr wandb: Agent Starting Run: m31yaxhk with config: batch_size: 2 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: m31yaxhk
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.808099165558815 The number of items in train is: 20 The loss for epoch 0 1.1404049582779408 The running loss is: 32.54965762794018 The number of items in train is: 20 The loss for epoch 1 1.6274828813970088 The running loss is: 23.487822026014328 The number of items in train is: 20 The loss for epoch 2 1.1743911013007164 The running loss is: 21.436568334698677 The number of items in train is: 20 The loss for epoch 3 1.071828416734934 The running loss is: 20.173894971609116 The number of items in train is: 20 The loss for epoch 4 1.0086947485804558 The running loss is: 19.244802474975586 The number of items in train is: 20 The loss for epoch 5 0.9622401237487793 The running loss is: 19.414657458662987 The number of items in train is: 20 The loss for epoch 6 0.9707328729331494 The running loss is: 18.745623260736465 The number of items in train is: 20 The loss for epoch 7 0.9372811630368233 The running loss is: 18.42511696368456 The number of items in train is: 20 The loss for epoch 8 0.9212558481842279 The running loss is: 17.993324242532253 The number of items in train is: 20 The loss for epoch 9 0.8996662121266127 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 1.286533 47 30819 Eagle County, Colorado, United States ... 47 7.902304 48 30820 Eagle County, Colorado, United States ... 48 8.358495 49 30821 Eagle County, Colorado, United States ... 49 7.713692 50 30822 Eagle County, Colorado, United States ... 50 5.313522 51 30823 Eagle County, Colorado, United States ... 51 2.300918 52 30824 Eagle County, Colorado, United States ... 52 -1.653545 53 30825 Eagle County, Colorado, United States ... 53 -0.715274 54 30826 Eagle County, Colorado, United States ... 54 6.250890 55 30827 Eagle County, Colorado, United States ... 55 7.206236 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: m31yaxhk wandb: Agent Starting Run: 5wjn16ui with config: batch_size: 2 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 5wjn16ui
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.883200803771615 The number of items in train is: 19 The loss for epoch 0 1.2570105686195587 The running loss is: 29.3741205483675 The number of items in train is: 19 The loss for epoch 1 1.5460063446509211 The running loss is: 22.550002455711365 The number of items in train is: 19 The loss for epoch 2 1.1868422345111245 The running loss is: 21.398591592907906 The number of items in train is: 19 The loss for epoch 3 1.1262416627846266 The running loss is: 20.165410295128822 The number of items in train is: 19 The loss for epoch 4 1.0613373839541485 The running loss is: 19.983036041259766 The number of items in train is: 19 The loss for epoch 5 1.0517387390136719 The running loss is: 19.7033898383379 The number of items in train is: 19 The loss for epoch 6 1.0370205178072578 The running loss is: 20.062028273940086 The number of items in train is: 19 The loss for epoch 7 1.055896224944215 The running loss is: 19.604557141661644 The number of items in train is: 19 The loss for epoch 8 1.0318187969295602 The running loss is: 19.286929190158844 The number of items in train is: 19 The loss for epoch 9 1.0151015363241498 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.172461 47 30819 ... 9.464293 48 30820 ... 10.587953 49 30821 ... 11.135654 50 30822 ... 10.621194 51 30823 ... 9.779943 52 30824 ... 8.561573 53 30825 ... 7.978648 54 30826 ... 12.218817 55 30827 ... 12.135553 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5wjn16ui wandb: Agent Starting Run: qdw71sjg with config: batch_size: 2 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: qdw71sjg
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.258419326506555 The number of items in train is: 20 The loss for epoch 0 0.9629209663253278 The running loss is: 29.041860688477755 The number of items in train is: 20 The loss for epoch 1 1.4520930344238878 The running loss is: 28.806721806526184 The number of items in train is: 20 The loss for epoch 2 1.4403360903263092 The running loss is: 22.60324565321207 The number of items in train is: 20 The loss for epoch 3 1.1301622826606035 The running loss is: 17.439734483137727 The number of items in train is: 20 The loss for epoch 4 0.8719867241568864 The running loss is: 17.076150111854076 The number of items in train is: 20 The loss for epoch 5 0.8538075055927038 The running loss is: 16.122335635125637 The number of items in train is: 20 The loss for epoch 6 0.8061167817562819 The running loss is: 16.304215546697378 The number of items in train is: 20 The loss for epoch 7 0.8152107773348689 The running loss is: 15.875915486365557 The number of items in train is: 20 The loss for epoch 8 0.7937957743182779 The running loss is: 15.645636413246393 The number of items in train is: 20 The loss for epoch 9 0.7822818206623197 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 2.874076 47 30819 ... 10.008490 48 30820 ... 11.268057 49 30821 ... 10.409958 50 30822 ... 9.094545 51 30823 ... 7.289007 52 30824 ... 5.318330 53 30825 ... 5.599030 54 30826 ... 11.190384 55 30827 ... 11.729114 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qdw71sjg wandb: Agent Starting Run: txdsr8qd with config: batch_size: 2 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: txdsr8qd
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.926999300718307 The number of items in train is: 20 The loss for epoch 0 1.0963499650359154 The running loss is: 33.55658884346485 The number of items in train is: 20 The loss for epoch 1 1.6778294421732425 The running loss is: 27.994558811187744 The number of items in train is: 20 The loss for epoch 2 1.3997279405593872 The running loss is: 22.162001058459282 The number of items in train is: 20 The loss for epoch 3 1.108100052922964 The running loss is: 20.306521743535995 The number of items in train is: 20 The loss for epoch 4 1.0153260871767997 The running loss is: 19.236631900072098 The number of items in train is: 20 The loss for epoch 5 0.9618315950036049 The running loss is: 19.31939486414194 The number of items in train is: 20 The loss for epoch 6 0.965969743207097 The running loss is: 18.986520119011402 The number of items in train is: 20 The loss for epoch 7 0.9493260059505702 The running loss is: 17.964872032403946 The number of items in train is: 20 The loss for epoch 8 0.8982436016201973 The running loss is: 17.021880947053432 The number of items in train is: 20 The loss for epoch 9 0.8510940473526716 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 -1.726226 47 30819 Eagle County, Colorado, United States ... 47 8.152036 48 30820 Eagle County, Colorado, United States ... 48 9.121257 49 30821 Eagle County, Colorado, United States ... 49 7.794924 50 30822 Eagle County, Colorado, United States ... 50 5.571714 51 30823 Eagle County, Colorado, United States ... 51 2.250640 52 30824 Eagle County, Colorado, United States ... 52 -1.358527 53 30825 Eagle County, Colorado, United States ... 53 -2.516638 54 30826 Eagle County, Colorado, United States ... 54 6.146439 55 30827 Eagle County, Colorado, United States ... 55 7.692529 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: txdsr8qd wandb: Agent Starting Run: 1kt2ejdy with config: batch_size: 2 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1kt2ejdy
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.44402662664652 The number of items in train is: 19 The loss for epoch 0 1.0760014014024484 The running loss is: 31.244781777262688 The number of items in train is: 19 The loss for epoch 1 1.6444621988032992 The running loss is: 28.567642599344254 The number of items in train is: 19 The loss for epoch 2 1.5035601368075924 The running loss is: 22.09902586042881 The number of items in train is: 19 The loss for epoch 3 1.1631066242330952 The running loss is: 20.13299036026001 The number of items in train is: 19 The loss for epoch 4 1.059631071592632 The running loss is: 19.623609885573387 The number of items in train is: 19 The loss for epoch 5 1.032821572924915 The running loss is: 19.941684514284134 The number of items in train is: 19 The loss for epoch 6 1.0495623428570597 The running loss is: 20.171836733818054 The number of items in train is: 19 The loss for epoch 7 1.0616756175693713 The running loss is: 19.684818655252457 The number of items in train is: 19 The loss for epoch 8 1.0360430871185504 The running loss is: 18.656600639224052 The number of items in train is: 19 The loss for epoch 9 0.9819263494328448 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.344335 47 30819 ... 8.965163 48 30820 ... 9.366188 49 30821 ... 9.369502 50 30822 ... 8.577673 51 30823 ... 7.636180 52 30824 ... 6.371642 53 30825 ... 7.675599 54 30826 ... 10.337065 55 30827 ... 10.057920 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1kt2ejdy wandb: Agent Starting Run: bvwqzrjt with config: batch_size: 2 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: bvwqzrjt
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.858943171799183 The number of items in train is: 20 The loss for epoch 0 1.142947158589959 The running loss is: 25.452721800655127 The number of items in train is: 20 The loss for epoch 1 1.2726360900327562 The running loss is: 23.522745087742805 The number of items in train is: 20 The loss for epoch 2 1.1761372543871402 The running loss is: 30.910138800740242 The number of items in train is: 20 The loss for epoch 3 1.545506940037012 The running loss is: 27.686953529715538 The number of items in train is: 20 The loss for epoch 4 1.384347676485777 The running loss is: 22.573460146784782 The number of items in train is: 20 The loss for epoch 5 1.128673007339239 The running loss is: 17.657725639641285 The number of items in train is: 20 The loss for epoch 6 0.8828862819820642 The running loss is: 17.554872505366802 The number of items in train is: 20 The loss for epoch 7 0.8777436252683402 The running loss is: 16.82310827448964 The number of items in train is: 20 The loss for epoch 8 0.8411554137244821 The running loss is: 15.671338841319084 The number of items in train is: 20 The loss for epoch 9 0.7835669420659542 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 2.077608 47 30819 ... 9.250809 48 30820 ... 10.825143 49 30821 ... 9.578727 50 30822 ... 7.942455 51 30823 ... 5.830050 52 30824 ... 3.557108 53 30825 ... 3.781698 54 30826 ... 9.988200 55 30827 ... 11.042790 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: bvwqzrjt wandb: Agent Starting Run: 9hkq0cre with config: batch_size: 2 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 9hkq0cre
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 26.16333219408989 The number of items in train is: 20 The loss for epoch 0 1.3081666097044944 The running loss is: 26.045250490307808 The number of items in train is: 20 The loss for epoch 1 1.3022625245153905 The running loss is: 25.80753855407238 The number of items in train is: 20 The loss for epoch 2 1.290376927703619 The running loss is: 26.523033320903778 The number of items in train is: 20 The loss for epoch 3 1.3261516660451889 The running loss is: 26.54793219268322 The number of items in train is: 20 The loss for epoch 4 1.327396609634161 The running loss is: 22.712683379650116 The number of items in train is: 20 The loss for epoch 5 1.1356341689825058 The running loss is: 20.329153656959534 The number of items in train is: 20 The loss for epoch 6 1.0164576828479768 The running loss is: 19.61660325527191 The number of items in train is: 20 The loss for epoch 7 0.9808301627635956 The running loss is: 20.726151082664728 The number of items in train is: 20 The loss for epoch 8 1.0363075541332365 The running loss is: 19.05374999344349 The number of items in train is: 20 The loss for epoch 9 0.9526874996721745 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.453219 47 30819 Eagle County, Colorado, United States ... 47 9.035815 48 30820 Eagle County, Colorado, United States ... 48 9.680546 49 30821 Eagle County, Colorado, United States ... 49 9.059596 50 30822 Eagle County, Colorado, United States ... 50 7.984948 51 30823 Eagle County, Colorado, United States ... 51 6.752469 52 30824 Eagle County, Colorado, United States ... 52 5.493628 53 30825 Eagle County, Colorado, United States ... 53 6.058336 54 30826 Eagle County, Colorado, United States ... 54 9.732533 55 30827 Eagle County, Colorado, United States ... 55 9.939076 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9hkq0cre wandb: Agent Starting Run: wcq119wq with config: batch_size: 2 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: wcq119wq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.35972896963358 The number of items in train is: 19 The loss for epoch 0 1.2294594194543988 The running loss is: 29.350028984248638 The number of items in train is: 19 The loss for epoch 1 1.5447383675920336 The running loss is: 23.49043282866478 The number of items in train is: 19 The loss for epoch 2 1.2363385699297254 The running loss is: 24.20486121624708 The number of items in train is: 19 The loss for epoch 3 1.2739400640130043 The running loss is: 23.583865851163864 The number of items in train is: 19 The loss for epoch 4 1.2412560974296771 The running loss is: 21.583225786685944 The number of items in train is: 19 The loss for epoch 5 1.1359592519308392 The running loss is: 19.9445867985487 The number of items in train is: 19 The loss for epoch 6 1.0497150946604579 The running loss is: 20.0459441319108 The number of items in train is: 19 The loss for epoch 7 1.0550496911532001 The running loss is: 19.574128806591034 The number of items in train is: 19 The loss for epoch 8 1.0302173056100543 The running loss is: 19.495283983647823 The number of items in train is: 19 The loss for epoch 9 1.0260675780867274 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.255701 47 30819 ... 9.307986 48 30820 ... 10.159330 49 30821 ... 10.204440 50 30822 ... 9.981266 51 30823 ... 9.593956 52 30824 ... 9.135714 53 30825 ... 9.793672 54 30826 ... 10.906508 55 30827 ... 10.791603 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wcq119wq wandb: Agent Starting Run: yxaojihg with config: batch_size: 2 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yxaojihg
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 63.12795731425285 The number of items in train is: 20 The loss for epoch 0 3.1563978657126426 The running loss is: 27.380909606814384 The number of items in train is: 20 The loss for epoch 1 1.3690454803407193 The running loss is: 38.64922794699669 The number of items in train is: 20 The loss for epoch 2 1.9324613973498344 The running loss is: 24.797455199062824 The number of items in train is: 20 The loss for epoch 3 1.2398727599531412 The running loss is: 24.066325157880783 The number of items in train is: 20 The loss for epoch 4 1.203316257894039 The running loss is: 20.85441730171442 The number of items in train is: 20 The loss for epoch 5 1.042720865085721 The running loss is: 22.116691429167986 The number of items in train is: 20 The loss for epoch 6 1.1058345714583993 The running loss is: 20.194003105163574 The number of items in train is: 20 The loss for epoch 7 1.0097001552581788 The running loss is: 19.880487099289894 The number of items in train is: 20 The loss for epoch 8 0.9940243549644947 The running loss is: 19.48942229896784 The number of items in train is: 20 The loss for epoch 9 0.9744711149483919 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.095248 47 30819 ... 13.675316 48 30820 ... 13.755165 49 30821 ... 12.772159 50 30822 ... 11.387144 51 30823 ... 9.963962 52 30824 ... 8.419066 53 30825 ... 7.604329 54 30826 ... 14.152313 55 30827 ... 13.881279 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yxaojihg wandb: Agent Starting Run: vo69e3rr with config: batch_size: 2 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: vo69e3rr
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 44.05574178695679 The number of items in train is: 20 The loss for epoch 0 2.202787089347839 The running loss is: 25.349156990647316 The number of items in train is: 20 The loss for epoch 1 1.2674578495323658 The running loss is: 33.40304487943649 The number of items in train is: 20 The loss for epoch 2 1.6701522439718246 The running loss is: 31.406648948788643 The number of items in train is: 20 The loss for epoch 3 1.5703324474394322 The running loss is: 22.615651819854975 The number of items in train is: 20 The loss for epoch 4 1.1307825909927487 The running loss is: 22.341147303581238 The number of items in train is: 20 The loss for epoch 5 1.1170573651790618 The running loss is: 22.197795197367668 The number of items in train is: 20 The loss for epoch 6 1.1098897598683835 The running loss is: 24.94717773795128 The number of items in train is: 20 The loss for epoch 7 1.247358886897564 The running loss is: 21.06535917520523 The number of items in train is: 20 The loss for epoch 8 1.0532679587602616 The running loss is: 23.481164187192917 The number of items in train is: 20 The loss for epoch 9 1.1740582093596459 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 9.153221 47 30819 Eagle County, Colorado, United States ... 47 9.367915 48 30820 Eagle County, Colorado, United States ... 48 9.625638 49 30821 Eagle County, Colorado, United States ... 49 9.611838 50 30822 Eagle County, Colorado, United States ... 50 9.603510 51 30823 Eagle County, Colorado, United States ... 51 9.651998 52 30824 Eagle County, Colorado, United States ... 52 9.644343 53 30825 Eagle County, Colorado, United States ... 53 9.659492 54 30826 Eagle County, Colorado, United States ... 54 9.670691 55 30827 Eagle County, Colorado, United States ... 55 9.647216 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vo69e3rr wandb: Agent Starting Run: x99vu0oz with config: batch_size: 2 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: x99vu0oz
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 43.28711162507534 The number of items in train is: 19 The loss for epoch 0 2.2782690328987023 The running loss is: 25.05246562510729 The number of items in train is: 19 The loss for epoch 1 1.3185508223740678 The running loss is: 26.483036309480667 The number of items in train is: 19 The loss for epoch 2 1.3938440162884562 The running loss is: 23.21202003955841 The number of items in train is: 19 The loss for epoch 3 1.2216852652399164 The running loss is: 24.40618184953928 The number of items in train is: 19 The loss for epoch 4 1.284535886817857 The running loss is: 23.41523738205433 The number of items in train is: 19 The loss for epoch 5 1.2323809148449647 The running loss is: 21.69338585436344 The number of items in train is: 19 The loss for epoch 6 1.1417571502296548 The running loss is: 19.94015894830227 The number of items in train is: 19 The loss for epoch 7 1.0494820499106456 The running loss is: 20.32781156897545 The number of items in train is: 19 The loss for epoch 8 1.0698848194197605 The running loss is: 19.49485769867897 The number of items in train is: 19 The loss for epoch 9 1.0260451420357353 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.251549 47 30819 ... 10.083247 48 30820 ... 10.766473 49 30821 ... 10.922501 50 30822 ... 10.916012 51 30823 ... 10.829031 52 30824 ... 10.715705 53 30825 ... 9.894305 54 30826 ... 11.196030 55 30827 ... 11.021307 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: x99vu0oz wandb: Agent Starting Run: 0112l6k2 with config: batch_size: 2 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 0112l6k2
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.372625601943582 The number of items in train is: 20 The loss for epoch 0 1.018631280097179 The running loss is: 42.762292738305405 The number of items in train is: 20 The loss for epoch 1 2.13811463691527 The running loss is: 30.07040224969387 The number of items in train is: 20 The loss for epoch 2 1.5035201124846935 The running loss is: 25.568414388224483 The number of items in train is: 20 The loss for epoch 3 1.278420719411224 The running loss is: 21.809938758146018 The number of items in train is: 20 The loss for epoch 4 1.0904969379073008 The running loss is: 19.993976016994566 The number of items in train is: 20 The loss for epoch 5 0.9996988008497283 The running loss is: 18.31971403909847 The number of items in train is: 20 The loss for epoch 6 0.9159857019549236 The running loss is: 18.475750502664596 The number of items in train is: 20 The loss for epoch 7 0.9237875251332298 The running loss is: 17.406269858358428 The number of items in train is: 20 The loss for epoch 8 0.8703134929179214 The running loss is: 15.831582311540842 The number of items in train is: 20 The loss for epoch 9 0.7915791155770421 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.211360 47 30819 Eagle County, Colorado, United States ... 47 0.805061 48 30820 Eagle County, Colorado, United States ... 48 6.456613 49 30821 Eagle County, Colorado, United States ... 49 5.171219 50 30822 Eagle County, Colorado, United States ... 50 4.403521 51 30823 Eagle County, Colorado, United States ... 51 3.981504 52 30824 Eagle County, Colorado, United States ... 52 1.503850 53 30825 Eagle County, Colorado, United States ... 53 1.144254 54 30826 Eagle County, Colorado, United States ... 54 1.294929 55 30827 Eagle County, Colorado, United States ... 55 6.817929 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0112l6k2 wandb: Agent Starting Run: cz0b2jhf with config: batch_size: 2 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: cz0b2jhf
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.58346115425229 The number of items in train is: 19 The loss for epoch 0 1.0833400607501205 The running loss is: 32.63544833660126 The number of items in train is: 19 The loss for epoch 1 1.7176551756105924 The running loss is: 24.86648626625538 The number of items in train is: 19 The loss for epoch 2 1.3087624350660725 The running loss is: 19.861273169517517 The number of items in train is: 19 The loss for epoch 3 1.0453301668167114 The running loss is: 19.426814898848534 The number of items in train is: 19 The loss for epoch 4 1.0224639420446597 The running loss is: 19.01237651705742 The number of items in train is: 19 The loss for epoch 5 1.000651395634601 The running loss is: 18.123736664652824 The number of items in train is: 19 The loss for epoch 6 0.9538808770869908 The running loss is: 17.36862461268902 The number of items in train is: 19 The loss for epoch 7 0.9141381375099483 The running loss is: 16.771386608481407 The number of items in train is: 19 The loss for epoch 8 0.8827045583411267 The running loss is: 16.049383729696274 The number of items in train is: 19 The loss for epoch 9 0.8447044068261197 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 0.222322 47 30819 ... 0.539564 48 30820 ... 14.811440 49 30821 ... 12.646440 50 30822 ... 12.469790 51 30823 ... 12.615289 52 30824 ... 7.882138 53 30825 ... 7.685679 54 30826 ... 7.464492 55 30827 ... 20.618021 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cz0b2jhf wandb: Agent Starting Run: 6m4vzuog with config: batch_size: 2 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 6m4vzuog
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.154827743768692 The number of items in train is: 19 The loss for epoch 0 1.008148828619405 The running loss is: 31.390202894806862 The number of items in train is: 19 The loss for epoch 1 1.65211594183194 The running loss is: 22.409427136182785 The number of items in train is: 19 The loss for epoch 2 1.1794435334833044 The running loss is: 20.129380136728287 The number of items in train is: 19 The loss for epoch 3 1.0594410598278046 The running loss is: 19.285180315375328 The number of items in train is: 19 The loss for epoch 4 1.015009490282912 The running loss is: 18.609702050685883 The number of items in train is: 19 The loss for epoch 5 0.979458002667678 The running loss is: 17.89329308271408 The number of items in train is: 19 The loss for epoch 6 0.9417522675112674 The running loss is: 18.30278380215168 The number of items in train is: 19 The loss for epoch 7 0.9633044106395621 The running loss is: 17.593301609158516 The number of items in train is: 19 The loss for epoch 8 0.9259632425872903 The running loss is: 16.95015725493431 The number of items in train is: 19 The loss for epoch 9 0.8921135397333848 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 1.498729 47 30819 ... 2.784153 48 30820 ... 7.250659 49 30821 ... 6.390955 50 30822 ... 6.113214 51 30823 ... 6.685583 52 30824 ... 4.513458 53 30825 ... 5.044778 54 30826 ... 6.276218 55 30827 ... 10.104283 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6m4vzuog wandb: Agent Starting Run: xj4p6nut with config: batch_size: 2 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: xj4p6nut
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 24.988776933401823 The number of items in train is: 20 The loss for epoch 0 1.2494388466700912 The running loss is: 34.32063250988722 The number of items in train is: 20 The loss for epoch 1 1.7160316254943608 The running loss is: 33.453855484724045 The number of items in train is: 20 The loss for epoch 2 1.6726927742362023 The running loss is: 23.9404144436121 The number of items in train is: 20 The loss for epoch 3 1.1970207221806048 The running loss is: 17.672576233861037 The number of items in train is: 20 The loss for epoch 4 0.8836288116930519 The running loss is: 17.489475843962282 The number of items in train is: 20 The loss for epoch 5 0.874473792198114 The running loss is: 17.147922162897885 The number of items in train is: 20 The loss for epoch 6 0.8573961081448942 The running loss is: 16.498743789969012 The number of items in train is: 20 The loss for epoch 7 0.8249371894984506 The running loss is: 17.00277705863118 The number of items in train is: 20 The loss for epoch 8 0.8501388529315591 The running loss is: 16.65495465998538 The number of items in train is: 20 The loss for epoch 9 0.832747732999269 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.488977 47 30819 Eagle County, Colorado, United States ... 47 0.897190 48 30820 Eagle County, Colorado, United States ... 48 6.354722 49 30821 Eagle County, Colorado, United States ... 49 4.820605 50 30822 Eagle County, Colorado, United States ... 50 4.016927 51 30823 Eagle County, Colorado, United States ... 51 4.606457 52 30824 Eagle County, Colorado, United States ... 52 2.254005 53 30825 Eagle County, Colorado, United States ... 53 1.486971 54 30826 Eagle County, Colorado, United States ... 54 1.760599 55 30827 Eagle County, Colorado, United States ... 55 7.010409 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xj4p6nut wandb: Agent Starting Run: ktbeaa9j with config: batch_size: 2 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ktbeaa9j
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.999079801142216 The number of items in train is: 19 The loss for epoch 0 1.1578463053232746 The running loss is: 30.826843470335007 The number of items in train is: 19 The loss for epoch 1 1.6224654458071057 The running loss is: 26.63893211632967 The number of items in train is: 19 The loss for epoch 2 1.4020490587541932 The running loss is: 22.48357506096363 The number of items in train is: 19 The loss for epoch 3 1.1833460558401911 The running loss is: 19.925148122012615 The number of items in train is: 19 The loss for epoch 4 1.0486920064217167 The running loss is: 18.893528878688812 The number of items in train is: 19 The loss for epoch 5 0.9943962567730954 The running loss is: 18.58210776746273 The number of items in train is: 19 The loss for epoch 6 0.9780056719717226 The running loss is: 17.370767161250114 The number of items in train is: 19 The loss for epoch 7 0.9142509032236902 The running loss is: 16.939767386764288 The number of items in train is: 19 The loss for epoch 8 0.8915667045665415 The running loss is: 18.0814261212945 The number of items in train is: 19 The loss for epoch 9 0.951654006383921 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.043530 47 30819 ... 8.564563 48 30820 ... 13.208735 49 30821 ... 13.813708 50 30822 ... 14.007776 51 30823 ... 12.857953 52 30824 ... 9.531335 53 30825 ... 11.662832 54 30826 ... 13.480352 55 30827 ... 18.950397 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ktbeaa9j wandb: Agent Starting Run: hxsffuei with config: batch_size: 2 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: hxsffuei
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.854974925518036 The number of items in train is: 19 The loss for epoch 0 1.044998680290423 The running loss is: 30.09627439081669 The number of items in train is: 19 The loss for epoch 1 1.584014441621931 The running loss is: 26.052530765533447 The number of items in train is: 19 The loss for epoch 2 1.3711858297649182 The running loss is: 20.87158501148224 The number of items in train is: 19 The loss for epoch 3 1.0985044742885388 The running loss is: 19.386949434876442 The number of items in train is: 19 The loss for epoch 4 1.020365759730339 The running loss is: 18.365763187408447 The number of items in train is: 19 The loss for epoch 5 0.9666191151267604 The running loss is: 18.275505244731903 The number of items in train is: 19 The loss for epoch 6 0.9618686970911527 The running loss is: 18.561134546995163 The number of items in train is: 19 The loss for epoch 7 0.9769018182629033 The running loss is: 17.98644445836544 The number of items in train is: 19 The loss for epoch 8 0.9466549714929179 The running loss is: 16.56345410645008 The number of items in train is: 19 The loss for epoch 9 0.8717607424447411 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.921343 47 30819 ... 5.653644 48 30820 ... 9.571172 49 30821 ... 10.741131 50 30822 ... 9.583526 51 30823 ... 10.284985 52 30824 ... 8.859438 53 30825 ... 12.613676 54 30826 ... 13.139013 55 30827 ... 16.450876 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hxsffuei wandb: Agent Starting Run: b737k97a with config: batch_size: 2 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: b737k97a
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 40.35339838266373 The number of items in train is: 20 The loss for epoch 0 2.017669919133186 The running loss is: 25.41597201861441 The number of items in train is: 20 The loss for epoch 1 1.2707986009307206 The running loss is: 53.00542160903569 The number of items in train is: 20 The loss for epoch 2 2.650271080451785 The running loss is: 30.41038277000189 The number of items in train is: 20 The loss for epoch 3 1.5205191385000945 The running loss is: 40.67561185359955 The number of items in train is: 20 The loss for epoch 4 2.0337805926799772 The running loss is: 22.468553626909852 The number of items in train is: 20 The loss for epoch 5 1.1234276813454926 The running loss is: 21.3985225148499 The number of items in train is: 20 The loss for epoch 6 1.069926125742495 The running loss is: 19.585227265022695 The number of items in train is: 20 The loss for epoch 7 0.9792613632511348 The running loss is: 19.549080536235124 The number of items in train is: 20 The loss for epoch 8 0.9774540268117562 The running loss is: 21.40721446927637 The number of items in train is: 20 The loss for epoch 9 1.0703607234638184 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.792440 47 30819 Eagle County, Colorado, United States ... 47 7.494670 48 30820 Eagle County, Colorado, United States ... 48 7.285886 49 30821 Eagle County, Colorado, United States ... 49 7.716760 50 30822 Eagle County, Colorado, United States ... 50 7.138034 51 30823 Eagle County, Colorado, United States ... 51 6.490120 52 30824 Eagle County, Colorado, United States ... 52 5.939859 53 30825 Eagle County, Colorado, United States ... 53 8.235563 54 30826 Eagle County, Colorado, United States ... 54 8.465868 55 30827 Eagle County, Colorado, United States ... 55 8.199594 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: b737k97a wandb: Agent Starting Run: fe84e15w with config: batch_size: 2 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: fe84e15w
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 29.204040184617043 The number of items in train is: 19 The loss for epoch 0 1.5370547465587918 The running loss is: 24.24693512916565 The number of items in train is: 19 The loss for epoch 1 1.2761544804824025 The running loss is: 23.89077879488468 The number of items in train is: 19 The loss for epoch 2 1.2574094102570885 The running loss is: 25.985695831477642 The number of items in train is: 19 The loss for epoch 3 1.367668201656718 The running loss is: 23.965177146717906 The number of items in train is: 19 The loss for epoch 4 1.261325112985153 The running loss is: 21.409245938062668 The number of items in train is: 19 The loss for epoch 5 1.126802417792772 The running loss is: 19.704271476715803 The number of items in train is: 19 The loss for epoch 6 1.0370669198271476 The running loss is: 19.2407064512372 The number of items in train is: 19 The loss for epoch 7 1.0126687605914317 The running loss is: 18.875049274414778 The number of items in train is: 19 The loss for epoch 8 0.9934236460218304 The running loss is: 16.603436348959804 The number of items in train is: 19 The loss for epoch 9 0.8738650709978844 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.420867 47 30819 ... 10.179868 48 30820 ... 11.027630 49 30821 ... 11.649125 50 30822 ... 10.415971 51 30823 ... 8.790237 52 30824 ... 6.691815 53 30825 ... 10.714285 54 30826 ... 11.232683 55 30827 ... 11.909349 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fe84e15w wandb: Agent Starting Run: 8ufb9xcb with config: batch_size: 2 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8ufb9xcb
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 25.113935858011246 The number of items in train is: 19 The loss for epoch 0 1.3217860977900655 The running loss is: 22.519097536802292 The number of items in train is: 19 The loss for epoch 1 1.1852156598316996 The running loss is: 24.353960901498795 The number of items in train is: 19 The loss for epoch 2 1.2817874158683575 The running loss is: 24.2918109446764 The number of items in train is: 19 The loss for epoch 3 1.2785163655092842 The running loss is: 25.014960184693336 The number of items in train is: 19 The loss for epoch 4 1.316576851825965 The running loss is: 21.30792599916458 The number of items in train is: 19 The loss for epoch 5 1.1214697894297148 The running loss is: 19.39668668806553 The number of items in train is: 19 The loss for epoch 6 1.020878246740291 The running loss is: 19.37868858873844 The number of items in train is: 19 The loss for epoch 7 1.0199309783546548 The running loss is: 19.13155810534954 The number of items in train is: 19 The loss for epoch 8 1.0069241108078706 The running loss is: 19.100456029176712 The number of items in train is: 19 The loss for epoch 9 1.0052871594303532 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.524095 47 30819 ... 10.476821 48 30820 ... 11.046574 49 30821 ... 11.381286 50 30822 ... 10.889049 51 30823 ... 10.311730 52 30824 ... 9.664641 53 30825 ... 11.371816 54 30826 ... 11.416924 55 30827 ... 11.818830 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8ufb9xcb wandb: Agent Starting Run: g4xzyzr0 with config: batch_size: 2 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: g4xzyzr0
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 117.5767124183476 The number of items in train is: 20 The loss for epoch 0 5.87883562091738 The running loss is: 25.486171117052436 The number of items in train is: 20 The loss for epoch 1 1.2743085558526217 The running loss is: 37.6898739207536 The number of items in train is: 20 The loss for epoch 2 1.88449369603768 The running loss is: 23.39531859382987 The number of items in train is: 20 The loss for epoch 3 1.1697659296914935 The running loss is: 27.995998777856585 The number of items in train is: 20 The loss for epoch 4 1.3997999388928293 The running loss is: 37.414801586419344 The number of items in train is: 20 The loss for epoch 5 1.8707400793209672 The running loss is: 27.45275203883648 The number of items in train is: 20 The loss for epoch 6 1.372637601941824 The running loss is: 29.12205201201141 The number of items in train is: 20 The loss for epoch 7 1.4561026006005704 The running loss is: 21.42994563933462 The number of items in train is: 20 The loss for epoch 8 1.071497281966731 The running loss is: 20.176511982805096 The number of items in train is: 20 The loss for epoch 9 1.0088255991402548 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.190459 47 30819 ... 9.656222 48 30820 ... 10.072992 49 30821 ... 10.239223 50 30822 ... 9.966965 51 30823 ... 9.720456 52 30824 ... 9.445283 53 30825 ... 10.617431 54 30826 ... 10.793635 55 30827 ... 10.693918 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: g4xzyzr0 wandb: Agent Starting Run: q4a00375 with config: batch_size: 2 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: q4a00375
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 75.37063696980476 The number of items in train is: 19 The loss for epoch 0 3.9668756299897243 The running loss is: 28.946842608973384 The number of items in train is: 19 The loss for epoch 1 1.5235180320512307 The running loss is: 37.80971126258373 The number of items in train is: 19 The loss for epoch 2 1.9899848032938807 The running loss is: 28.027809100225568 The number of items in train is: 19 The loss for epoch 3 1.475147847380293 The running loss is: 22.214233489707112 The number of items in train is: 19 The loss for epoch 4 1.1691701836687953 The running loss is: 22.130612179636955 The number of items in train is: 19 The loss for epoch 5 1.1647690620861555 The running loss is: 20.125448502600193 The number of items in train is: 19 The loss for epoch 6 1.0592341317157996 The running loss is: 19.99137994274497 The number of items in train is: 19 The loss for epoch 7 1.0521778917234195 The running loss is: 19.447364665567875 The number of items in train is: 19 The loss for epoch 8 1.0235455087140988 The running loss is: 19.63094657845795 The number of items in train is: 19 The loss for epoch 9 1.0332077146556817 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.141244 47 30819 ... 8.384874 48 30820 ... 9.568216 49 30821 ... 10.020310 50 30822 ... 9.479197 51 30823 ... 9.105638 52 30824 ... 8.633883 53 30825 ... 9.554037 54 30826 ... 9.554685 55 30827 ... 10.687004 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: q4a00375 wandb: Agent Starting Run: oo78j1mm with config: batch_size: 2 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: oo78j1mm
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 55.04631087183952 The number of items in train is: 19 The loss for epoch 0 2.8971742564126064 The running loss is: 25.651281729340553 The number of items in train is: 19 The loss for epoch 1 1.3500674594389765 The running loss is: 29.31262482702732 The number of items in train is: 19 The loss for epoch 2 1.5427697277382801 The running loss is: 21.643531814217567 The number of items in train is: 19 The loss for epoch 3 1.139133253379872 The running loss is: 23.51069213449955 The number of items in train is: 19 The loss for epoch 4 1.237404849184187 The running loss is: 20.243462055921555 The number of items in train is: 19 The loss for epoch 5 1.0654453713642924 The running loss is: 19.515670895576477 The number of items in train is: 19 The loss for epoch 6 1.0271405734513934 The running loss is: 19.44848108291626 The number of items in train is: 19 The loss for epoch 7 1.0236042675219084 The running loss is: 19.702705189585686 The number of items in train is: 19 The loss for epoch 8 1.0369844836624045 The running loss is: 19.46839915215969 The number of items in train is: 19 The loss for epoch 9 1.0246525869557732 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.704140 47 30819 ... 8.862094 48 30820 ... 11.880857 49 30821 ... 11.703236 50 30822 ... 10.769067 51 30823 ... 8.554482 52 30824 ... 7.181332 53 30825 ... 9.513320 54 30826 ... 9.827226 55 30827 ... 12.694811 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: oo78j1mm wandb: Agent Starting Run: wdzwiki2 with config: batch_size: 2 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: wdzwiki2
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.439917542040348 The number of items in train is: 19 The loss for epoch 0 1.0231535548442288 The running loss is: 30.940813273191452 The number of items in train is: 19 The loss for epoch 1 1.6284638564837606 The running loss is: 20.62387929111719 The number of items in train is: 19 The loss for epoch 2 1.0854673311114311 The running loss is: 18.94204149954021 The number of items in train is: 19 The loss for epoch 3 0.9969495526073795 The running loss is: 18.354026339948177 The number of items in train is: 19 The loss for epoch 4 0.966001386313062 The running loss is: 17.25484985858202 The number of items in train is: 19 The loss for epoch 5 0.9081499925569484 The running loss is: 15.713611334562302 The number of items in train is: 19 The loss for epoch 6 0.827032175503279 The running loss is: 17.080039270222187 The number of items in train is: 19 The loss for epoch 7 0.8989494352748519 The running loss is: 16.1761021791026 The number of items in train is: 19 The loss for epoch 8 0.8513737989001369 The running loss is: 15.210037291049957 The number of items in train is: 19 The loss for epoch 9 0.8005282784763136 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 1.405954 47 30819 ... 5.021082 48 30820 ... 6.838092 49 30821 ... 13.628771 50 30822 ... 11.002051 51 30823 ... 10.494727 52 30824 ... 8.353095 53 30825 ... 8.039375 54 30826 ... 12.134420 55 30827 ... 13.312056 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wdzwiki2 wandb: Agent Starting Run: 9sw07zmk with config: batch_size: 2 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 9sw07zmk
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.866965148597956 The number of items in train is: 19 The loss for epoch 0 1.1508929025577872 The running loss is: 28.42113022506237 The number of items in train is: 19 The loss for epoch 1 1.495848959213809 The running loss is: 19.687769025564194 The number of items in train is: 19 The loss for epoch 2 1.0361983697665365 The running loss is: 18.45985646545887 The number of items in train is: 19 The loss for epoch 3 0.9715713929188879 The running loss is: 17.097035117447376 The number of items in train is: 19 The loss for epoch 4 0.8998439535498619 The running loss is: 17.411960707977414 The number of items in train is: 19 The loss for epoch 5 0.9164189846303902 The running loss is: 15.815325029194355 The number of items in train is: 19 The loss for epoch 6 0.8323855278523344 The running loss is: 17.199874091893435 The number of items in train is: 19 The loss for epoch 7 0.905256531152286 The running loss is: 15.348654120229185 The number of items in train is: 19 The loss for epoch 8 0.8078239010646939 The running loss is: 16.138024419546127 The number of items in train is: 19 The loss for epoch 9 0.8493697062919014 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.408259 47 30819 Eagle County, Colorado, United States ... 47 4.232812 48 30820 Eagle County, Colorado, United States ... 48 4.682319 49 30821 Eagle County, Colorado, United States ... 49 4.901486 50 30822 Eagle County, Colorado, United States ... 50 5.480176 51 30823 Eagle County, Colorado, United States ... 51 5.034000 52 30824 Eagle County, Colorado, United States ... 52 4.305603 53 30825 Eagle County, Colorado, United States ... 53 6.571662 54 30826 Eagle County, Colorado, United States ... 54 7.423872 55 30827 Eagle County, Colorado, United States ... 55 7.719498 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9sw07zmk wandb: Agent Starting Run: js3qf6my with config: batch_size: 2 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: js3qf6my
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.61895739287138 The number of items in train is: 18 The loss for epoch 0 1.0343865218261878 The running loss is: 32.830586299300194 The number of items in train is: 18 The loss for epoch 1 1.823921461072233 The running loss is: 20.112476214766502 The number of items in train is: 18 The loss for epoch 2 1.1173597897092502 The running loss is: 18.968113116919994 The number of items in train is: 18 The loss for epoch 3 1.0537840620511107 The running loss is: 16.988379642367363 The number of items in train is: 18 The loss for epoch 4 0.9437988690204091 The running loss is: 15.98021186888218 The number of items in train is: 18 The loss for epoch 5 0.8877895482712321 The running loss is: 16.49119970947504 The number of items in train is: 18 The loss for epoch 6 0.9161777616375022 The running loss is: 14.859417550265789 The number of items in train is: 18 The loss for epoch 7 0.8255231972369883 The running loss is: 17.23430199921131 The number of items in train is: 18 The loss for epoch 8 0.9574612221784062 The running loss is: 15.640456855297089 The number of items in train is: 18 The loss for epoch 9 0.8689142697387271 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.227388 47 30819 ... 9.126212 48 30820 ... 10.664755 49 30821 ... 11.284911 50 30822 ... 13.417641 51 30823 ... 14.878563 52 30824 ... 15.908744 53 30825 ... 16.099213 54 30826 ... 17.605251 55 30827 ... 18.707098 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: js3qf6my wandb: Agent Starting Run: a624rlup with config: batch_size: 2 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: a624rlup
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.47774775326252 The number of items in train is: 19 The loss for epoch 0 0.9198814606980273 The running loss is: 34.215459898114204 The number of items in train is: 19 The loss for epoch 1 1.800813678848116 The running loss is: 26.83509284630418 The number of items in train is: 19 The loss for epoch 2 1.4123733077002198 The running loss is: 18.867049887776375 The number of items in train is: 19 The loss for epoch 3 0.9930026256724408 The running loss is: 19.295793317258358 The number of items in train is: 19 The loss for epoch 4 1.0155680693293874 The running loss is: 17.851775374263525 The number of items in train is: 19 The loss for epoch 5 0.9395671249612382 The running loss is: 15.97345557063818 The number of items in train is: 19 The loss for epoch 6 0.8407081879283252 The running loss is: 17.56080763041973 The number of items in train is: 19 The loss for epoch 7 0.9242530331799859 The running loss is: 14.913559079170227 The number of items in train is: 19 The loss for epoch 8 0.7849241620615909 The running loss is: 12.077535170596093 The number of items in train is: 19 The loss for epoch 9 0.6356597458208469 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 2.444650 47 30819 ... 6.855227 48 30820 ... 9.685863 49 30821 ... 15.988708 50 30822 ... 8.681789 51 30823 ... 9.771622 52 30824 ... 9.542686 53 30825 ... 9.555958 54 30826 ... 13.526699 55 30827 ... 14.681934 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: a624rlup wandb: Agent Starting Run: 40xynftp with config: batch_size: 2 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 40xynftp
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.308471772819757 The number of items in train is: 19 The loss for epoch 0 0.9636037775168294 The running loss is: 30.251929253339767 The number of items in train is: 19 The loss for epoch 1 1.5922068028073562 The running loss is: 24.49585047364235 The number of items in train is: 19 The loss for epoch 2 1.2892552880864394 The running loss is: 19.259405851364136 The number of items in train is: 19 The loss for epoch 3 1.0136529395454807 The running loss is: 18.27196502685547 The number of items in train is: 19 The loss for epoch 4 0.9616823698344984 The running loss is: 19.17086371779442 The number of items in train is: 19 The loss for epoch 5 1.0089928272523379 The running loss is: 17.18504023551941 The number of items in train is: 19 The loss for epoch 6 0.9044758018694425 The running loss is: 18.312036082148552 The number of items in train is: 19 The loss for epoch 7 0.9637913727446606 The running loss is: 16.296567849814892 The number of items in train is: 19 The loss for epoch 8 0.8577140973586785 The running loss is: 17.141273446381092 The number of items in train is: 19 The loss for epoch 9 0.9021722866516364 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.938318 47 30819 Eagle County, Colorado, United States ... 47 5.764008 48 30820 Eagle County, Colorado, United States ... 48 6.388542 49 30821 Eagle County, Colorado, United States ... 49 7.110359 50 30822 Eagle County, Colorado, United States ... 50 7.884383 51 30823 Eagle County, Colorado, United States ... 51 7.342934 52 30824 Eagle County, Colorado, United States ... 52 6.783928 53 30825 Eagle County, Colorado, United States ... 53 8.088088 54 30826 Eagle County, Colorado, United States ... 54 8.484551 55 30827 Eagle County, Colorado, United States ... 55 8.842177 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 40xynftp wandb: Agent Starting Run: x9p0raql with config: batch_size: 2 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: x9p0raql
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.20878306031227 The number of items in train is: 18 The loss for epoch 0 1.0115990589062374 The running loss is: 30.39992317557335 The number of items in train is: 18 The loss for epoch 1 1.688884620865186 The running loss is: 24.892738670110703 The number of items in train is: 18 The loss for epoch 2 1.3829299261172612 The running loss is: 18.693133994936943 The number of items in train is: 18 The loss for epoch 3 1.0385074441631634 The running loss is: 17.386428490281105 The number of items in train is: 18 The loss for epoch 4 0.9659126939045058 The running loss is: 17.251834139227867 The number of items in train is: 18 The loss for epoch 5 0.9584352299571037 The running loss is: 16.990745536983013 The number of items in train is: 18 The loss for epoch 6 0.9439303076101674 The running loss is: 15.523895770311356 The number of items in train is: 18 The loss for epoch 7 0.8624386539061865 The running loss is: 15.15600986033678 The number of items in train is: 18 The loss for epoch 8 0.8420005477964878 The running loss is: 15.994639500975609 The number of items in train is: 18 The loss for epoch 9 0.8885910833875338 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... -3.318589 47 30819 ... 3.843014 48 30820 ... 5.907660 49 30821 ... 8.168655 50 30822 ... 7.266984 51 30823 ... 11.548547 52 30824 ... 12.392776 53 30825 ... 7.730372 54 30826 ... 12.077904 55 30827 ... 15.405001 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: x9p0raql wandb: Agent Starting Run: 1nc5hjpj with config: batch_size: 2 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 1nc5hjpj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.01491452753544 The number of items in train is: 19 The loss for epoch 0 1.1586797119755494 The running loss is: 31.853158585727215 The number of items in train is: 19 The loss for epoch 1 1.6764820308277482 The running loss is: 26.29714571684599 The number of items in train is: 19 The loss for epoch 2 1.384060300886631 The running loss is: 26.294843655079603 The number of items in train is: 19 The loss for epoch 3 1.3839391397410317 The running loss is: 19.7319422904402 The number of items in train is: 19 The loss for epoch 4 1.038523278444221 The running loss is: 19.520247725769877 The number of items in train is: 19 The loss for epoch 5 1.0273814592510462 The running loss is: 20.0667427983135 The number of items in train is: 19 The loss for epoch 6 1.0561443578059737 The running loss is: 21.17197396606207 The number of items in train is: 19 The loss for epoch 7 1.1143144192664247 The running loss is: 19.718472911044955 The number of items in train is: 19 The loss for epoch 8 1.037814363739208 The running loss is: 19.412712370976806 The number of items in train is: 19 The loss for epoch 9 1.0217217037356214 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.294752 47 30819 ... 9.692703 48 30820 ... 9.468822 49 30821 ... 9.753605 50 30822 ... 9.970875 51 30823 ... 10.097393 52 30824 ... 10.157984 53 30825 ... 9.429254 54 30826 ... 9.691366 55 30827 ... 9.643483 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1nc5hjpj wandb: Agent Starting Run: 4l4l0izo with config: batch_size: 2 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4l4l0izo
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.050547145307064 The number of items in train is: 19 The loss for epoch 0 1.1605551129108982 The running loss is: 25.80047580599785 The number of items in train is: 19 The loss for epoch 1 1.3579197792630446 The running loss is: 25.028174303472042 The number of items in train is: 19 The loss for epoch 2 1.3172723317616863 The running loss is: 20.451709896326065 The number of items in train is: 19 The loss for epoch 3 1.0764057840171612 The running loss is: 19.47241935878992 The number of items in train is: 19 The loss for epoch 4 1.0248641767784168 The running loss is: 20.091709028929472 The number of items in train is: 19 The loss for epoch 5 1.0574583699436564 The running loss is: 19.807796388864517 The number of items in train is: 19 The loss for epoch 6 1.042515599413922 The running loss is: 19.969597205519676 The number of items in train is: 19 The loss for epoch 7 1.0510314318694567 The running loss is: 19.053783051669598 The number of items in train is: 19 The loss for epoch 8 1.0028306869299788 The running loss is: 20.52410914003849 The number of items in train is: 19 The loss for epoch 9 1.0802162705283416 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 12.075467 47 30819 ... 12.087450 48 30820 ... 12.215178 49 30821 ... 12.526230 50 30822 ... 12.124049 51 30823 ... 12.042738 52 30824 ... 11.950590 53 30825 ... 11.619714 54 30826 ... 11.910013 55 30827 ... 11.983730 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4l4l0izo wandb: Agent Starting Run: 9n09j7mq with config: batch_size: 2 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 9n09j7mq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.33804288506508 The number of items in train is: 18 The loss for epoch 0 1.2410023825036154 The running loss is: 29.3419336527586 The number of items in train is: 18 The loss for epoch 1 1.6301074251532555 The running loss is: 24.344750091433525 The number of items in train is: 18 The loss for epoch 2 1.3524861161907513 The running loss is: 26.355553224682808 The number of items in train is: 18 The loss for epoch 3 1.464197401371267 The running loss is: 19.099645756185055 The number of items in train is: 18 The loss for epoch 4 1.0610914308991697 The running loss is: 18.798252046108246 The number of items in train is: 18 The loss for epoch 5 1.0443473358949025 The running loss is: 18.6990150436759 The number of items in train is: 18 The loss for epoch 6 1.0388341690931056 The running loss is: 18.03596955537796 The number of items in train is: 18 The loss for epoch 7 1.001998308632109 The running loss is: 19.955710768699646 The number of items in train is: 18 The loss for epoch 8 1.1086505982610915 The running loss is: 17.729627013206482 The number of items in train is: 18 The loss for epoch 9 0.9849792785114713 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.881124 47 30819 ... 8.230920 48 30820 ... 9.809904 49 30821 ... 10.729694 50 30822 ... 11.824153 51 30823 ... 12.183820 52 30824 ... 12.874773 53 30825 ... 15.379370 54 30826 ... 11.733409 55 30827 ... 12.554773 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9n09j7mq wandb: Agent Starting Run: syski6rt with config: batch_size: 2 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: syski6rt
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 63.3910943493247 The number of items in train is: 19 The loss for epoch 0 3.3363733868065633 The running loss is: 47.28794980049133 The number of items in train is: 19 The loss for epoch 1 2.4888394631837545 The running loss is: 23.97084303200245 The number of items in train is: 19 The loss for epoch 2 1.2616233174738132 The running loss is: 24.236013285815716 The number of items in train is: 19 The loss for epoch 3 1.2755796466218798 The running loss is: 23.217061527073383 The number of items in train is: 19 The loss for epoch 4 1.2219506066880728 The running loss is: 23.78413737937808 The number of items in train is: 19 The loss for epoch 5 1.2517967041777938 The running loss is: 20.42416459042579 The number of items in train is: 19 The loss for epoch 6 1.0749560310750415 The running loss is: 21.191512526012957 The number of items in train is: 19 The loss for epoch 7 1.1153427645269978 The running loss is: 20.13818071037531 The number of items in train is: 19 The loss for epoch 8 1.05990424791449 The running loss is: 19.909312774660066 The number of items in train is: 19 The loss for epoch 9 1.047858567087372 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.473160 47 30819 ... 10.076666 48 30820 ... 9.667487 49 30821 ... 9.543557 50 30822 ... 9.632355 51 30823 ... 9.628160 52 30824 ... 9.336935 53 30825 ... 9.680449 54 30826 ... 9.660083 55 30827 ... 9.695948 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: syski6rt wandb: Agent Starting Run: 4du6hfng with config: batch_size: 2 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4du6hfng
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 45.15644834935665 The number of items in train is: 19 The loss for epoch 0 2.376655176281929 The running loss is: 24.583040460944176 The number of items in train is: 19 The loss for epoch 1 1.2938442347865355 The running loss is: 24.31435240805149 The number of items in train is: 19 The loss for epoch 2 1.2797027583184994 The running loss is: 19.6933766156435 The number of items in train is: 19 The loss for epoch 3 1.0364935060865001 The running loss is: 22.520604372024536 The number of items in train is: 19 The loss for epoch 4 1.1852949669486599 The running loss is: 20.99607415497303 The number of items in train is: 19 The loss for epoch 5 1.1050565344722647 The running loss is: 21.251499339938164 The number of items in train is: 19 The loss for epoch 6 1.1184999652599033 The running loss is: 18.809990733861923 The number of items in train is: 19 The loss for epoch 7 0.9899995123085222 The running loss is: 21.792427882552147 The number of items in train is: 19 The loss for epoch 8 1.146969888555376 The running loss is: 26.7241814956069 The number of items in train is: 19 The loss for epoch 9 1.4065358681898368 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 13.673933 47 30819 ... 14.546380 48 30820 ... 13.259560 49 30821 ... 12.589678 50 30822 ... 12.516530 51 30823 ... 12.692194 52 30824 ... 12.960377 53 30825 ... 12.941114 54 30826 ... 12.940870 55 30827 ... 12.940939 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4du6hfng wandb: Agent Starting Run: fcgaitxn with config: batch_size: 2 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: fcgaitxn
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 53.720550164580345 The number of items in train is: 18 The loss for epoch 0 2.9844750091433525 The running loss is: 28.512199953198433 The number of items in train is: 18 The loss for epoch 1 1.584011108511024 The running loss is: 27.69733640551567 The number of items in train is: 18 The loss for epoch 2 1.5387409114175372 The running loss is: 21.140835970640182 The number of items in train is: 18 The loss for epoch 3 1.174490887257788 The running loss is: 20.6005170494318 The number of items in train is: 18 The loss for epoch 4 1.1444731694128778 The running loss is: 19.554107524454594 The number of items in train is: 18 The loss for epoch 5 1.086339306914144 The running loss is: 18.478814348578453 The number of items in train is: 18 The loss for epoch 6 1.0266007971432474 The running loss is: 20.78046827018261 The number of items in train is: 18 The loss for epoch 7 1.1544704594545894 The running loss is: 19.102542735636234 The number of items in train is: 18 The loss for epoch 8 1.061252374202013 The running loss is: 18.857495926320553 The number of items in train is: 18 The loss for epoch 9 1.047638662573364 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.976553 47 30819 ... 10.621822 48 30820 ... 10.570047 49 30821 ... 10.549634 50 30822 ... 10.590073 51 30823 ... 10.583848 52 30824 ... 10.555012 53 30825 ... 10.526819 54 30826 ... 10.730923 55 30827 ... 10.765011 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fcgaitxn wandb: Agent Starting Run: q1qyufq3 with config: batch_size: 2 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: q1qyufq3
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.65174242667854 The number of items in train is: 19 The loss for epoch 0 1.2448285487725546 The running loss is: 25.936323020607233 The number of items in train is: 19 The loss for epoch 1 1.3650696326635385 The running loss is: 19.027717442717403 The number of items in train is: 19 The loss for epoch 2 1.0014588127746002 The running loss is: 17.514922223752365 The number of items in train is: 19 The loss for epoch 3 0.9218380117764402 The running loss is: 18.12891899421811 The number of items in train is: 19 The loss for epoch 4 0.9541536312746374 The running loss is: 15.658698424231261 The number of items in train is: 19 The loss for epoch 5 0.8241420223279611 The running loss is: 14.604375790804625 The number of items in train is: 19 The loss for epoch 6 0.7686513574107697 The running loss is: 13.23361701448448 The number of items in train is: 19 The loss for epoch 7 0.6965061586570779 The running loss is: 10.202940588351339 The number of items in train is: 19 The loss for epoch 8 0.5369968730711231 The running loss is: 12.158686246722937 The number of items in train is: 19 The loss for epoch 9 0.6399308550906809 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 -1.166312 47 30819 Eagle County, Colorado, United States ... 47 -1.301611 48 30820 Eagle County, Colorado, United States ... 48 -0.988161 49 30821 Eagle County, Colorado, United States ... 49 -0.737440 50 30822 Eagle County, Colorado, United States ... 50 -0.657340 51 30823 Eagle County, Colorado, United States ... 51 -2.650376 52 30824 Eagle County, Colorado, United States ... 52 -3.321557 53 30825 Eagle County, Colorado, United States ... 53 -5.164228 54 30826 Eagle County, Colorado, United States ... 54 -5.676957 55 30827 Eagle County, Colorado, United States ... 55 -5.217156 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: q1qyufq3 wandb: Agent Starting Run: enziyrl1 with config: batch_size: 2 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: enziyrl1
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.002433963119984 The number of items in train is: 18 The loss for epoch 0 1.055690775728888 The running loss is: 30.960632115602493 The number of items in train is: 18 The loss for epoch 1 1.7200351175334718 The running loss is: 20.485445886850357 The number of items in train is: 18 The loss for epoch 2 1.1380803270472422 The running loss is: 18.922638848423958 The number of items in train is: 18 The loss for epoch 3 1.051257713801331 The running loss is: 17.114296164363623 The number of items in train is: 18 The loss for epoch 4 0.9507942313535346 The running loss is: 16.546244710683823 The number of items in train is: 18 The loss for epoch 5 0.9192358172602124 The running loss is: 15.97559380531311 The number of items in train is: 18 The loss for epoch 6 0.8875329891840616 The running loss is: 15.165507942438126 The number of items in train is: 18 The loss for epoch 7 0.8425282190243403 The running loss is: 16.049193635582924 The number of items in train is: 18 The loss for epoch 8 0.8916218686434958 The running loss is: 14.222302194684744 The number of items in train is: 18 The loss for epoch 9 0.790127899704708 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.894466 47 30819 ... 10.531710 48 30820 ... 8.822516 49 30821 ... 7.990013 50 30822 ... 6.305098 51 30823 ... 10.142908 52 30824 ... 13.165692 53 30825 ... 15.270938 54 30826 ... 19.283394 55 30827 ... 17.361763 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: enziyrl1 wandb: Agent Starting Run: 05s9xxu7 with config: batch_size: 2 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 05s9xxu7
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.876264482736588 The number of items in train is: 18 The loss for epoch 0 1.1597924712631438 The running loss is: 27.826325714588165 The number of items in train is: 18 The loss for epoch 1 1.545906984143787 The running loss is: 20.435464337468147 The number of items in train is: 18 The loss for epoch 2 1.135303574303786 The running loss is: 19.343905992805958 The number of items in train is: 18 The loss for epoch 3 1.0746614440447755 The running loss is: 18.26167470216751 The number of items in train is: 18 The loss for epoch 4 1.0145374834537506 The running loss is: 17.55466791242361 The number of items in train is: 18 The loss for epoch 5 0.9752593284679784 The running loss is: 16.646836515516043 The number of items in train is: 18 The loss for epoch 6 0.9248242508620024 The running loss is: 15.990774627774954 The number of items in train is: 18 The loss for epoch 7 0.8883763682097197 The running loss is: 15.255841538310051 The number of items in train is: 18 The loss for epoch 8 0.8475467521283362 The running loss is: 15.562775813043118 The number of items in train is: 18 The loss for epoch 9 0.8645986562801732 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.490562 47 30819 ... 5.109116 48 30820 ... 4.521112 49 30821 ... 4.500493 50 30822 ... 4.532074 51 30823 ... 7.254538 52 30824 ... 9.073475 53 30825 ... 11.282241 54 30826 ... 12.836247 55 30827 ... 11.248981 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 05s9xxu7 wandb: Agent Starting Run: q1pw4m4o with config: batch_size: 2 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: q1pw4m4o
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.18984922982054 The number of items in train is: 19 The loss for epoch 0 0.9573604857800283 The running loss is: 31.015213429927826 The number of items in train is: 19 The loss for epoch 1 1.6323796542067277 The running loss is: 25.05902342684567 The number of items in train is: 19 The loss for epoch 2 1.3188959698339826 The running loss is: 17.705750689841807 The number of items in train is: 19 The loss for epoch 3 0.9318816152548319 The running loss is: 19.256243493407965 The number of items in train is: 19 The loss for epoch 4 1.0134864996530508 The running loss is: 16.12529268709477 The number of items in train is: 19 The loss for epoch 5 0.848699615110251 The running loss is: 16.88124701194465 The number of items in train is: 19 The loss for epoch 6 0.8884866848391922 The running loss is: 17.862726697698236 The number of items in train is: 19 The loss for epoch 7 0.9401435104051703 The running loss is: 16.728870145976543 The number of items in train is: 19 The loss for epoch 8 0.8804668497882391 The running loss is: 11.848636295646429 The number of items in train is: 19 The loss for epoch 9 0.62361243661297 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 2.103765 47 30819 Eagle County, Colorado, United States ... 47 1.870756 48 30820 Eagle County, Colorado, United States ... 48 2.080886 49 30821 Eagle County, Colorado, United States ... 49 2.155844 50 30822 Eagle County, Colorado, United States ... 50 2.076065 51 30823 Eagle County, Colorado, United States ... 51 2.572889 52 30824 Eagle County, Colorado, United States ... 52 1.959953 53 30825 Eagle County, Colorado, United States ... 53 3.224896 54 30826 Eagle County, Colorado, United States ... 54 3.106375 55 30827 Eagle County, Colorado, United States ... 55 3.125867 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: q1pw4m4o wandb: Agent Starting Run: 4c1kh057 with config: batch_size: 2 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4c1kh057
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.494125075638294 The number of items in train is: 18 The loss for epoch 0 0.9718958375354608 The running loss is: 28.09664772450924 The number of items in train is: 18 The loss for epoch 1 1.5609248735838466 The running loss is: 24.013664718717337 The number of items in train is: 18 The loss for epoch 2 1.3340924843731854 The running loss is: 18.162125043570995 The number of items in train is: 18 The loss for epoch 3 1.0090069468650553 The running loss is: 16.80295354872942 The number of items in train is: 18 The loss for epoch 4 0.9334974193738567 The running loss is: 17.79146870970726 The number of items in train is: 18 The loss for epoch 5 0.98841492831707 The running loss is: 17.33954283967614 The number of items in train is: 18 The loss for epoch 6 0.9633079355375634 The running loss is: 16.02283275872469 The number of items in train is: 18 The loss for epoch 7 0.890157375484705 The running loss is: 16.078760348260403 The number of items in train is: 18 The loss for epoch 8 0.8932644637922446 The running loss is: 13.699175633490086 The number of items in train is: 18 The loss for epoch 9 0.7610653129716715 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.590535 47 30819 ... 6.649212 48 30820 ... 6.258964 49 30821 ... 6.280522 50 30822 ... 6.141128 51 30823 ... 8.359175 52 30824 ... 8.270262 53 30825 ... 10.945897 54 30826 ... 11.430916 55 30827 ... 11.242756 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4c1kh057 wandb: Agent Starting Run: 84tk4dxu with config: batch_size: 2 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 84tk4dxu
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.54656159132719 The number of items in train is: 18 The loss for epoch 0 1.0303645328515105 The running loss is: 29.21507738530636 The number of items in train is: 18 The loss for epoch 1 1.623059854739242 The running loss is: 23.851110816001892 The number of items in train is: 18 The loss for epoch 2 1.3250617120001051 The running loss is: 19.94340915977955 The number of items in train is: 18 The loss for epoch 3 1.1079671755433083 The running loss is: 19.323927462100983 The number of items in train is: 18 The loss for epoch 4 1.0735515256722767 The running loss is: 18.458923548460007 The number of items in train is: 18 The loss for epoch 5 1.0254957526922226 The running loss is: 17.79984922707081 The number of items in train is: 18 The loss for epoch 6 0.988880512615045 The running loss is: 16.900932855904102 The number of items in train is: 18 The loss for epoch 7 0.9389407142168946 The running loss is: 16.755262605845928 The number of items in train is: 18 The loss for epoch 8 0.930847922546996 The running loss is: 18.575405955314636 The number of items in train is: 18 The loss for epoch 9 1.03196699751748 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 3.838975 47 30819 ... 2.985913 48 30820 ... 4.822277 49 30821 ... 5.249653 50 30822 ... 5.096822 51 30823 ... 7.568799 52 30824 ... 8.716757 53 30825 ... 9.766637 54 30826 ... 9.079391 55 30827 ... 10.247148 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 84tk4dxu wandb: Agent Starting Run: 3cso2ma6 with config: batch_size: 2 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3cso2ma6
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.242283281870186 The number of items in train is: 19 The loss for epoch 0 1.1706464885194834 The running loss is: 24.795687010977417 The number of items in train is: 19 The loss for epoch 1 1.3050361584724957 The running loss is: 27.57364009693265 The number of items in train is: 19 The loss for epoch 2 1.4512442156280343 The running loss is: 20.696718683699146 The number of items in train is: 19 The loss for epoch 3 1.0893009833525866 The running loss is: 20.01832439377904 The number of items in train is: 19 The loss for epoch 4 1.0535960207252126 The running loss is: 21.98695570975542 The number of items in train is: 19 The loss for epoch 5 1.1572081952502853 The running loss is: 20.906687308102846 The number of items in train is: 19 The loss for epoch 6 1.1003519635843604 The running loss is: 19.587092012166977 The number of items in train is: 19 The loss for epoch 7 1.0308995795877356 The running loss is: 18.418085638433695 The number of items in train is: 19 The loss for epoch 8 0.9693729283386155 The running loss is: 16.86983137577772 The number of items in train is: 19 The loss for epoch 9 0.887885861883038 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.581883 47 30819 ... 9.565614 48 30820 ... 9.369929 49 30821 ... 9.071023 50 30822 ... 9.034859 51 30823 ... 10.051611 52 30824 ... 10.008867 53 30825 ... 11.184799 54 30826 ... 11.403122 55 30827 ... 11.031343 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3cso2ma6 wandb: Agent Starting Run: twuvsomh with config: batch_size: 2 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: twuvsomh
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.412616685032845 The number of items in train is: 18 The loss for epoch 0 1.189589815835158 The running loss is: 22.069864347577095 The number of items in train is: 18 The loss for epoch 1 1.2261035748653941 The running loss is: 26.440984159708023 The number of items in train is: 18 The loss for epoch 2 1.4689435644282236 The running loss is: 20.751066893339157 The number of items in train is: 18 The loss for epoch 3 1.1528370496299531 The running loss is: 18.370464075356722 The number of items in train is: 18 The loss for epoch 4 1.0205813375198178 The running loss is: 18.27291965484619 The number of items in train is: 18 The loss for epoch 5 1.0151622030470107 The running loss is: 20.864477939903736 The number of items in train is: 18 The loss for epoch 6 1.1591376633279853 The running loss is: 18.746755480766296 The number of items in train is: 18 The loss for epoch 7 1.0414864155981276 The running loss is: 18.56461740285158 The number of items in train is: 18 The loss for epoch 8 1.0313676334917545 The running loss is: 18.1154655367136 The number of items in train is: 18 The loss for epoch 9 1.0064147520396445 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.008367 47 30819 ... 15.284899 48 30820 ... 12.420164 49 30821 ... 11.182684 50 30822 ... 9.871691 51 30823 ... 10.450293 52 30824 ... 11.239236 53 30825 ... 11.804643 54 30826 ... 14.075599 55 30827 ... 12.123839 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: twuvsomh wandb: Agent Starting Run: 4dfdcpti with config: batch_size: 2 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 4dfdcpti
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.670164734125137 The number of items in train is: 18 The loss for epoch 0 1.20389804078473 The running loss is: 25.513697922229767 The number of items in train is: 18 The loss for epoch 1 1.4174276623460982 The running loss is: 22.322134003043175 The number of items in train is: 18 The loss for epoch 2 1.2401185557246208 The running loss is: 20.4907748401165 The number of items in train is: 18 The loss for epoch 3 1.1383763800064723 The running loss is: 18.35349614918232 The number of items in train is: 18 The loss for epoch 4 1.0196386749545734 The running loss is: 18.696768805384636 The number of items in train is: 18 The loss for epoch 5 1.0387093780769243 The running loss is: 17.7908186763525 The number of items in train is: 18 The loss for epoch 6 0.9883788153529167 The running loss is: 18.77002341300249 The number of items in train is: 18 The loss for epoch 7 1.0427790785001383 The running loss is: 17.80537621676922 The number of items in train is: 18 The loss for epoch 8 0.98918756759829 The running loss is: 18.945369634777308 The number of items in train is: 18 The loss for epoch 9 1.052520535265406 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.815019 47 30819 ... 10.132872 48 30820 ... 9.367234 49 30821 ... 9.324808 50 30822 ... 9.046239 51 30823 ... 10.439740 52 30824 ... 10.854648 53 30825 ... 11.246872 54 30826 ... 10.885998 55 30827 ... 9.790585 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4dfdcpti wandb: Agent Starting Run: z6gn81nx with config: batch_size: 2 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: z6gn81nx
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 54.29879327118397 The number of items in train is: 19 The loss for epoch 0 2.857831224799156 The running loss is: 25.204199893400073 The number of items in train is: 19 The loss for epoch 1 1.3265368364947407 The running loss is: 24.917403297498822 The number of items in train is: 19 The loss for epoch 2 1.3114422788157274 The running loss is: 26.80236802622676 The number of items in train is: 19 The loss for epoch 3 1.4106509487487768 The running loss is: 38.15466159582138 The number of items in train is: 19 The loss for epoch 4 2.008140083990599 The running loss is: 25.13397454470396 The number of items in train is: 19 The loss for epoch 5 1.3228407655107348 The running loss is: 32.146171571686864 The number of items in train is: 19 The loss for epoch 6 1.6919037669308876 The running loss is: 24.309386016801 The number of items in train is: 19 The loss for epoch 7 1.2794413693053157 The running loss is: 22.214474976062775 The number of items in train is: 19 The loss for epoch 8 1.1691828934769881 The running loss is: 20.81675188243389 The number of items in train is: 19 The loss for epoch 9 1.0956185201280995 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.340683 47 30819 ... 11.081213 48 30820 ... 11.072694 49 30821 ... 10.951793 50 30822 ... 10.874124 51 30823 ... 10.559611 52 30824 ... 10.377087 53 30825 ... 10.069571 54 30826 ... 11.455525 55 30827 ... 11.084692 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z6gn81nx wandb: Agent Starting Run: p4yuqpwz with config: batch_size: 2 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: p4yuqpwz
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 58.09991538524628 The number of items in train is: 18 The loss for epoch 0 3.2277730769581265 The running loss is: 29.909697026014328 The number of items in train is: 18 The loss for epoch 1 1.6616498347785738 The running loss is: 23.141397207975388 The number of items in train is: 18 The loss for epoch 2 1.2856331782208548 The running loss is: 19.834211759269238 The number of items in train is: 18 The loss for epoch 3 1.1019006532927353 The running loss is: 17.75834746658802 The number of items in train is: 18 The loss for epoch 4 0.98657485925489 The running loss is: 18.921377703547478 The number of items in train is: 18 The loss for epoch 5 1.051187650197082 The running loss is: 20.49680781364441 The number of items in train is: 18 The loss for epoch 6 1.1387115452024672 The running loss is: 19.066853269934654 The number of items in train is: 18 The loss for epoch 7 1.0592696261074808 The running loss is: 18.26368085294962 The number of items in train is: 18 The loss for epoch 8 1.0146489362749789 The running loss is: 17.676290668547153 The number of items in train is: 18 The loss for epoch 9 0.9820161482526196 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.354430 47 30819 ... 14.269297 48 30820 ... 12.166956 49 30821 ... 11.732918 50 30822 ... 10.295154 51 30823 ... 8.951567 52 30824 ... 10.023297 53 30825 ... 10.744930 54 30826 ... 14.557074 55 30827 ... 12.767807 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: p4yuqpwz wandb: Agent Starting Run: 3pth17fj with config: batch_size: 2 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 3pth17fj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 53.13939993083477 The number of items in train is: 18 The loss for epoch 0 2.952188885046376 The running loss is: 23.89207072556019 The number of items in train is: 18 The loss for epoch 1 1.3273372625311215 The running loss is: 21.42414081096649 The number of items in train is: 18 The loss for epoch 2 1.190230045053694 The running loss is: 19.368080615997314 The number of items in train is: 18 The loss for epoch 3 1.0760044786665175 The running loss is: 18.88629299402237 The number of items in train is: 18 The loss for epoch 4 1.0492384996679094 The running loss is: 18.86470042169094 The number of items in train is: 18 The loss for epoch 5 1.0480389123161633 The running loss is: 18.934682935476303 The number of items in train is: 18 The loss for epoch 6 1.0519268297486835 The running loss is: 19.125713765621185 The number of items in train is: 18 The loss for epoch 7 1.0625396536456213 The running loss is: 18.64470000565052 The number of items in train is: 18 The loss for epoch 8 1.0358166669805844 The running loss is: 19.651452392339706 The number of items in train is: 18 The loss for epoch 9 1.0917473551299837 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.818055 47 30819 ... 12.139648 48 30820 ... 11.247300 49 30821 ... 10.832371 50 30822 ... 10.382744 51 30823 ... 10.604967 52 30824 ... 10.664228 53 30825 ... 11.099741 54 30826 ... 11.873261 55 30827 ... 9.890029 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3pth17fj wandb: Agent Starting Run: h3sok6h3 with config: batch_size: 2 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: h3sok6h3
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.83428485947661 The number of items in train is: 18 The loss for epoch 0 1.0463491588598117 The running loss is: 30.694389076903462 The number of items in train is: 18 The loss for epoch 1 1.705243837605748 The running loss is: 22.378335297107697 The number of items in train is: 18 The loss for epoch 2 1.2432408498393164 The running loss is: 19.81809677183628 The number of items in train is: 18 The loss for epoch 3 1.1010053762131267 The running loss is: 17.860943913459778 The number of items in train is: 18 The loss for epoch 4 0.9922746618588766 The running loss is: 17.826664086431265 The number of items in train is: 18 The loss for epoch 5 0.9903702270239592 The running loss is: 16.915876930579543 The number of items in train is: 18 The loss for epoch 6 0.9397709405877523 The running loss is: 16.87274954468012 The number of items in train is: 18 The loss for epoch 7 0.9373749747044511 The running loss is: 16.296894021332264 The number of items in train is: 18 The loss for epoch 8 0.9053830011851258 The running loss is: 15.18472127057612 The number of items in train is: 18 The loss for epoch 9 0.8435956261431178 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.589013 47 30819 ... 5.464175 48 30820 ... 7.635145 49 30821 ... 6.665916 50 30822 ... 6.748456 51 30823 ... 6.279453 52 30824 ... 10.910107 53 30825 ... 10.739932 54 30826 ... 12.164768 55 30827 ... 14.138649 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: h3sok6h3 wandb: Agent Starting Run: ti0jhceq with config: batch_size: 2 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ti0jhceq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.50762452557683 The number of items in train is: 18 The loss for epoch 0 1.028201362532046 The running loss is: 30.229473516345024 The number of items in train is: 18 The loss for epoch 1 1.6794151953525014 The running loss is: 20.547360464930534 The number of items in train is: 18 The loss for epoch 2 1.1415200258294742 The running loss is: 18.828258499503136 The number of items in train is: 18 The loss for epoch 3 1.0460143610835075 The running loss is: 17.361575104296207 The number of items in train is: 18 The loss for epoch 4 0.9645319502386782 The running loss is: 17.0721765011549 The number of items in train is: 18 The loss for epoch 5 0.9484542500641611 The running loss is: 15.66090652346611 The number of items in train is: 18 The loss for epoch 6 0.870050362414784 The running loss is: 16.027198612689972 The number of items in train is: 18 The loss for epoch 7 0.8903999229272207 The running loss is: 15.154059939086437 The number of items in train is: 18 The loss for epoch 8 0.8418922188381354 The running loss is: 14.604415582492948 The number of items in train is: 18 The loss for epoch 9 0.8113564212496082 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.798800 47 30819 ... 4.839271 48 30820 ... 6.942317 49 30821 ... 6.201822 50 30822 ... 6.283172 51 30823 ... 5.738673 52 30824 ... 11.060683 53 30825 ... 12.862118 54 30826 ... 14.975395 55 30827 ... 16.912077 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ti0jhceq wandb: Agent Starting Run: tq5g8c8y with config: batch_size: 2 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: tq5g8c8y
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.326459631323814 The number of items in train is: 17 The loss for epoch 0 1.1956740959602243 The running loss is: 26.52370758354664 The number of items in train is: 17 The loss for epoch 1 1.5602180931498022 The running loss is: 20.00117264688015 The number of items in train is: 17 The loss for epoch 2 1.1765395674635382 The running loss is: 18.83174880594015 The number of items in train is: 17 The loss for epoch 3 1.1077499297611855 The running loss is: 18.203551523387432 The number of items in train is: 17 The loss for epoch 4 1.0707971484345549 The running loss is: 17.697747506201267 The number of items in train is: 17 The loss for epoch 5 1.0410439709530157 The running loss is: 17.05414705723524 The number of items in train is: 17 The loss for epoch 6 1.0031851210138376 The running loss is: 16.714102994650602 The number of items in train is: 17 The loss for epoch 7 0.9831825290970942 The running loss is: 16.31566223502159 The number of items in train is: 17 The loss for epoch 8 0.9597448373542112 The running loss is: 16.255682721734047 The number of items in train is: 17 The loss for epoch 9 0.9562166306902381 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.511676 47 30819 Eagle County, Colorado, United States ... 47 0.885248 48 30820 Eagle County, Colorado, United States ... 48 1.917389 49 30821 Eagle County, Colorado, United States ... 49 1.170372 50 30822 Eagle County, Colorado, United States ... 50 1.376424 51 30823 Eagle County, Colorado, United States ... 51 0.887287 52 30824 Eagle County, Colorado, United States ... 52 5.287897 53 30825 Eagle County, Colorado, United States ... 53 3.549723 54 30826 Eagle County, Colorado, United States ... 54 3.942515 55 30827 Eagle County, Colorado, United States ... 55 5.333583 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tq5g8c8y wandb: Agent Starting Run: onfqi4iq with config: batch_size: 2 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: onfqi4iq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.58739176625386 The number of items in train is: 18 The loss for epoch 0 1.0326328759029921 The running loss is: 25.453700333833694 The number of items in train is: 18 The loss for epoch 1 1.4140944629907608 The running loss is: 24.478219382464886 The number of items in train is: 18 The loss for epoch 2 1.3599010768036048 The running loss is: 18.617552369832993 The number of items in train is: 18 The loss for epoch 3 1.0343084649907217 The running loss is: 18.47619041055441 The number of items in train is: 18 The loss for epoch 4 1.0264550228085783 The running loss is: 17.632004007697105 The number of items in train is: 18 The loss for epoch 5 0.9795557782053947 The running loss is: 17.34126414358616 The number of items in train is: 18 The loss for epoch 6 0.9634035635325644 The running loss is: 17.196547646075487 The number of items in train is: 18 The loss for epoch 7 0.9553637581153048 The running loss is: 16.807551510632038 The number of items in train is: 18 The loss for epoch 8 0.9337528617017798 The running loss is: 15.813888244330883 The number of items in train is: 18 The loss for epoch 9 0.8785493469072713 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.189288 47 30819 ... 6.000010 48 30820 ... 9.140032 49 30821 ... 8.488817 50 30822 ... 7.783149 51 30823 ... 6.252083 52 30824 ... 8.576809 53 30825 ... 8.205903 54 30826 ... 10.083464 55 30827 ... 12.833640 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: onfqi4iq wandb: Agent Starting Run: jaqkg5qo with config: batch_size: 2 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: jaqkg5qo
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.67767819389701 The number of items in train is: 18 The loss for epoch 0 0.9820932329942783 The running loss is: 28.929249703884125 The number of items in train is: 18 The loss for epoch 1 1.6071805391046736 The running loss is: 25.189696937799454 The number of items in train is: 18 The loss for epoch 2 1.3994276076555252 The running loss is: 19.118132956326008 The number of items in train is: 18 The loss for epoch 3 1.062118497573667 The running loss is: 18.119125105440617 The number of items in train is: 18 The loss for epoch 4 1.0066180614133675 The running loss is: 17.72756700590253 The number of items in train is: 18 The loss for epoch 5 0.9848648336612515 The running loss is: 17.2081276550889 The number of items in train is: 18 The loss for epoch 6 0.9560070919493834 The running loss is: 17.779209829866886 The number of items in train is: 18 The loss for epoch 7 0.9877338794370493 The running loss is: 16.979998294264078 The number of items in train is: 18 The loss for epoch 8 0.9433332385702266 The running loss is: 17.875624038279057 The number of items in train is: 18 The loss for epoch 9 0.9930902243488364 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.322368 47 30819 ... 5.418035 48 30820 ... 6.938383 49 30821 ... 6.316636 50 30822 ... 6.411837 51 30823 ... 5.790046 52 30824 ... 9.559429 53 30825 ... 9.863681 54 30826 ... 10.531605 55 30827 ... 11.683816 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jaqkg5qo wandb: Agent Starting Run: 76w7wtbu with config: batch_size: 2 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 76w7wtbu
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.189144864678383 The number of items in train is: 17 The loss for epoch 0 1.0699496979222578 The running loss is: 25.82771911472082 The number of items in train is: 17 The loss for epoch 1 1.5192775949835777 The running loss is: 22.746037542819977 The number of items in train is: 17 The loss for epoch 2 1.3380022084011751 The running loss is: 18.930177986621857 The number of items in train is: 17 The loss for epoch 3 1.1135398815659916 The running loss is: 18.611469365656376 The number of items in train is: 17 The loss for epoch 4 1.0947923156268455 The running loss is: 18.261943750083447 The number of items in train is: 17 The loss for epoch 5 1.0742319852990263 The running loss is: 17.79456951469183 The number of items in train is: 17 The loss for epoch 6 1.0467393832171665 The running loss is: 17.808585457503796 The number of items in train is: 17 The loss for epoch 7 1.0475638504413998 The running loss is: 16.707562319934368 The number of items in train is: 17 The loss for epoch 8 0.982797783525551 The running loss is: 16.852712512016296 The number of items in train is: 17 The loss for epoch 9 0.9913360301186057 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.346636 47 30819 ... 3.546402 48 30820 ... 5.990652 49 30821 ... 4.534712 50 30822 ... 5.614292 51 30823 ... 4.396796 52 30824 ... 10.686534 53 30825 ... 12.141682 54 30826 ... 15.663172 55 30827 ... 16.982374 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 76w7wtbu wandb: Agent Starting Run: 7lzkogad with config: batch_size: 2 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 7lzkogad
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 25.985687144100666 The number of items in train is: 18 The loss for epoch 0 1.4436492857833703 The running loss is: 25.533394917845726 The number of items in train is: 18 The loss for epoch 1 1.4185219398803182 The running loss is: 24.65770325437188 The number of items in train is: 18 The loss for epoch 2 1.3698724030206602 The running loss is: 20.977828606963158 The number of items in train is: 18 The loss for epoch 3 1.1654349226090643 The running loss is: 18.592061333358288 The number of items in train is: 18 The loss for epoch 4 1.0328922962976828 The running loss is: 18.60237979888916 The number of items in train is: 18 The loss for epoch 5 1.0334655443827312 The running loss is: 17.721400048583746 The number of items in train is: 18 The loss for epoch 6 0.9845222249213192 The running loss is: 18.594129770994186 The number of items in train is: 18 The loss for epoch 7 1.033007209499677 The running loss is: 17.56918104365468 The number of items in train is: 18 The loss for epoch 8 0.9760656135363711 The running loss is: 19.658490262925625 The number of items in train is: 18 The loss for epoch 9 1.0921383479403124 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.338434 47 30819 ... 9.948380 48 30820 ... 11.497427 49 30821 ... 10.225165 50 30822 ... 9.329464 51 30823 ... 9.572168 52 30824 ... 10.839942 53 30825 ... 10.214510 54 30826 ... 10.921080 55 30827 ... 12.323168 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7lzkogad wandb: Agent Starting Run: ldu1i9ut with config: batch_size: 2 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ldu1i9ut
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.17583403736353 The number of items in train is: 18 The loss for epoch 0 1.287546335409085 The running loss is: 25.385982364416122 The number of items in train is: 18 The loss for epoch 1 1.4103323535786734 The running loss is: 23.672232568264008 The number of items in train is: 18 The loss for epoch 2 1.3151240315702226 The running loss is: 21.137772634625435 The number of items in train is: 18 The loss for epoch 3 1.1743207019236352 The running loss is: 18.826060451567173 The number of items in train is: 18 The loss for epoch 4 1.0458922473092873 The running loss is: 18.50016212463379 The number of items in train is: 18 The loss for epoch 5 1.0277867847018771 The running loss is: 17.455230563879013 The number of items in train is: 18 The loss for epoch 6 0.9697350313266119 The running loss is: 18.82326005399227 The number of items in train is: 18 The loss for epoch 7 1.0457366696662374 The running loss is: 17.129642881453037 The number of items in train is: 18 The loss for epoch 8 0.951646826747391 The running loss is: 17.606110781431198 The number of items in train is: 18 The loss for epoch 9 0.9781172656350665 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.194985 47 30819 ... 9.862240 48 30820 ... 16.316151 49 30821 ... 12.624606 50 30822 ... 12.543795 51 30823 ... 8.049689 52 30824 ... 13.099211 53 30825 ... 13.100273 54 30826 ... 14.972973 55 30827 ... 17.187275 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ldu1i9ut wandb: Agent Starting Run: z1khalb3 with config: batch_size: 2 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: z1khalb3
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.20541825890541 The number of items in train is: 17 The loss for epoch 0 1.2473775446414948 The running loss is: 26.331035990267992 The number of items in train is: 17 The loss for epoch 1 1.5488844700157642 The running loss is: 21.423548463732004 The number of items in train is: 17 The loss for epoch 2 1.2602087331607061 The running loss is: 19.311860531568527 The number of items in train is: 17 The loss for epoch 3 1.1359917959746193 The running loss is: 18.42611952126026 The number of items in train is: 17 The loss for epoch 4 1.0838893836035448 The running loss is: 18.355855636298656 The number of items in train is: 17 The loss for epoch 5 1.079756213899921 The running loss is: 18.343623392283916 The number of items in train is: 17 The loss for epoch 6 1.0790366701343481 The running loss is: 18.220871716737747 The number of items in train is: 17 The loss for epoch 7 1.0718159833375145 The running loss is: 18.014991000294685 The number of items in train is: 17 The loss for epoch 8 1.059705352958511 The running loss is: 18.06001925468445 The number of items in train is: 17 The loss for epoch 9 1.0623540738049675 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 9.165402 47 30819 Eagle County, Colorado, United States ... 47 9.069475 48 30820 Eagle County, Colorado, United States ... 48 8.965014 49 30821 Eagle County, Colorado, United States ... 49 8.994439 50 30822 Eagle County, Colorado, United States ... 50 9.027403 51 30823 Eagle County, Colorado, United States ... 51 8.972231 52 30824 Eagle County, Colorado, United States ... 52 9.810741 53 30825 Eagle County, Colorado, United States ... 53 9.936197 54 30826 Eagle County, Colorado, United States ... 54 9.907127 55 30827 Eagle County, Colorado, United States ... 55 9.882858 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z1khalb3 wandb: Agent Starting Run: ok5falth with config: batch_size: 2 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ok5falth
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 91.93867326527834 The number of items in train is: 18 The loss for epoch 0 5.1077040702932415 The running loss is: 41.00077871978283 The number of items in train is: 18 The loss for epoch 1 2.277821039987935 The running loss is: 22.16812052205205 The number of items in train is: 18 The loss for epoch 2 1.2315622512251139 The running loss is: 24.294399526901543 The number of items in train is: 18 The loss for epoch 3 1.3496888626056414 The running loss is: 20.05660403892398 The number of items in train is: 18 The loss for epoch 4 1.114255779940221 The running loss is: 20.849789410829544 The number of items in train is: 18 The loss for epoch 5 1.1583216339349747 The running loss is: 19.57541885972023 The number of items in train is: 18 The loss for epoch 6 1.0875232699844573 The running loss is: 18.560163848102093 The number of items in train is: 18 The loss for epoch 7 1.0311202137834496 The running loss is: 19.261560007929802 The number of items in train is: 18 The loss for epoch 8 1.0700866671072111 The running loss is: 18.674716770648956 The number of items in train is: 18 The loss for epoch 9 1.0374842650360532 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.174484 47 30819 ... 11.524269 48 30820 ... 11.487882 49 30821 ... 11.509277 50 30822 ... 11.597288 51 30823 ... 11.396919 52 30824 ... 11.390881 53 30825 ... 11.174414 54 30826 ... 11.205681 55 30827 ... 11.476442 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ok5falth wandb: Agent Starting Run: jdb0w9lf with config: batch_size: 2 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: jdb0w9lf
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 71.70084895193577 The number of items in train is: 18 The loss for epoch 0 3.983380497329765 The running loss is: 34.523087076842785 The number of items in train is: 18 The loss for epoch 1 1.9179492820468214 The running loss is: 20.573708325624466 The number of items in train is: 18 The loss for epoch 2 1.1429837958680258 The running loss is: 18.896047294139862 The number of items in train is: 18 The loss for epoch 3 1.0497804052299924 The running loss is: 18.512571424245834 The number of items in train is: 18 The loss for epoch 4 1.0284761902358797 The running loss is: 18.70388262718916 The number of items in train is: 18 The loss for epoch 5 1.0391045903993978 The running loss is: 18.608287632465363 The number of items in train is: 18 The loss for epoch 6 1.0337937573591869 The running loss is: 19.012116946280003 The number of items in train is: 18 The loss for epoch 7 1.056228719237778 The running loss is: 18.82577931880951 The number of items in train is: 18 The loss for epoch 8 1.0458766288227506 The running loss is: 18.978907726705074 The number of items in train is: 18 The loss for epoch 9 1.0543837625947263 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.771688 47 30819 ... 10.069174 48 30820 ... 10.424778 49 30821 ... 10.578030 50 30822 ... 9.966643 51 30823 ... 9.754827 52 30824 ... 9.886961 53 30825 ... 9.548673 54 30826 ... 9.559739 55 30827 ... 9.601932 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jdb0w9lf wandb: Agent Starting Run: f8rga1l5 with config: batch_size: 2 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: f8rga1l5
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 60.02559678256512 The number of items in train is: 17 The loss for epoch 0 3.530917457797948 The running loss is: 21.879589214920998 The number of items in train is: 17 The loss for epoch 1 1.2870346597012352 The running loss is: 22.272070422768593 The number of items in train is: 17 The loss for epoch 2 1.310121789574623 The running loss is: 20.273326992988586 The number of items in train is: 17 The loss for epoch 3 1.1925486466463875 The running loss is: 18.233934313058853 The number of items in train is: 17 The loss for epoch 4 1.0725843713564032 The running loss is: 18.1911773532629 The number of items in train is: 17 The loss for epoch 5 1.0700692560742884 The running loss is: 17.973187312483788 The number of items in train is: 17 The loss for epoch 6 1.0572463124990463 The running loss is: 17.894800126552582 The number of items in train is: 17 The loss for epoch 7 1.0526353015619165 The running loss is: 18.38982318341732 The number of items in train is: 17 The loss for epoch 8 1.0817543049069012 The running loss is: 18.14912710338831 The number of items in train is: 17 The loss for epoch 9 1.0675957119640183 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.190907 47 30819 ... 10.166980 48 30820 ... 10.167084 49 30821 ... 9.968959 50 30822 ... 10.873432 51 30823 ... 10.553559 52 30824 ... 10.352334 53 30825 ... 10.250555 54 30826 ... 10.249765 55 30827 ... 10.249871 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: f8rga1l5 wandb: Agent Starting Run: gr7vy5x5 with config: batch_size: 2 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: gr7vy5x5
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.120445497334003 The number of items in train is: 18 The loss for epoch 0 1.0066914165185556 The running loss is: 36.88737970899092 The number of items in train is: 18 The loss for epoch 1 2.049298872721718 The running loss is: 25.769994165748358 The number of items in train is: 18 The loss for epoch 2 1.4316663425415754 The running loss is: 22.722472186665982 The number of items in train is: 18 The loss for epoch 3 1.262359565925888 The running loss is: 20.244089771062136 The number of items in train is: 18 The loss for epoch 4 1.1246716539478965 The running loss is: 18.204342804849148 The number of items in train is: 18 The loss for epoch 5 1.011352378047175 The running loss is: 16.84917761210818 The number of items in train is: 18 The loss for epoch 6 0.9360654228948988 The running loss is: 16.967705154791474 The number of items in train is: 18 The loss for epoch 7 0.9426502863773041 The running loss is: 15.167392913252115 The number of items in train is: 18 The loss for epoch 8 0.8426329396251175 The running loss is: 14.847127000335604 The number of items in train is: 18 The loss for epoch 9 0.8248403889075335 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.234351 47 30819 Eagle County, Colorado, United States ... 47 5.589938 48 30820 Eagle County, Colorado, United States ... 48 4.432260 49 30821 Eagle County, Colorado, United States ... 49 3.562717 50 30822 Eagle County, Colorado, United States ... 50 3.846261 51 30823 Eagle County, Colorado, United States ... 51 4.097902 52 30824 Eagle County, Colorado, United States ... 52 4.603130 53 30825 Eagle County, Colorado, United States ... 53 6.944318 54 30826 Eagle County, Colorado, United States ... 54 8.064589 55 30827 Eagle County, Colorado, United States ... 55 7.837166 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gr7vy5x5 wandb: Agent Starting Run: d51fuypy with config: batch_size: 2 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: d51fuypy
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.863892681896687 The number of items in train is: 17 The loss for epoch 0 1.050817216582158 The running loss is: 30.557269416749477 The number of items in train is: 17 The loss for epoch 1 1.797486436279381 The running loss is: 24.31645315885544 The number of items in train is: 17 The loss for epoch 2 1.4303795975797318 The running loss is: 21.716937102377415 The number of items in train is: 17 The loss for epoch 3 1.277466888375142 The running loss is: 18.302996151149273 The number of items in train is: 17 The loss for epoch 4 1.0766468324205454 The running loss is: 17.990163557231426 The number of items in train is: 17 The loss for epoch 5 1.0582449151312603 The running loss is: 17.505731016397476 The number of items in train is: 17 The loss for epoch 6 1.0297488833174986 The running loss is: 16.266479892656207 The number of items in train is: 17 The loss for epoch 7 0.9568517583915416 The running loss is: 14.844720372930169 The number of items in train is: 17 The loss for epoch 8 0.8732188454664805 The running loss is: 13.61546167358756 The number of items in train is: 17 The loss for epoch 9 0.800909510211033 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.055187 47 30819 Eagle County, Colorado, United States ... 47 5.612241 48 30820 Eagle County, Colorado, United States ... 48 4.139591 49 30821 Eagle County, Colorado, United States ... 49 3.982578 50 30822 Eagle County, Colorado, United States ... 50 2.636002 51 30823 Eagle County, Colorado, United States ... 51 3.206338 52 30824 Eagle County, Colorado, United States ... 52 3.745330 53 30825 Eagle County, Colorado, United States ... 53 6.512134 54 30826 Eagle County, Colorado, United States ... 54 8.213514 55 30827 Eagle County, Colorado, United States ... 55 8.196659 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: d51fuypy wandb: Agent Starting Run: fquo39qu with config: batch_size: 2 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: fquo39qu
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.315565809607506 The number of items in train is: 17 The loss for epoch 0 1.1362097535063238 The running loss is: 27.744996145367622 The number of items in train is: 17 The loss for epoch 1 1.6320585967863308 The running loss is: 20.23160046339035 The number of items in train is: 17 The loss for epoch 2 1.1900941449053146 The running loss is: 18.820374861359596 The number of items in train is: 17 The loss for epoch 3 1.1070808741976232 The running loss is: 17.80506058037281 The number of items in train is: 17 The loss for epoch 4 1.0473565047278124 The running loss is: 17.640491649508476 The number of items in train is: 17 The loss for epoch 5 1.0376759793828516 The running loss is: 17.346722543239594 The number of items in train is: 17 The loss for epoch 6 1.020395443719976 The running loss is: 16.878471672534943 The number of items in train is: 17 The loss for epoch 7 0.9928512748549966 The running loss is: 16.163867503404617 The number of items in train is: 17 The loss for epoch 8 0.9508157354943892 The running loss is: 15.284686610102654 The number of items in train is: 17 The loss for epoch 9 0.8990992123589796 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.138500 47 30819 Eagle County, Colorado, United States ... 47 2.068359 48 30820 Eagle County, Colorado, United States ... 48 0.579822 49 30821 Eagle County, Colorado, United States ... 49 0.431010 50 30822 Eagle County, Colorado, United States ... 50 0.268291 51 30823 Eagle County, Colorado, United States ... 51 0.398433 52 30824 Eagle County, Colorado, United States ... 52 0.306655 53 30825 Eagle County, Colorado, United States ... 53 0.049325 54 30826 Eagle County, Colorado, United States ... 54 -0.512394 55 30827 Eagle County, Colorado, United States ... 55 -1.082926 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fquo39qu wandb: Agent Starting Run: nf5ma7q9 with config: batch_size: 2 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: nf5ma7q9
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.964837659150362 The number of items in train is: 18 The loss for epoch 0 1.1647132032861311 The running loss is: 31.43228393420577 The number of items in train is: 18 The loss for epoch 1 1.746237996344765 The running loss is: 27.462910482892767 The number of items in train is: 18 The loss for epoch 2 1.525717249049598 The running loss is: 22.641178257763386 The number of items in train is: 18 The loss for epoch 3 1.2578432365424104 The running loss is: 17.97154197283089 The number of items in train is: 18 The loss for epoch 4 0.9984189984906051 The running loss is: 17.729456153698266 The number of items in train is: 18 The loss for epoch 5 0.9849697863165703 The running loss is: 16.689082900062203 The number of items in train is: 18 The loss for epoch 6 0.927171272225678 The running loss is: 15.960812779143453 The number of items in train is: 18 The loss for epoch 7 0.8867118210635252 The running loss is: 14.336336515843868 The number of items in train is: 18 The loss for epoch 8 0.7964631397691038 The running loss is: 16.482185130473226 The number of items in train is: 18 The loss for epoch 9 0.915676951692957 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.596330 47 30819 ... 8.111716 48 30820 ... 6.830262 49 30821 ... 4.093390 50 30822 ... 4.867238 51 30823 ... 4.692516 52 30824 ... 5.357278 53 30825 ... 9.984414 54 30826 ... 12.083361 55 30827 ... 11.586036 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nf5ma7q9 wandb: Agent Starting Run: c7t70oa7 with config: batch_size: 2 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: c7t70oa7
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.068575020879507 The number of items in train is: 17 The loss for epoch 0 1.1216808835811474 The running loss is: 28.107707070186734 The number of items in train is: 17 The loss for epoch 1 1.6533945335403961 The running loss is: 23.106055334210396 The number of items in train is: 17 The loss for epoch 2 1.359179725541788 The running loss is: 18.721203669905663 The number of items in train is: 17 The loss for epoch 3 1.101247274700333 The running loss is: 17.369276450015604 The number of items in train is: 17 The loss for epoch 4 1.0217221441185649 The running loss is: 16.890567852184176 The number of items in train is: 17 The loss for epoch 5 0.9935628148343634 The running loss is: 14.150886859744787 The number of items in train is: 17 The loss for epoch 6 0.8324051093967522 The running loss is: 14.029157891869545 The number of items in train is: 17 The loss for epoch 7 0.8252445818746791 The running loss is: 20.90973387658596 The number of items in train is: 17 The loss for epoch 8 1.2299843456815271 The running loss is: 16.326852202415466 The number of items in train is: 17 The loss for epoch 9 0.9604030707303215 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 17.318516 47 30819 ... 19.041769 48 30820 ... 18.542461 49 30821 ... 16.740143 50 30822 ... 15.915383 51 30823 ... 16.412432 52 30824 ... 15.848831 53 30825 ... 20.144848 54 30826 ... 20.758886 55 30827 ... 20.443157 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c7t70oa7 wandb: Agent Starting Run: 86o6l336 with config: batch_size: 2 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 86o6l336
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.208781145513058 The number of items in train is: 17 The loss for epoch 0 1.0122812438537092 The running loss is: 27.71545758843422 The number of items in train is: 17 The loss for epoch 1 1.6303210346137775 The running loss is: 22.386159673333168 The number of items in train is: 17 The loss for epoch 2 1.3168329219607746 The running loss is: 18.690160259604454 The number of items in train is: 17 The loss for epoch 3 1.0994211917414385 The running loss is: 18.08047254383564 The number of items in train is: 17 The loss for epoch 4 1.06355720846092 The running loss is: 17.788220658898354 The number of items in train is: 17 The loss for epoch 5 1.0463659211116678 The running loss is: 17.880096539855003 The number of items in train is: 17 The loss for epoch 6 1.0517703846973532 The running loss is: 17.113020420074463 The number of items in train is: 17 The loss for epoch 7 1.0066482600043802 The running loss is: 16.699109718203545 The number of items in train is: 17 The loss for epoch 8 0.9823005716590321 The running loss is: 16.5759494304657 The number of items in train is: 17 The loss for epoch 9 0.9750558488509234 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.256034 47 30819 Eagle County, Colorado, United States ... 47 1.807457 48 30820 Eagle County, Colorado, United States ... 48 2.076961 49 30821 Eagle County, Colorado, United States ... 49 5.788992 50 30822 Eagle County, Colorado, United States ... 50 5.307059 51 30823 Eagle County, Colorado, United States ... 51 4.971756 52 30824 Eagle County, Colorado, United States ... 52 2.691475 53 30825 Eagle County, Colorado, United States ... 53 2.570121 54 30826 Eagle County, Colorado, United States ... 54 1.330946 55 30827 Eagle County, Colorado, United States ... 55 3.026186 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 86o6l336 wandb: Agent Starting Run: 426vphnv with config: batch_size: 2 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 426vphnv
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 34.267729624174535 The number of items in train is: 18 The loss for epoch 0 1.9037627568985853 The running loss is: 33.94760421384126 The number of items in train is: 18 The loss for epoch 1 1.88597801188007 The running loss is: 30.238472133874893 The number of items in train is: 18 The loss for epoch 2 1.6799151185486052 The running loss is: 38.51619838178158 The number of items in train is: 18 The loss for epoch 3 2.1397887989878654 The running loss is: 20.47893139347434 The number of items in train is: 18 The loss for epoch 4 1.1377184107485745 The running loss is: 18.94241794757545 The number of items in train is: 18 The loss for epoch 5 1.0523565526430805 The running loss is: 20.30167916836217 The number of items in train is: 18 The loss for epoch 6 1.1278710649090096 The running loss is: 19.38399739563465 The number of items in train is: 18 The loss for epoch 7 1.076888744201925 The running loss is: 19.88887568563223 The number of items in train is: 18 The loss for epoch 8 1.1049375380906794 The running loss is: 19.532415185123682 The number of items in train is: 18 The loss for epoch 9 1.0851341769513156 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.723194 47 30819 Eagle County, Colorado, United States ... 47 9.183539 48 30820 Eagle County, Colorado, United States ... 48 9.319058 49 30821 Eagle County, Colorado, United States ... 49 9.258557 50 30822 Eagle County, Colorado, United States ... 50 9.028840 51 30823 Eagle County, Colorado, United States ... 51 8.666627 52 30824 Eagle County, Colorado, United States ... 52 8.366081 53 30825 Eagle County, Colorado, United States ... 53 8.915517 54 30826 Eagle County, Colorado, United States ... 54 9.048261 55 30827 Eagle County, Colorado, United States ... 55 9.422303 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 426vphnv wandb: Agent Starting Run: scc0pqfm with config: batch_size: 2 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: scc0pqfm
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 28.23943081498146 The number of items in train is: 17 The loss for epoch 0 1.6611429891165566 The running loss is: 28.07338646426797 The number of items in train is: 17 The loss for epoch 1 1.651375674368704 The running loss is: 23.87537007406354 The number of items in train is: 17 The loss for epoch 2 1.4044335337684435 The running loss is: 21.13710781186819 The number of items in train is: 17 The loss for epoch 3 1.24335928305107 The running loss is: 18.549016206525266 The number of items in train is: 17 The loss for epoch 4 1.0911186003838391 The running loss is: 18.38492915406823 The number of items in train is: 17 The loss for epoch 5 1.081466420827543 The running loss is: 17.49588319659233 The number of items in train is: 17 The loss for epoch 6 1.029169599799549 The running loss is: 17.270923353731632 The number of items in train is: 17 The loss for epoch 7 1.0159366678665667 The running loss is: 16.28042573481798 The number of items in train is: 17 The loss for epoch 8 0.9576721020481166 The running loss is: 14.823214331641793 The number of items in train is: 17 The loss for epoch 9 0.8719537842142231 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.629309 47 30819 ... 8.105134 48 30820 ... 10.640922 49 30821 ... 10.022057 50 30822 ... 8.972525 51 30823 ... 8.227419 52 30824 ... 5.991323 53 30825 ... 9.148765 54 30826 ... 7.008259 55 30827 ... 11.216730 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: scc0pqfm wandb: Agent Starting Run: m3rmcjcn with config: batch_size: 2 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: m3rmcjcn
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.020679511129856 The number of items in train is: 17 The loss for epoch 0 1.2953340888899916 The running loss is: 22.291063234210014 The number of items in train is: 17 The loss for epoch 1 1.3112390137770598 The running loss is: 21.546183705329895 The number of items in train is: 17 The loss for epoch 2 1.2674225709017586 The running loss is: 20.533206969499588 The number of items in train is: 17 The loss for epoch 3 1.207835704088211 The running loss is: 18.27320285141468 The number of items in train is: 17 The loss for epoch 4 1.0748942853773342 The running loss is: 18.226271092891693 The number of items in train is: 17 The loss for epoch 5 1.0721335936995113 The running loss is: 18.01798863708973 The number of items in train is: 17 The loss for epoch 6 1.05988168453469 The running loss is: 18.02622178196907 The number of items in train is: 17 The loss for epoch 7 1.0603659871746511 The running loss is: 17.861629962921143 The number of items in train is: 17 The loss for epoch 8 1.0506841154659496 The running loss is: 18.037888653576374 The number of items in train is: 17 The loss for epoch 9 1.0610522737397867 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.485203 47 30819 ... 9.542734 48 30820 ... 10.885259 49 30821 ... 15.454107 50 30822 ... 12.658281 51 30823 ... 12.965693 52 30824 ... 10.985974 53 30825 ... 9.893891 54 30826 ... 8.056896 55 30827 ... 10.138981 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: m3rmcjcn wandb: Agent Starting Run: yqngqnis with config: batch_size: 2 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yqngqnis
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 137.28573689609766 The number of items in train is: 18 The loss for epoch 0 7.626985383116537 The running loss is: 25.87799007911235 The number of items in train is: 18 The loss for epoch 1 1.4376661155062418 The running loss is: 38.774653896689415 The number of items in train is: 18 The loss for epoch 2 2.1541474387049675 The running loss is: 22.72174153709784 The number of items in train is: 18 The loss for epoch 3 1.2623189742832135 The running loss is: 22.097350671887398 The number of items in train is: 18 The loss for epoch 4 1.2276305928826332 The running loss is: 20.19718218408525 The number of items in train is: 18 The loss for epoch 5 1.122065676893625 The running loss is: 19.485243333270773 The number of items in train is: 18 The loss for epoch 6 1.082513518515043 The running loss is: 17.892029164126143 The number of items in train is: 18 The loss for epoch 7 0.9940016202292301 The running loss is: 18.208995703607798 The number of items in train is: 18 The loss for epoch 8 1.0116108724226553 The running loss is: 17.07296721637249 The number of items in train is: 18 The loss for epoch 9 0.9484981786873605 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.838210 47 30819 Eagle County, Colorado, United States ... 47 3.904054 48 30820 Eagle County, Colorado, United States ... 48 3.808350 49 30821 Eagle County, Colorado, United States ... 49 3.808419 50 30822 Eagle County, Colorado, United States ... 50 3.808272 51 30823 Eagle County, Colorado, United States ... 51 3.810375 52 30824 Eagle County, Colorado, United States ... 52 3.794322 53 30825 Eagle County, Colorado, United States ... 53 5.768596 54 30826 Eagle County, Colorado, United States ... 54 5.768584 55 30827 Eagle County, Colorado, United States ... 55 5.768637 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yqngqnis wandb: Agent Starting Run: me7r4kuv with config: batch_size: 2 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: me7r4kuv
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 93.78758010268211 The number of items in train is: 17 The loss for epoch 0 5.51691647662836 The running loss is: 29.59822855144739 The number of items in train is: 17 The loss for epoch 1 1.7410722677321995 The running loss is: 22.846619226038456 The number of items in train is: 17 The loss for epoch 2 1.3439187780022621 The running loss is: 23.303640887141228 The number of items in train is: 17 The loss for epoch 3 1.3708024051259546 The running loss is: 26.486353397369385 The number of items in train is: 17 The loss for epoch 4 1.558020788080552 The running loss is: 20.396254796534777 The number of items in train is: 17 The loss for epoch 5 1.1997796939138103 The running loss is: 19.39982558786869 The number of items in train is: 17 The loss for epoch 6 1.1411662110510994 The running loss is: 18.315881371498108 The number of items in train is: 17 The loss for epoch 7 1.0774047865587122 The running loss is: 19.250380620360374 The number of items in train is: 17 The loss for epoch 8 1.1323753306094337 The running loss is: 17.944953735917807 The number of items in train is: 17 The loss for epoch 9 1.055585513877518 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.394843 47 30819 Eagle County, Colorado, United States ... 47 8.136378 48 30820 Eagle County, Colorado, United States ... 48 9.291075 49 30821 Eagle County, Colorado, United States ... 49 9.697542 50 30822 Eagle County, Colorado, United States ... 50 8.140117 51 30823 Eagle County, Colorado, United States ... 51 8.296720 52 30824 Eagle County, Colorado, United States ... 52 7.882609 53 30825 Eagle County, Colorado, United States ... 53 8.762344 54 30826 Eagle County, Colorado, United States ... 54 8.641793 55 30827 Eagle County, Colorado, United States ... 55 9.389215 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: me7r4kuv wandb: Agent Starting Run: 3wm5l7tj with config: batch_size: 2 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 3wm5l7tj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 68.26089033484459 The number of items in train is: 17 The loss for epoch 0 4.015346490284976 The running loss is: 27.4893958568573 The number of items in train is: 17 The loss for epoch 1 1.6170232856974882 The running loss is: 21.516857236623764 The number of items in train is: 17 The loss for epoch 2 1.2656974845072801 The running loss is: 18.865566059947014 The number of items in train is: 17 The loss for epoch 3 1.1097391799968832 The running loss is: 18.153654858469963 The number of items in train is: 17 The loss for epoch 4 1.067862050498233 The running loss is: 18.767946392297745 The number of items in train is: 17 The loss for epoch 5 1.1039968466057497 The running loss is: 17.852910339832306 The number of items in train is: 17 The loss for epoch 6 1.0501711964607239 The running loss is: 18.34410585463047 The number of items in train is: 17 The loss for epoch 7 1.0790650502723806 The running loss is: 18.192266955971718 The number of items in train is: 17 The loss for epoch 8 1.0701333503512775 The running loss is: 18.552403688430786 The number of items in train is: 17 The loss for epoch 9 1.0913178640253403 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.797457 47 30819 ... 10.797460 48 30820 ... 10.797462 49 30821 ... 10.797461 50 30822 ... 10.797450 51 30823 ... 10.771597 52 30824 ... 10.780639 53 30825 ... 10.770386 54 30826 ... 10.770385 55 30827 ... 10.770388 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3wm5l7tj wandb: Agent Starting Run: yefxbgtv with config: batch_size: 2 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yefxbgtv
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.462372362613678 The number of items in train is: 17 The loss for epoch 0 1.203668962506687 The running loss is: 27.696742221713066 The number of items in train is: 17 The loss for epoch 1 1.629220130689004 The running loss is: 19.980237632989883 The number of items in train is: 17 The loss for epoch 2 1.1753080960582285 The running loss is: 18.27062140405178 The number of items in train is: 17 The loss for epoch 3 1.0747424355324577 The running loss is: 17.597937013953924 The number of items in train is: 17 The loss for epoch 4 1.0351727655267013 The running loss is: 17.500756841152906 The number of items in train is: 17 The loss for epoch 5 1.0294562847737003 The running loss is: 17.59584029763937 The number of items in train is: 17 The loss for epoch 6 1.0350494292729042 The running loss is: 16.307608522474766 The number of items in train is: 17 The loss for epoch 7 0.9592710895573392 The running loss is: 14.856096312403679 The number of items in train is: 17 The loss for epoch 8 0.873888018376687 The running loss is: 15.076502352952957 The number of items in train is: 17 The loss for epoch 9 0.8868530795854681 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.705813 47 30819 ... 9.390274 48 30820 ... 12.924283 49 30821 ... 10.632058 50 30822 ... 5.007174 51 30823 ... 7.001017 52 30824 ... 7.316066 53 30825 ... 7.175669 54 30826 ... 11.666767 55 30827 ... 16.188978 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yefxbgtv wandb: Agent Starting Run: ptzv63ti with config: batch_size: 2 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ptzv63ti
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.43279777467251 The number of items in train is: 17 The loss for epoch 0 1.2607528102748535 The running loss is: 28.9186382740736 The number of items in train is: 17 The loss for epoch 1 1.701096369063153 The running loss is: 19.826389342546463 The number of items in train is: 17 The loss for epoch 2 1.1662581966203802 The running loss is: 19.31631900370121 The number of items in train is: 17 The loss for epoch 3 1.1362540590412475 The running loss is: 18.248578935861588 The number of items in train is: 17 The loss for epoch 4 1.073445819756564 The running loss is: 18.17185389995575 The number of items in train is: 17 The loss for epoch 5 1.0689325823503382 The running loss is: 17.282859161496162 The number of items in train is: 17 The loss for epoch 6 1.0166387742056566 The running loss is: 17.04989528656006 The number of items in train is: 17 The loss for epoch 7 1.0029350168564741 The running loss is: 15.761375814676285 The number of items in train is: 17 The loss for epoch 8 0.9271397538044873 The running loss is: 15.65200425684452 The number of items in train is: 17 The loss for epoch 9 0.92070613275556 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.450491 47 30819 ... 8.844732 48 30820 ... 14.072254 49 30821 ... 10.256414 50 30822 ... 3.695667 51 30823 ... 7.670989 52 30824 ... 7.494445 53 30825 ... 5.381908 54 30826 ... 11.431887 55 30827 ... 17.711899 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ptzv63ti wandb: Agent Starting Run: 5n23rnej with config: batch_size: 2 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 5n23rnej
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.669841051101685 The number of items in train is: 16 The loss for epoch 0 1.1668650656938553 The running loss is: 28.15961427986622 The number of items in train is: 16 The loss for epoch 1 1.7599758924916387 The running loss is: 20.083170026540756 The number of items in train is: 16 The loss for epoch 2 1.2551981266587973 The running loss is: 18.681346032768488 The number of items in train is: 16 The loss for epoch 3 1.1675841270480305 The running loss is: 17.155792146921158 The number of items in train is: 16 The loss for epoch 4 1.0722370091825724 The running loss is: 17.125128746032715 The number of items in train is: 16 The loss for epoch 5 1.0703205466270447 The running loss is: 16.875126153230667 The number of items in train is: 16 The loss for epoch 6 1.0546953845769167 The running loss is: 16.763597190380096 The number of items in train is: 16 The loss for epoch 7 1.047724824398756 The running loss is: 16.318107686936855 The number of items in train is: 16 The loss for epoch 8 1.0198817304335535 The running loss is: 16.028378427028656 The number of items in train is: 16 The loss for epoch 9 1.001773651689291 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.727273 47 30819 ... 8.141912 48 30820 ... 8.153705 49 30821 ... 7.590404 50 30822 ... 7.745370 51 30823 ... 8.056146 52 30824 ... 8.437635 53 30825 ... 9.068559 54 30826 ... 9.863579 55 30827 ... 10.122281 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5n23rnej wandb: Agent Starting Run: z8wl2mpd with config: batch_size: 2 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: z8wl2mpd
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.78652110695839 The number of items in train is: 17 The loss for epoch 0 1.0462659474681406 The running loss is: 29.496645376086235 The number of items in train is: 17 The loss for epoch 1 1.735096786828602 The running loss is: 21.52673441171646 The number of items in train is: 17 The loss for epoch 2 1.2662784948068506 The running loss is: 18.22583021223545 The number of items in train is: 17 The loss for epoch 3 1.0721076595432617 The running loss is: 17.649071596562862 The number of items in train is: 17 The loss for epoch 4 1.0381806821507567 The running loss is: 16.916042253375053 The number of items in train is: 17 The loss for epoch 5 0.9950613090220619 The running loss is: 17.47312443703413 The number of items in train is: 17 The loss for epoch 6 1.0278308492373018 The running loss is: 16.61391367763281 The number of items in train is: 17 The loss for epoch 7 0.9772890398607534 The running loss is: 16.87849473580718 The number of items in train is: 17 The loss for epoch 8 0.9928526315180695 The running loss is: 17.174730110913515 The number of items in train is: 17 The loss for epoch 9 1.0102782418184422 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.426375 47 30819 ... 10.432105 48 30820 ... 13.992594 49 30821 ... 12.741571 50 30822 ... 6.316299 51 30823 ... 7.661055 52 30824 ... 9.314131 53 30825 ... 8.768213 54 30826 ... 11.098319 55 30827 ... 15.006298 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: z8wl2mpd wandb: Agent Starting Run: klplltl7 with config: batch_size: 2 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: klplltl7
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.754808202385902 The number of items in train is: 17 The loss for epoch 0 1.1032240119050531 The running loss is: 27.57693576812744 The number of items in train is: 17 The loss for epoch 1 1.6221726922427906 The running loss is: 21.580725207924843 The number of items in train is: 17 The loss for epoch 2 1.269454423995579 The running loss is: 19.201142698526382 The number of items in train is: 17 The loss for epoch 3 1.1294789822662579 The running loss is: 17.52506871521473 The number of items in train is: 17 The loss for epoch 4 1.0308863950126312 The running loss is: 16.90795011818409 The number of items in train is: 17 The loss for epoch 5 0.9945853010696524 The running loss is: 14.841296076774597 The number of items in train is: 17 The loss for epoch 6 0.8730174162808586 The running loss is: 17.39919090270996 The number of items in train is: 17 The loss for epoch 7 1.0234818178064682 The running loss is: 13.71133454144001 The number of items in train is: 17 The loss for epoch 8 0.8065490906729418 The running loss is: 15.23483623471111 The number of items in train is: 17 The loss for epoch 9 0.8961668373359477 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.157433 47 30819 ... 8.102160 48 30820 ... 17.461388 49 30821 ... 16.528046 50 30822 ... 2.348297 51 30823 ... 8.818064 52 30824 ... 10.826026 53 30825 ... 5.528331 54 30826 ... 11.029634 55 30827 ... 22.022442 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: klplltl7 wandb: Agent Starting Run: b9vef1w8 with config: batch_size: 2 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: b9vef1w8
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.429183930158615 The number of items in train is: 16 The loss for epoch 0 1.0893239956349134 The running loss is: 25.076544493436813 The number of items in train is: 16 The loss for epoch 1 1.5672840308398008 The running loss is: 21.2126601934433 The number of items in train is: 16 The loss for epoch 2 1.3257912620902061 The running loss is: 17.364732414484024 The number of items in train is: 16 The loss for epoch 3 1.0852957759052515 The running loss is: 17.196853309869766 The number of items in train is: 16 The loss for epoch 4 1.0748033318668604 The running loss is: 16.994296818971634 The number of items in train is: 16 The loss for epoch 5 1.0621435511857271 The running loss is: 17.03663896024227 The number of items in train is: 16 The loss for epoch 6 1.064789935015142 The running loss is: 16.859628692269325 The number of items in train is: 16 The loss for epoch 7 1.0537267932668328 The running loss is: 16.93640587478876 The number of items in train is: 16 The loss for epoch 8 1.0585253671742976 The running loss is: 17.753980338573456 The number of items in train is: 16 The loss for epoch 9 1.109623771160841 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.685909 47 30819 Eagle County, Colorado, United States ... 47 8.640967 48 30820 Eagle County, Colorado, United States ... 48 9.257741 49 30821 Eagle County, Colorado, United States ... 49 8.904490 50 30822 Eagle County, Colorado, United States ... 50 8.397946 51 30823 Eagle County, Colorado, United States ... 51 8.507514 52 30824 Eagle County, Colorado, United States ... 52 8.640145 53 30825 Eagle County, Colorado, United States ... 53 8.585375 54 30826 Eagle County, Colorado, United States ... 54 9.138819 55 30827 Eagle County, Colorado, United States ... 55 9.589720 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: b9vef1w8 wandb: Agent Starting Run: gessnckp with config: batch_size: 2 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: gessnckp
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.54187097400427 The number of items in train is: 17 The loss for epoch 0 1.3848159396473099 The running loss is: 24.992527093738317 The number of items in train is: 17 The loss for epoch 1 1.4701486525728422 The running loss is: 21.432729721069336 The number of items in train is: 17 The loss for epoch 2 1.2607488071217257 The running loss is: 18.33254014328122 The number of items in train is: 17 The loss for epoch 3 1.0783847143106602 The running loss is: 16.867909282445908 The number of items in train is: 17 The loss for epoch 4 0.9922299577909357 The running loss is: 17.271138109266758 The number of items in train is: 17 The loss for epoch 5 1.0159493005451035 The running loss is: 17.526262529194355 The number of items in train is: 17 The loss for epoch 6 1.0309566193643738 The running loss is: 17.195260427892208 The number of items in train is: 17 The loss for epoch 7 1.011485907523071 The running loss is: 17.226871080696583 The number of items in train is: 17 The loss for epoch 8 1.0133453576880342 The running loss is: 16.88069112598896 The number of items in train is: 17 The loss for epoch 9 0.992981830940527 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.652255 47 30819 ... 13.184143 48 30820 ... 14.892082 49 30821 ... 14.395442 50 30822 ... 9.526847 51 30823 ... 9.159123 52 30824 ... 10.524038 53 30825 ... 11.447363 54 30826 ... 12.936011 55 30827 ... 14.850525 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gessnckp wandb: Agent Starting Run: ga1qgbm2 with config: batch_size: 2 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ga1qgbm2
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.710720017552376 The number of items in train is: 17 The loss for epoch 0 1.3359247069148457 The running loss is: 25.101445123553276 The number of items in train is: 17 The loss for epoch 1 1.476555595503134 The running loss is: 22.209337458014488 The number of items in train is: 17 The loss for epoch 2 1.3064316151773228 The running loss is: 20.105842724442482 The number of items in train is: 17 The loss for epoch 3 1.1826966308495577 The running loss is: 18.94278684258461 The number of items in train is: 17 The loss for epoch 4 1.1142815789755653 The running loss is: 18.09556182473898 The number of items in train is: 17 The loss for epoch 5 1.06444481321994 The running loss is: 18.789756417274475 The number of items in train is: 17 The loss for epoch 6 1.1052797892514397 The running loss is: 18.20790345966816 The number of items in train is: 17 The loss for epoch 7 1.0710531446863623 The running loss is: 17.90162880718708 The number of items in train is: 17 The loss for epoch 8 1.0530369886580635 The running loss is: 17.974793404340744 The number of items in train is: 17 The loss for epoch 9 1.057340788490632 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.552468 47 30819 ... 13.281707 48 30820 ... 18.242928 49 30821 ... 14.926788 50 30822 ... 5.647899 51 30823 ... 9.067403 52 30824 ... 13.766898 53 30825 ... 10.045872 54 30826 ... 13.696932 55 30827 ... 16.382318 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ga1qgbm2 wandb: Agent Starting Run: 9mwe9odr with config: batch_size: 2 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 9mwe9odr
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 24.058534413576126 The number of items in train is: 16 The loss for epoch 0 1.5036584008485079 The running loss is: 24.180755577981472 The number of items in train is: 16 The loss for epoch 1 1.511297223623842 The running loss is: 20.436290249228477 The number of items in train is: 16 The loss for epoch 2 1.2772681405767798 The running loss is: 18.773078814148903 The number of items in train is: 16 The loss for epoch 3 1.1733174258843064 The running loss is: 17.54651653021574 The number of items in train is: 16 The loss for epoch 4 1.0966572831384838 The running loss is: 17.458857282996178 The number of items in train is: 16 The loss for epoch 5 1.091178580187261 The running loss is: 17.353648215532303 The number of items in train is: 16 The loss for epoch 6 1.084603013470769
wandb: Network error resolved after 0:00:11.333796, resuming normal operation.
The running loss is: 16.79451848566532 The number of items in train is: 16 The loss for epoch 7 1.0496574053540826 The running loss is: 16.56403110176325 The number of items in train is: 16 The loss for epoch 8 1.035251943860203 The running loss is: 18.429389148950577 The number of items in train is: 16 The loss for epoch 9 1.151836821809411 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.982271 47 30819 ... 10.173903 48 30820 ... 10.837774 49 30821 ... 10.261594 50 30822 ... 9.828760 51 30823 ... 9.887388 52 30824 ... 9.815040 53 30825 ... 9.642322 54 30826 ... 9.854512 55 30827 ... 10.046807 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9mwe9odr wandb: Agent Starting Run: tpqh9vdt with config: batch_size: 2 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: tpqh9vdt
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 76.73103265464306 The number of items in train is: 17 The loss for epoch 0 4.513590156155474 The running loss is: 31.05447568744421 The number of items in train is: 17 The loss for epoch 1 1.8267338639673065 The running loss is: 20.485956706106663 The number of items in train is: 17 The loss for epoch 2 1.2050562768298037 The running loss is: 21.844449251890182 The number of items in train is: 17 The loss for epoch 3 1.2849676030523636 The running loss is: 18.358333572745323 The number of items in train is: 17 The loss for epoch 4 1.079901974867372 The running loss is: 18.44140242645517 The number of items in train is: 17 The loss for epoch 5 1.0847883780267746 The running loss is: 20.418050155043602 The number of items in train is: 17 The loss for epoch 6 1.2010617738260942 The running loss is: 20.065719813108444 The number of items in train is: 17 The loss for epoch 7 1.1803364595946144 The running loss is: 18.964558770880103 The number of items in train is: 17 The loss for epoch 8 1.115562280640006 The running loss is: 17.706577128730714 The number of items in train is: 17 The loss for epoch 9 1.0415633605135715 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.264996 47 30819 ... 11.263235 48 30820 ... 11.252102 49 30821 ... 11.254551 50 30822 ... 11.251740 51 30823 ... 11.266092 52 30824 ... 11.297521 53 30825 ... 11.289854 54 30826 ... 11.319056 55 30827 ... 11.313751 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tpqh9vdt wandb: Agent Starting Run: 6hn5aa9q with config: batch_size: 2 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 6hn5aa9q
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 64.83852332830429 The number of items in train is: 17 The loss for epoch 0 3.8140307840178993 The running loss is: 24.20455026626587 The number of items in train is: 17 The loss for epoch 1 1.4237970744862276 The running loss is: 19.660972595214844 The number of items in train is: 17 The loss for epoch 2 1.1565277997185202 The running loss is: 19.629955507814884 The number of items in train is: 17 The loss for epoch 3 1.1547032651655815 The running loss is: 19.02102354168892 The number of items in train is: 17 The loss for epoch 4 1.118883737746407 The running loss is: 18.660875782370567 The number of items in train is: 17 The loss for epoch 5 1.0976985754335629 The running loss is: 18.049541860818863 The number of items in train is: 17 The loss for epoch 6 1.0617377565187567 The running loss is: 16.762809321284294 The number of items in train is: 17 The loss for epoch 7 0.9860476071343702 The running loss is: 21.54910632967949 The number of items in train is: 17 The loss for epoch 8 1.2675944899811464 The running loss is: 19.76157969236374 The number of items in train is: 17 The loss for epoch 9 1.1624458642566906 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.821740 47 30819 ... 12.099711 48 30820 ... 12.154493 49 30821 ... 11.972459 50 30822 ... 11.806449 51 30823 ... 12.246671 52 30824 ... 12.140120 53 30825 ... 12.150714 54 30826 ... 12.229416 55 30827 ... 12.229841 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6hn5aa9q wandb: Agent Starting Run: wh54t7pz with config: batch_size: 2 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: wh54t7pz
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 86.34015256166458 The number of items in train is: 16 The loss for epoch 0 5.396259535104036 The running loss is: 21.355846017599106 The number of items in train is: 16 The loss for epoch 1 1.3347403760999441 The running loss is: 26.509278684854507 The number of items in train is: 16 The loss for epoch 2 1.6568299178034067 The running loss is: 18.682842135429382 The number of items in train is: 16 The loss for epoch 3 1.1676776334643364 The running loss is: 17.745087578892708 The number of items in train is: 16 The loss for epoch 4 1.1090679736807942 The running loss is: 17.44467857480049 The number of items in train is: 16 The loss for epoch 5 1.0902924109250307 The running loss is: 17.872719079256058 The number of items in train is: 16 The loss for epoch 6 1.1170449424535036 The running loss is: 17.736331656575203 The number of items in train is: 16 The loss for epoch 7 1.1085207285359502 The running loss is: 17.695459455251694 The number of items in train is: 16 The loss for epoch 8 1.1059662159532309 The running loss is: 17.168903946876526 The number of items in train is: 16 The loss for epoch 9 1.0730564966797829 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 12.047359 47 30819 ... 11.826193 48 30820 ... 9.759015 49 30821 ... 10.301134 50 30822 ... 12.089850 51 30823 ... 11.833580 52 30824 ... 11.614565 53 30825 ... 13.017410 54 30826 ... 11.678865 55 30827 ... 9.747301 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: wh54t7pz wandb: Agent Starting Run: cjk92bph with config: batch_size: 2 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: cjk92bph
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.541068863123655 The number of items in train is: 17 The loss for epoch 0 1.1494746390072739 The running loss is: 31.577809385955334 The number of items in train is: 17 The loss for epoch 1 1.8575181991738432 The running loss is: 21.210836698301136 The number of items in train is: 17 The loss for epoch 2 1.2476962763706552 The running loss is: 19.0487511085812 The number of items in train is: 17 The loss for epoch 3 1.1205147710930117 The running loss is: 17.747340630739927 The number of items in train is: 17 The loss for epoch 4 1.0439612135729368 The running loss is: 16.326730091124773 The number of items in train is: 17 The loss for epoch 5 0.9603958877132219 The running loss is: 16.821684509515762 The number of items in train is: 17 The loss for epoch 6 0.9895108535009272 The running loss is: 16.196162899956107 The number of items in train is: 17 The loss for epoch 7 0.9527154647033004 The running loss is: 16.129438281059265 The number of items in train is: 17 The loss for epoch 8 0.9487904871211332 The running loss is: 14.658306866884232 The number of items in train is: 17 The loss for epoch 9 0.8622533451108372 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.140587 47 30819 Eagle County, Colorado, United States ... 47 8.496163 48 30820 Eagle County, Colorado, United States ... 48 8.369562 49 30821 Eagle County, Colorado, United States ... 49 7.550753 50 30822 Eagle County, Colorado, United States ... 50 6.753438 51 30823 Eagle County, Colorado, United States ... 51 7.273794 52 30824 Eagle County, Colorado, United States ... 52 7.213016 53 30825 Eagle County, Colorado, United States ... 53 8.200387 54 30826 Eagle County, Colorado, United States ... 54 9.424652 55 30827 Eagle County, Colorado, United States ... 55 9.819715 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cjk92bph wandb: Agent Starting Run: zbcdwhpq with config: batch_size: 2 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: zbcdwhpq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.168893314898014 The number of items in train is: 16 The loss for epoch 0 1.2605558321811259 The running loss is: 25.939899191260338 The number of items in train is: 16 The loss for epoch 1 1.6212436994537711 The running loss is: 18.034993439912796 The number of items in train is: 16 The loss for epoch 2 1.1271870899945498 The running loss is: 17.39638414233923 The number of items in train is: 16 The loss for epoch 3 1.0872740088962018 The running loss is: 16.87509286403656 The number of items in train is: 16 The loss for epoch 4 1.054693304002285 The running loss is: 16.00445708632469 The number of items in train is: 16 The loss for epoch 5 1.0002785678952932 The running loss is: 16.381498876959085 The number of items in train is: 16 The loss for epoch 6 1.0238436798099428 The running loss is: 15.403928969055414 The number of items in train is: 16 The loss for epoch 7 0.9627455605659634 The running loss is: 14.709752142429352 The number of items in train is: 16 The loss for epoch 8 0.9193595089018345 The running loss is: 14.122410148382187 The number of items in train is: 16 The loss for epoch 9 0.8826506342738867 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.590269 47 30819 Eagle County, Colorado, United States ... 47 6.284689 48 30820 Eagle County, Colorado, United States ... 48 6.673457 49 30821 Eagle County, Colorado, United States ... 49 5.553449 50 30822 Eagle County, Colorado, United States ... 50 4.031074 51 30823 Eagle County, Colorado, United States ... 51 3.671934 52 30824 Eagle County, Colorado, United States ... 52 3.971685 53 30825 Eagle County, Colorado, United States ... 53 5.478973 54 30826 Eagle County, Colorado, United States ... 54 6.330999 55 30827 Eagle County, Colorado, United States ... 55 6.209041 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: zbcdwhpq wandb: Agent Starting Run: vo9vk3ik with config: batch_size: 2 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: vo9vk3ik
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.161318197846413 The number of items in train is: 16 The loss for epoch 0 1.1350823873654008 The running loss is: 28.34734532237053 The number of items in train is: 16 The loss for epoch 1 1.771709082648158 The running loss is: 21.952908873558044 The number of items in train is: 16 The loss for epoch 2 1.3720568045973778 The running loss is: 18.008008897304535 The number of items in train is: 16 The loss for epoch 3 1.1255005560815334 The running loss is: 18.31263779103756 The number of items in train is: 16 The loss for epoch 4 1.1445398619398475 The running loss is: 16.959372133016586 The number of items in train is: 16 The loss for epoch 5 1.0599607583135366 The running loss is: 16.71182854473591 The number of items in train is: 16 The loss for epoch 6 1.0444892840459943 The running loss is: 16.340465560555458 The number of items in train is: 16 The loss for epoch 7 1.0212790975347161 The running loss is: 15.99364747107029 The number of items in train is: 16 The loss for epoch 8 0.9996029669418931 The running loss is: 15.350911244750023 The number of items in train is: 16 The loss for epoch 9 0.9594319527968764 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.893581 47 30819 Eagle County, Colorado, United States ... 47 4.652898 48 30820 Eagle County, Colorado, United States ... 48 4.505464 49 30821 Eagle County, Colorado, United States ... 49 3.514089 50 30822 Eagle County, Colorado, United States ... 50 2.621427 51 30823 Eagle County, Colorado, United States ... 51 2.962666 52 30824 Eagle County, Colorado, United States ... 52 2.937756 53 30825 Eagle County, Colorado, United States ... 53 3.398608 54 30826 Eagle County, Colorado, United States ... 54 3.783144 55 30827 Eagle County, Colorado, United States ... 55 3.793390 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vo9vk3ik wandb: Agent Starting Run: m0nfhmwv with config: batch_size: 2 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: m0nfhmwv
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.05170270940289 The number of items in train is: 17 The loss for epoch 0 1.179511924082523 The running loss is: 27.10501365410164 The number of items in train is: 17 The loss for epoch 1 1.5944125678883319 The running loss is: 24.45247669145465 The number of items in train is: 17 The loss for epoch 2 1.4383809818502735 The running loss is: 17.12475097551942 The number of items in train is: 17 The loss for epoch 3 1.0073382926776129 The running loss is: 16.83773805736564 The number of items in train is: 17 The loss for epoch 4 0.9904551798450377 The running loss is: 16.38904993236065 The number of items in train is: 17 The loss for epoch 5 0.964061760727097 The running loss is: 16.86034062318504 The number of items in train is: 17 The loss for epoch 6 0.9917847425402964 The running loss is: 17.765443854033947 The number of items in train is: 17 The loss for epoch 7 1.0450261090608204 The running loss is: 16.69217774644494 The number of items in train is: 17 The loss for epoch 8 0.9818928086144083 The running loss is: 15.330347783863544 The number of items in train is: 17 The loss for epoch 9 0.901785163756679 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.371289 47 30819 Eagle County, Colorado, United States ... 47 9.567065 48 30820 Eagle County, Colorado, United States ... 48 9.085946 49 30821 Eagle County, Colorado, United States ... 49 8.364687 50 30822 Eagle County, Colorado, United States ... 50 7.982452 51 30823 Eagle County, Colorado, United States ... 51 8.483797 52 30824 Eagle County, Colorado, United States ... 52 8.248549 53 30825 Eagle County, Colorado, United States ... 53 8.893828 54 30826 Eagle County, Colorado, United States ... 54 9.528422 55 30827 Eagle County, Colorado, United States ... 55 9.468787 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: m0nfhmwv wandb: Agent Starting Run: gx5177rp with config: batch_size: 2 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: gx5177rp
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.488044381141663 The number of items in train is: 16 The loss for epoch 0 1.093002773821354 The running loss is: 23.978667616844177 The number of items in train is: 16 The loss for epoch 1 1.498666726052761 The running loss is: 19.89868026971817 The number of items in train is: 16 The loss for epoch 2 1.2436675168573856 The running loss is: 17.491415731608868 The number of items in train is: 16 The loss for epoch 3 1.0932134832255542 The running loss is: 17.02195332199335 The number of items in train is: 16 The loss for epoch 4 1.0638720826245844 The running loss is: 16.250655472278595 The number of items in train is: 16 The loss for epoch 5 1.0156659670174122 The running loss is: 17.369982078671455 The number of items in train is: 16 The loss for epoch 6 1.085623879916966 The running loss is: 16.19321621209383 The number of items in train is: 16 The loss for epoch 7 1.0120760132558644 The running loss is: 15.575257241725922 The number of items in train is: 16 The loss for epoch 8 0.9734535776078701 The running loss is: 14.779532857239246 The number of items in train is: 16 The loss for epoch 9 0.9237208035774529 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 7.571152 47 30819 Eagle County, Colorado, United States ... 47 5.052190 48 30820 Eagle County, Colorado, United States ... 48 5.632578 49 30821 Eagle County, Colorado, United States ... 49 5.871844 50 30822 Eagle County, Colorado, United States ... 50 3.961731 51 30823 Eagle County, Colorado, United States ... 51 3.108603 52 30824 Eagle County, Colorado, United States ... 52 3.412964 53 30825 Eagle County, Colorado, United States ... 53 4.292527 54 30826 Eagle County, Colorado, United States ... 54 4.116302 55 30827 Eagle County, Colorado, United States ... 55 4.581748 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gx5177rp wandb: Agent Starting Run: 90rqzvhh with config: batch_size: 2 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 90rqzvhh
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.225835099816322 The number of items in train is: 16 The loss for epoch 0 1.3266146937385201 The running loss is: 24.082868233323097 The number of items in train is: 16 The loss for epoch 1 1.5051792645826936 The running loss is: 27.372445285320282 The number of items in train is: 16 The loss for epoch 2 1.7107778303325176 The running loss is: 20.892320051789284 The number of items in train is: 16 The loss for epoch 3 1.3057700032368302 The running loss is: 20.565253868699074 The number of items in train is: 16 The loss for epoch 4 1.2853283667936921 The running loss is: 16.875523328781128 The number of items in train is: 16 The loss for epoch 5 1.0547202080488205 The running loss is: 17.473206147551537 The number of items in train is: 16 The loss for epoch 6 1.092075384221971 The running loss is: 16.84730589389801 The number of items in train is: 16 The loss for epoch 7 1.0529566183686256 The running loss is: 16.792904995381832 The number of items in train is: 16 The loss for epoch 8 1.0495565622113645 The running loss is: 16.68462935835123 The number of items in train is: 16 The loss for epoch 9 1.042789334896952 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.352649 47 30819 Eagle County, Colorado, United States ... 47 6.084286 48 30820 Eagle County, Colorado, United States ... 48 6.090950 49 30821 Eagle County, Colorado, United States ... 49 5.605799 50 30822 Eagle County, Colorado, United States ... 50 5.207687 51 30823 Eagle County, Colorado, United States ... 51 5.319816 52 30824 Eagle County, Colorado, United States ... 52 5.325910 53 30825 Eagle County, Colorado, United States ... 53 5.664911 54 30826 Eagle County, Colorado, United States ... 54 5.746319 55 30827 Eagle County, Colorado, United States ... 55 6.000322 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 90rqzvhh wandb: Agent Starting Run: 5kqgou97 with config: batch_size: 2 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5kqgou97
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 28.777981208404526 The number of items in train is: 17 The loss for epoch 0 1.6928224240237957 The running loss is: 24.640328461304307 The number of items in train is: 17 The loss for epoch 1 1.4494310859590769 The running loss is: 27.799861981067806 The number of items in train is: 17 The loss for epoch 2 1.6352859988863415 The running loss is: 20.27729516022373 The number of items in train is: 17 The loss for epoch 3 1.1927820682484547 The running loss is: 17.45506318518892 The number of items in train is: 17 The loss for epoch 4 1.0267684226581717 The running loss is: 16.46949014440179 The number of items in train is: 17 The loss for epoch 5 0.9687935379059875 The running loss is: 21.04788029473275 The number of items in train is: 17 The loss for epoch 6 1.2381106055725146 The running loss is: 18.626586033031344 The number of items in train is: 17 The loss for epoch 7 1.095681531354785 The running loss is: 18.9736210629344 The number of items in train is: 17 The loss for epoch 8 1.1160953566432 The running loss is: 17.51461985334754 The number of items in train is: 17 The loss for epoch 9 1.0302717560792671 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.366323 47 30819 Eagle County, Colorado, United States ... 47 5.725136 48 30820 Eagle County, Colorado, United States ... 48 6.439533 49 30821 Eagle County, Colorado, United States ... 49 6.884377 50 30822 Eagle County, Colorado, United States ... 50 6.239933 51 30823 Eagle County, Colorado, United States ... 51 4.986047 52 30824 Eagle County, Colorado, United States ... 52 6.204242 53 30825 Eagle County, Colorado, United States ... 53 6.950147 54 30826 Eagle County, Colorado, United States ... 54 6.047112 55 30827 Eagle County, Colorado, United States ... 55 6.310897 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5kqgou97 wandb: Agent Starting Run: kf0ese4y with config: batch_size: 2 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: kf0ese4y
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.219055324792862 The number of items in train is: 16 The loss for epoch 0 1.3886909577995539 The running loss is: 22.0189621001482 The number of items in train is: 16 The loss for epoch 1 1.3761851312592626 The running loss is: 19.93704141676426 The number of items in train is: 16 The loss for epoch 2 1.2460650885477662 The running loss is: 17.88787931203842 The number of items in train is: 16 The loss for epoch 3 1.1179924570024014 The running loss is: 16.455111406743526 The number of items in train is: 16 The loss for epoch 4 1.0284444629214704 The running loss is: 16.531717360019684 The number of items in train is: 16 The loss for epoch 5 1.0332323350012302 The running loss is: 17.8481187466532 The number of items in train is: 16 The loss for epoch 6 1.115507421665825 The running loss is: 17.158546946942806 The number of items in train is: 16 The loss for epoch 7 1.0724091841839254 The running loss is: 17.001652263104916 The number of items in train is: 16 The loss for epoch 8 1.0626032664440572 The running loss is: 16.163067802786827 The number of items in train is: 16 The loss for epoch 9 1.0101917376741767 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.685339 47 30819 ... 9.254963 48 30820 ... 9.078858 49 30821 ... 9.091250 50 30822 ... 9.344090 51 30823 ... 9.539142 52 30824 ... 8.981033 53 30825 ... 9.279771 54 30826 ... 9.038018 55 30827 ... 9.276935 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: kf0ese4y wandb: Agent Starting Run: krqw3ydc with config: batch_size: 2 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: krqw3ydc
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 35.509117022156715 The number of items in train is: 16 The loss for epoch 0 2.2193198138847947 The running loss is: 27.793827712535858 The number of items in train is: 16 The loss for epoch 1 1.7371142320334911 The running loss is: 27.488479807972908 The number of items in train is: 16 The loss for epoch 2 1.7180299879983068 The running loss is: 21.062721334397793 The number of items in train is: 16 The loss for epoch 3 1.316420083399862 The running loss is: 17.644332513213158 The number of items in train is: 16 The loss for epoch 4 1.1027707820758224 The running loss is: 17.82902693748474 The number of items in train is: 16 The loss for epoch 5 1.1143141835927963 The running loss is: 17.82366769760847 The number of items in train is: 16 The loss for epoch 6 1.1139792311005294 The running loss is: 16.8096736446023 The number of items in train is: 16 The loss for epoch 7 1.0506046027876437 The running loss is: 16.60496674105525 The number of items in train is: 16 The loss for epoch 8 1.0378104213159531 The running loss is: 16.044241465628147 The number of items in train is: 16 The loss for epoch 9 1.0027650916017592 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.428545 47 30819 Eagle County, Colorado, United States ... 47 5.813026 48 30820 Eagle County, Colorado, United States ... 48 5.347736 49 30821 Eagle County, Colorado, United States ... 49 4.646779 50 30822 Eagle County, Colorado, United States ... 50 3.470057 51 30823 Eagle County, Colorado, United States ... 51 4.449368 52 30824 Eagle County, Colorado, United States ... 52 4.113334 53 30825 Eagle County, Colorado, United States ... 53 3.690783 54 30826 Eagle County, Colorado, United States ... 54 4.221715 55 30827 Eagle County, Colorado, United States ... 55 4.104982 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: krqw3ydc wandb: Agent Starting Run: sh72of1b with config: batch_size: 2 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: sh72of1b
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 103.1626292373985 The number of items in train is: 17 The loss for epoch 0 6.068389955141089 The running loss is: 32.25590829923749 The number of items in train is: 17 The loss for epoch 1 1.8974063705433817 The running loss is: 23.828247282654047 The number of items in train is: 17 The loss for epoch 2 1.4016616048620028 The running loss is: 31.835000079125166 The number of items in train is: 17 The loss for epoch 3 1.8726470634779508 The running loss is: 20.61502874654252 The number of items in train is: 17 The loss for epoch 4 1.212648749796619 The running loss is: 19.363679410889745 The number of items in train is: 17 The loss for epoch 5 1.1390399653464556 The running loss is: 19.635973207186908 The number of items in train is: 17 The loss for epoch 6 1.1550572474815828 The running loss is: 18.29618028178811 The number of items in train is: 17 The loss for epoch 7 1.0762458989287125 The running loss is: 19.22706305421889 The number of items in train is: 17 The loss for epoch 8 1.1310037090716993 The running loss is: 18.380500946193933 The number of items in train is: 17 The loss for epoch 9 1.0812059380114079 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.151937 47 30819 ... 7.935369 48 30820 ... 8.738775 49 30821 ... 10.614862 50 30822 ... 9.969593 51 30823 ... 7.311244 52 30824 ... 7.801637 53 30825 ... 7.693194 54 30826 ... 6.158726 55 30827 ... 9.466553 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sh72of1b wandb: Agent Starting Run: b05a558h with config: batch_size: 2 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: b05a558h
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 78.69877743721008 The number of items in train is: 16 The loss for epoch 0 4.91867358982563 The running loss is: 25.414799951016903 The number of items in train is: 16 The loss for epoch 1 1.5884249969385564 The running loss is: 20.38876563310623 The number of items in train is: 16 The loss for epoch 2 1.2742978520691395 The running loss is: 19.538819804787636 The number of items in train is: 16 The loss for epoch 3 1.2211762377992272 The running loss is: 16.742633998394012 The number of items in train is: 16 The loss for epoch 4 1.0464146248996258 The running loss is: 17.317697145044804 The number of items in train is: 16 The loss for epoch 5 1.0823560715653002 The running loss is: 17.5643428042531 The number of items in train is: 16 The loss for epoch 6 1.0977714252658188 The running loss is: 17.789347365498543 The number of items in train is: 16 The loss for epoch 7 1.111834210343659 The running loss is: 17.489750310778618 The number of items in train is: 16 The loss for epoch 8 1.0931093944236636 The running loss is: 17.39979489147663 The number of items in train is: 16 The loss for epoch 9 1.0874871807172894 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.857318 47 30819 ... 10.542280 48 30820 ... 13.393419 49 30821 ... 12.905228 50 30822 ... 13.987958 51 30823 ... 9.857606 52 30824 ... 9.617988 53 30825 ... 11.862918 54 30826 ... 12.504917 55 30827 ... 12.476783 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: b05a558h wandb: Agent Starting Run: b42edysj with config: batch_size: 2 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: b42edysj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 129.31433825194836 The number of items in train is: 16 The loss for epoch 0 8.082146140746772 The running loss is: 33.838866889476776 The number of items in train is: 16 The loss for epoch 1 2.1149291805922985 The running loss is: 32.69537399709225 The number of items in train is: 16 The loss for epoch 2 2.0434608748182654 The running loss is: 20.72595465183258 The number of items in train is: 16 The loss for epoch 3 1.2953721657395363 The running loss is: 18.550900161266327 The number of items in train is: 16 The loss for epoch 4 1.1594312600791454 The running loss is: 18.944357007741928 The number of items in train is: 16 The loss for epoch 5 1.1840223129838705 The running loss is: 16.659233570098877 The number of items in train is: 16 The loss for epoch 6 1.0412020981311798 The running loss is: 16.95862276852131 The number of items in train is: 16 The loss for epoch 7 1.0599139230325818 The running loss is: 17.480562835931778 The number of items in train is: 16 The loss for epoch 8 1.0925351772457361 The running loss is: 16.70482873916626 The number of items in train is: 16 The loss for epoch 9 1.0440517961978912 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 9.223022 47 30819 Eagle County, Colorado, United States ... 47 9.480515 48 30820 Eagle County, Colorado, United States ... 48 9.003038 49 30821 Eagle County, Colorado, United States ... 49 7.573602 50 30822 Eagle County, Colorado, United States ... 50 8.637365 51 30823 Eagle County, Colorado, United States ... 51 9.787563 52 30824 Eagle County, Colorado, United States ... 52 9.713055 53 30825 Eagle County, Colorado, United States ... 53 9.106526 54 30826 Eagle County, Colorado, United States ... 54 8.233118 55 30827 Eagle County, Colorado, United States ... 55 8.937274 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: b42edysj wandb: Agent Starting Run: 0y4dvzek with config: batch_size: 2 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 0y4dvzek
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.024294704198837 The number of items in train is: 16 The loss for epoch 0 1.1890184190124273 The running loss is: 28.17329168319702 The number of items in train is: 16 The loss for epoch 1 1.7608307301998138 The running loss is: 19.229630678892136 The number of items in train is: 16 The loss for epoch 2 1.2018519174307585 The running loss is: 18.052614729851484 The number of items in train is: 16 The loss for epoch 3 1.1282884206157178 The running loss is: 16.58875320851803 The number of items in train is: 16 The loss for epoch 4 1.0367970755323768 The running loss is: 16.503416620194912 The number of items in train is: 16 The loss for epoch 5 1.031463538762182 The running loss is: 15.970246095210314 The number of items in train is: 16 The loss for epoch 6 0.9981403809506446 The running loss is: 15.178171835839748 The number of items in train is: 16 The loss for epoch 7 0.9486357397399843 The running loss is: 15.022873431444168 The number of items in train is: 16 The loss for epoch 8 0.9389295894652605 The running loss is: 14.425640754401684 The number of items in train is: 16 The loss for epoch 9 0.9016025471501052 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.330852 47 30819 ... 9.025394 48 30820 ... 10.150417 49 30821 ... 8.791727 50 30822 ... 8.136430 51 30823 ... 6.754112 52 30824 ... 6.621983 53 30825 ... 7.065903 54 30826 ... 9.010159 55 30827 ... 10.120397 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0y4dvzek wandb: Agent Starting Run: n6y0nnnv with config: batch_size: 2 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: n6y0nnnv
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.83935895562172 The number of items in train is: 16 The loss for epoch 0 1.2399599347263575 The running loss is: 28.57678074762225 The number of items in train is: 16 The loss for epoch 1 1.7860487967263907 The running loss is: 19.893600448966026 The number of items in train is: 16 The loss for epoch 2 1.2433500280603766 The running loss is: 19.118501737713814 The number of items in train is: 16 The loss for epoch 3 1.1949063586071134 The running loss is: 17.059373825788498 The number of items in train is: 16 The loss for epoch 4 1.0662108641117811 The running loss is: 17.05972745269537 The number of items in train is: 16 The loss for epoch 5 1.0662329657934606 The running loss is: 16.174344236031175 The number of items in train is: 16 The loss for epoch 6 1.0108965147519484 The running loss is: 16.34573794156313 The number of items in train is: 16 The loss for epoch 7 1.0216086213476956 The running loss is: 15.519824489951134 The number of items in train is: 16 The loss for epoch 8 0.9699890306219459 The running loss is: 15.651652056723833 The number of items in train is: 16 The loss for epoch 9 0.9782282535452396 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.513955 47 30819 Eagle County, Colorado, United States ... 47 4.736606 48 30820 Eagle County, Colorado, United States ... 48 5.299429 49 30821 Eagle County, Colorado, United States ... 49 4.227453 50 30822 Eagle County, Colorado, United States ... 50 3.256231 51 30823 Eagle County, Colorado, United States ... 51 1.791030 52 30824 Eagle County, Colorado, United States ... 52 1.133979 53 30825 Eagle County, Colorado, United States ... 53 1.495904 54 30826 Eagle County, Colorado, United States ... 54 2.602427 55 30827 Eagle County, Colorado, United States ... 55 3.637704 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: n6y0nnnv wandb: Agent Starting Run: n0i03nbs with config: batch_size: 2 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: n0i03nbs
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.348762914538383 The number of items in train is: 15 The loss for epoch 0 1.2232508609692256 The running loss is: 25.289881259202957 The number of items in train is: 15 The loss for epoch 1 1.6859920839468638 The running loss is: 17.352391123771667 The number of items in train is: 15 The loss for epoch 2 1.1568260749181112 The running loss is: 17.013499923050404 The number of items in train is: 15 The loss for epoch 3 1.1342333282033603 The running loss is: 16.516328513622284 The number of items in train is: 15 The loss for epoch 4 1.101088567574819 The running loss is: 16.258019223809242 The number of items in train is: 15 The loss for epoch 5 1.0838679482539495 The running loss is: 15.751357644796371 The number of items in train is: 15 The loss for epoch 6 1.0500905096530915 The running loss is: 15.609124556183815 The number of items in train is: 15 The loss for epoch 7 1.0406083037455878 The running loss is: 15.097268715500832 The number of items in train is: 15 The loss for epoch 8 1.0064845810333887 The running loss is: 14.87123168259859 The number of items in train is: 15 The loss for epoch 9 0.9914154455065727 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.172585 47 30819 Eagle County, Colorado, United States ... 47 8.545061 48 30820 Eagle County, Colorado, United States ... 48 8.406359 49 30821 Eagle County, Colorado, United States ... 49 7.705727 50 30822 Eagle County, Colorado, United States ... 50 7.680320 51 30823 Eagle County, Colorado, United States ... 51 5.664755 52 30824 Eagle County, Colorado, United States ... 52 3.960229 53 30825 Eagle County, Colorado, United States ... 53 4.914542 54 30826 Eagle County, Colorado, United States ... 54 7.783839 55 30827 Eagle County, Colorado, United States ... 55 8.135820 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: n0i03nbs wandb: Agent Starting Run: yjybu031 with config: batch_size: 2 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yjybu031
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.16425657272339 The number of items in train is: 16 The loss for epoch 0 1.1977660357952118 The running loss is: 24.791586220264435 The number of items in train is: 16 The loss for epoch 1 1.5494741387665272 The running loss is: 21.69253620505333 The number of items in train is: 16 The loss for epoch 2 1.355783512815833 The running loss is: 16.800780154764652 The number of items in train is: 16 The loss for epoch 3 1.0500487596727908 The running loss is: 16.302987061440945 The number of items in train is: 16 The loss for epoch 4 1.018936691340059 The running loss is: 15.405229218304157 The number of items in train is: 16 The loss for epoch 5 0.9628268261440098 The running loss is: 14.881639704108238 The number of items in train is: 16 The loss for epoch 6 0.9301024815067649 The running loss is: 14.712513819336891 The number of items in train is: 16 The loss for epoch 7 0.9195321137085557 The running loss is: 15.10964523628354 The number of items in train is: 16 The loss for epoch 8 0.9443528272677213 The running loss is: 16.02715666871518 The number of items in train is: 16 The loss for epoch 9 1.0016972917946987 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.599871 47 30819 ... 10.097055 48 30820 ... 8.892070 49 30821 ... 7.969182 50 30822 ... 8.750723 51 30823 ... 7.703031 52 30824 ... 6.274693 53 30825 ... 6.066268 54 30826 ... 8.236106 55 30827 ... 8.333554 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yjybu031 wandb: Agent Starting Run: miyu4pi3 with config: batch_size: 2 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: miyu4pi3
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.28632080554962 The number of items in train is: 16 The loss for epoch 0 1.2678950503468513 The running loss is: 24.294055610895157 The number of items in train is: 16 The loss for epoch 1 1.5183784756809473 The running loss is: 21.431798800826073 The number of items in train is: 16 The loss for epoch 2 1.3394874250516295 The running loss is: 16.71895857900381 The number of items in train is: 16 The loss for epoch 3 1.0449349111877382 The running loss is: 16.85727497190237 The number of items in train is: 16 The loss for epoch 4 1.0535796857438982 The running loss is: 16.236333053559065 The number of items in train is: 16 The loss for epoch 5 1.0147708158474416 The running loss is: 15.517197554931045 The number of items in train is: 16 The loss for epoch 6 0.9698248471831903 The running loss is: 15.630752064287663 The number of items in train is: 16 The loss for epoch 7 0.9769220040179789 The running loss is: 14.89614998549223 The number of items in train is: 16 The loss for epoch 8 0.9310093740932643 The running loss is: 18.13109051436186 The number of items in train is: 16 The loss for epoch 9 1.1331931571476161 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.372117 47 30819 Eagle County, Colorado, United States ... 47 6.291941 48 30820 Eagle County, Colorado, United States ... 48 8.174136 49 30821 Eagle County, Colorado, United States ... 49 6.047145 50 30822 Eagle County, Colorado, United States ... 50 5.574130 51 30823 Eagle County, Colorado, United States ... 51 4.054066 52 30824 Eagle County, Colorado, United States ... 52 4.882196 53 30825 Eagle County, Colorado, United States ... 53 4.373847 54 30826 Eagle County, Colorado, United States ... 54 4.788294 55 30827 Eagle County, Colorado, United States ... 55 5.587177 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: miyu4pi3 wandb: Agent Starting Run: 6l418pc3 with config: batch_size: 2 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 6l418pc3
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.847505494952202 The number of items in train is: 15 The loss for epoch 0 1.1898336996634802 The running loss is: 22.748151302337646 The number of items in train is: 15 The loss for epoch 1 1.5165434201558432 The running loss is: 18.75277553498745 The number of items in train is: 15 The loss for epoch 2 1.25018503566583 The running loss is: 16.23998997360468 The number of items in train is: 15 The loss for epoch 3 1.082665998240312 The running loss is: 16.405739322304726 The number of items in train is: 15 The loss for epoch 4 1.093715954820315 The running loss is: 15.832581028342247 The number of items in train is: 15 The loss for epoch 5 1.0555054018894832 The running loss is: 14.198189176619053 The number of items in train is: 15 The loss for epoch 6 0.9465459451079369 The running loss is: 14.678221568465233 The number of items in train is: 15 The loss for epoch 7 0.9785481045643488 The running loss is: 14.704874739050865 The number of items in train is: 15 The loss for epoch 8 0.980324982603391 The running loss is: 13.837015897035599 The number of items in train is: 15 The loss for epoch 9 0.92246772646904 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 2.811941 47 30819 Eagle County, Colorado, United States ... 47 7.373936 48 30820 Eagle County, Colorado, United States ... 48 6.976442 49 30821 Eagle County, Colorado, United States ... 49 6.321370 50 30822 Eagle County, Colorado, United States ... 50 6.951790 51 30823 Eagle County, Colorado, United States ... 51 3.973511 52 30824 Eagle County, Colorado, United States ... 52 2.230998 53 30825 Eagle County, Colorado, United States ... 53 1.945158 54 30826 Eagle County, Colorado, United States ... 54 5.537347 55 30827 Eagle County, Colorado, United States ... 55 4.562379 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 6l418pc3 wandb: Agent Starting Run: 2lswnnys with config: batch_size: 2 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 2lswnnys
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 28.321928784251213 The number of items in train is: 16 The loss for epoch 0 1.7701205490157008 The running loss is: 23.84320007637143 The number of items in train is: 16 The loss for epoch 1 1.4902000047732145 The running loss is: 22.800938323140144 The number of items in train is: 16 The loss for epoch 2 1.425058645196259 The running loss is: 16.60193409025669 The number of items in train is: 16 The loss for epoch 3 1.0376208806410432 The running loss is: 16.297849643044174 The number of items in train is: 16 The loss for epoch 4 1.0186156026902609 The running loss is: 15.142806701362133 The number of items in train is: 16 The loss for epoch 5 0.9464254188351333 The running loss is: 15.968816300854087 The number of items in train is: 16 The loss for epoch 6 0.9980510188033804 The running loss is: 18.68184170126915 The number of items in train is: 16 The loss for epoch 7 1.1676151063293219 The running loss is: 17.71508727967739 The number of items in train is: 16 The loss for epoch 8 1.107192954979837 The running loss is: 17.00942861661315 The number of items in train is: 16 The loss for epoch 9 1.0630892885383219 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 12.924442 47 30819 ... 11.307852 48 30820 ... 11.383236 49 30821 ... 11.235537 50 30822 ... 10.485743 51 30823 ... 10.882519 52 30824 ... 12.352532 53 30825 ... 11.872038 54 30826 ... 10.437772 55 30827 ... 12.334542 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2lswnnys wandb: Agent Starting Run: s96dsy11 with config: batch_size: 2 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: s96dsy11
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 29.96261489391327 The number of items in train is: 16 The loss for epoch 0 1.8726634308695793 The running loss is: 27.067424595355988 The number of items in train is: 16 The loss for epoch 1 1.6917140372097492 The running loss is: 20.166864212602377 The number of items in train is: 16 The loss for epoch 2 1.2604290132876486 The running loss is: 17.68713990226388 The number of items in train is: 16 The loss for epoch 3 1.1054462438914925 The running loss is: 16.726590804755688 The number of items in train is: 16 The loss for epoch 4 1.0454119252972305 The running loss is: 16.821392374113202 The number of items in train is: 16 The loss for epoch 5 1.0513370233820751 The running loss is: 15.821807194501162 The number of items in train is: 16 The loss for epoch 6 0.9888629496563226 The running loss is: 15.549790024757385 The number of items in train is: 16 The loss for epoch 7 0.9718618765473366 The running loss is: 17.553053379058838 The number of items in train is: 16 The loss for epoch 8 1.0970658361911774 The running loss is: 16.198522921651602 The number of items in train is: 16 The loss for epoch 9 1.0124076826032251 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 7.124155 47 30819 Eagle County, Colorado, United States ... 47 7.601325 48 30820 Eagle County, Colorado, United States ... 48 7.351948 49 30821 Eagle County, Colorado, United States ... 49 6.322805 50 30822 Eagle County, Colorado, United States ... 50 7.087974 51 30823 Eagle County, Colorado, United States ... 51 6.653691 52 30824 Eagle County, Colorado, United States ... 52 6.018229 53 30825 Eagle County, Colorado, United States ... 53 5.255400 54 30826 Eagle County, Colorado, United States ... 54 6.463150 55 30827 Eagle County, Colorado, United States ... 55 6.508754 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: s96dsy11 wandb: Agent Starting Run: ox8sw2mt with config: batch_size: 2 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ox8sw2mt
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 24.2190171033144 The number of items in train is: 15 The loss for epoch 0 1.61460114022096 The running loss is: 23.19199651479721 The number of items in train is: 15 The loss for epoch 1 1.5461331009864807 The running loss is: 19.841294646263123 The number of items in train is: 15 The loss for epoch 2 1.3227529764175414 The running loss is: 16.733892038464546 The number of items in train is: 15 The loss for epoch 3 1.1155928025643032 The running loss is: 16.701290532946587 The number of items in train is: 15 The loss for epoch 4 1.1134193688631058 The running loss is: 16.376007974147797 The number of items in train is: 15 The loss for epoch 5 1.0917338649431865 The running loss is: 15.544721752405167 The number of items in train is: 15 The loss for epoch 6 1.0363147834936777 The running loss is: 14.802310332655907 The number of items in train is: 15 The loss for epoch 7 0.9868206888437271 The running loss is: 16.197223231196404 The number of items in train is: 15 The loss for epoch 8 1.0798148820797602 The running loss is: 17.143785387277603 The number of items in train is: 15 The loss for epoch 9 1.142919025818507 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.421041 47 30819 ... 10.157938 48 30820 ... 9.647425 49 30821 ... 9.630416 50 30822 ... 10.029798 51 30823 ... 9.603886 52 30824 ... 7.974997 53 30825 ... 8.477596 54 30826 ... 9.787393 55 30827 ... 8.910323 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ox8sw2mt wandb: Agent Starting Run: 1j4ina8x with config: batch_size: 2 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 1j4ina8x
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 108.48466435819864 The number of items in train is: 16 The loss for epoch 0 6.780291522387415 The running loss is: 37.332396514713764 The number of items in train is: 16 The loss for epoch 1 2.3332747821696103 The running loss is: 20.24184750393033 The number of items in train is: 16 The loss for epoch 2 1.2651154689956456 The running loss is: 19.149915374815464 The number of items in train is: 16 The loss for epoch 3 1.1968697109259665 The running loss is: 19.72006557881832 The number of items in train is: 16 The loss for epoch 4 1.232504098676145 The running loss is: 17.883113749325275 The number of items in train is: 16 The loss for epoch 5 1.1176946093328297 The running loss is: 17.11849595978856 The number of items in train is: 16 The loss for epoch 6 1.069905997486785 The running loss is: 16.509005554020405 The number of items in train is: 16 The loss for epoch 7 1.0318128471262753 The running loss is: 18.953058928251266 The number of items in train is: 16 The loss for epoch 8 1.1845661830157042 The running loss is: 19.251508221030235 The number of items in train is: 16 The loss for epoch 9 1.2032192638143897 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.076435 47 30819 ... 11.008322 48 30820 ... 11.043419 49 30821 ... 11.140252 50 30822 ... 11.340688 51 30823 ... 11.105280 52 30824 ... 10.863495 53 30825 ... 11.017091 54 30826 ... 10.999365 55 30827 ... 10.982702 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1j4ina8x wandb: Agent Starting Run: l32pcy0y with config: batch_size: 2 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: l32pcy0y
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 106.40463045239449 The number of items in train is: 16 The loss for epoch 0 6.650289403274655 The running loss is: 32.68300420045853 The number of items in train is: 16 The loss for epoch 1 2.042687762528658 The running loss is: 21.02730058133602 The number of items in train is: 16 The loss for epoch 2 1.3142062863335013 The running loss is: 22.76759300008416 The number of items in train is: 16 The loss for epoch 3 1.42297456250526 The running loss is: 20.224891159683466 The number of items in train is: 16 The loss for epoch 4 1.2640556974802166 The running loss is: 20.061361081898212 The number of items in train is: 16 The loss for epoch 5 1.2538350676186383 The running loss is: 18.02659384161234 The number of items in train is: 16 The loss for epoch 6 1.1266621151007712 The running loss is: 17.840649589896202 The number of items in train is: 16 The loss for epoch 7 1.1150405993685126 The running loss is: 17.845503389835358 The number of items in train is: 16 The loss for epoch 8 1.1153439618647099 The running loss is: 18.144714556634426 The number of items in train is: 16 The loss for epoch 9 1.1340446597896516 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 9.451546 47 30819 Eagle County, Colorado, United States ... 47 9.509930 48 30820 Eagle County, Colorado, United States ... 48 9.710898 49 30821 Eagle County, Colorado, United States ... 49 9.667391 50 30822 Eagle County, Colorado, United States ... 50 9.587912 51 30823 Eagle County, Colorado, United States ... 51 9.663891 52 30824 Eagle County, Colorado, United States ... 52 9.581569 53 30825 Eagle County, Colorado, United States ... 53 9.588292 54 30826 Eagle County, Colorado, United States ... 54 9.580448 55 30827 Eagle County, Colorado, United States ... 55 9.681818 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l32pcy0y wandb: Agent Starting Run: e65jo2m6 with config: batch_size: 2 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: e65jo2m6
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 2 dataset_params: desc: null value: batch_size: 2 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 2 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 80.18639262020588 The number of items in train is: 15 The loss for epoch 0 5.3457595080137255 The running loss is: 28.25533753633499 The number of items in train is: 15 The loss for epoch 1 1.8836891690889994 The running loss is: 18.94506999105215 The number of items in train is: 15 The loss for epoch 2 1.2630046660701433 The running loss is: 17.882804982364178 The number of items in train is: 15 The loss for epoch 3 1.1921869988242786 The running loss is: 17.178523786365986 The number of items in train is: 15 The loss for epoch 4 1.1452349190910658 The running loss is: 19.025928854942322 The number of items in train is: 15 The loss for epoch 5 1.2683952569961547 The running loss is: 17.12258891016245 The number of items in train is: 15 The loss for epoch 6 1.1415059273441632 The running loss is: 16.434594467282295 The number of items in train is: 15 The loss for epoch 7 1.095639631152153 The running loss is: 17.38167379796505 The number of items in train is: 15 The loss for epoch 8 1.15877825319767 The running loss is: 17.034118846058846 The number of items in train is: 15 The loss for epoch 9 1.1356079230705898 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.681185 47 30819 ... 10.923750 48 30820 ... 8.556581 49 30821 ... 8.627446 50 30822 ... 8.821712 51 30823 ... 8.461462 52 30824 ... 8.276463 53 30825 ... 8.955903 54 30826 ... 9.159882 55 30827 ... 8.890931 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: e65jo2m6 wandb: Agent Starting Run: r2moei7q with config: batch_size: 3 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: r2moei7q
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.59494494833052 The number of items in train is: 14 The loss for epoch 0 1.32821035345218 The running loss is: 14.932796542532742 The number of items in train is: 14 The loss for epoch 1 1.0666283244666244 The running loss is: 14.904814524576068 The number of items in train is: 14 The loss for epoch 2 1.0646296088982905 The running loss is: 14.451682602986693 The number of items in train is: 14 The loss for epoch 3 1.032263043070478 The running loss is: 13.970589200034738 The number of items in train is: 14 The loss for epoch 4 0.9978992285739098 The running loss is: 14.210589300841093 The number of items in train is: 14 The loss for epoch 5 1.015042092917221 The running loss is: 13.587398022413254 The number of items in train is: 14 The loss for epoch 6 0.9705284301723752 The running loss is: 14.565642356872559 The number of items in train is: 14 The loss for epoch 7 1.0404030254908971 The running loss is: 14.67211166024208 The number of items in train is: 14 The loss for epoch 8 1.0480079757315772 The running loss is: 14.311140194535255 The number of items in train is: 14 The loss for epoch 9 1.022224299609661 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 10.055877 47 30819 ... 11.829143 48 30820 ... 11.898178 49 30821 ... 11.568399 50 30822 ... 11.145294 51 30823 ... 10.700349 52 30824 ... 10.250292 53 30825 ... 12.220572 54 30826 ... 12.335711 55 30827 ... 12.016722 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r2moei7q wandb: Agent Starting Run: fximbnf8 with config: batch_size: 3 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: fximbnf8
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.81448957324028 The number of items in train is: 14 The loss for epoch 0 1.6296063980885915 The running loss is: 20.114689007401466 The number of items in train is: 14 The loss for epoch 1 1.436763500528676 The running loss is: 19.003370255231857 The number of items in train is: 14 The loss for epoch 2 1.3573835896594184 The running loss is: 18.38408713042736 The number of items in train is: 14 The loss for epoch 3 1.3131490807448114 The running loss is: 18.05182459950447 The number of items in train is: 14 The loss for epoch 4 1.2894160428217478 The running loss is: 18.1113803088665 The number of items in train is: 14 The loss for epoch 5 1.2936700220618929 The running loss is: 18.247668206691742 The number of items in train is: 14 The loss for epoch 6 1.303404871906553 The running loss is: 17.699394717812538 The number of items in train is: 14 The loss for epoch 7 1.2642424798437528 The running loss is: 17.261331766843796 The number of items in train is: 14 The loss for epoch 8 1.2329522690602712 The running loss is: 17.405240193009377 The number of items in train is: 14 The loss for epoch 9 1.2432314423578126 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 15.450606 47 30819 ... 19.255352 48 30820 ... 19.566013 49 30821 ... 18.729879 50 30822 ... 17.517355 51 30823 ... 16.181293 52 30824 ... 14.804688 53 30825 ... 19.981453 54 30826 ... 20.742424 55 30827 ... 20.054089 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fximbnf8 wandb: Agent Starting Run: 76xgyieq with config: batch_size: 3 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 76xgyieq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.649044513702393 The number of items in train is: 13 The loss for epoch 0 1.6653111164386456 The running loss is: 20.08183240890503 The number of items in train is: 13 The loss for epoch 1 1.5447563391465406 The running loss is: 18.43745982646942 The number of items in train is: 13 The loss for epoch 2 1.4182661404976478 The running loss is: 17.936023265123367 The number of items in train is: 13 The loss for epoch 3 1.379694097317182 The running loss is: 17.735933303833008 The number of items in train is: 13 The loss for epoch 4 1.3643025618333082 The running loss is: 17.864655077457428 The number of items in train is: 13 The loss for epoch 5 1.3742042367274945 The running loss is: 17.435856461524963 The number of items in train is: 13 The loss for epoch 6 1.3412197278096125 The running loss is: 17.46800085902214 The number of items in train is: 13 The loss for epoch 7 1.3436923737709339 The running loss is: 17.538733899593353 The number of items in train is: 13 The loss for epoch 8 1.3491333768917964 The running loss is: 17.084585398435593 The number of items in train is: 13 The loss for epoch 9 1.314198876802738 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 1.993502 47 30819 Eagle County, Colorado, United States ... 47 1.660632 48 30820 Eagle County, Colorado, United States ... 48 1.195935 49 30821 Eagle County, Colorado, United States ... 49 0.718136 50 30822 Eagle County, Colorado, United States ... 50 0.239035 51 30823 Eagle County, Colorado, United States ... 51 -0.240196 52 30824 Eagle County, Colorado, United States ... 52 -0.719441 53 30825 Eagle County, Colorado, United States ... 53 1.822607 54 30826 Eagle County, Colorado, United States ... 54 1.643647 55 30827 Eagle County, Colorado, United States ... 55 1.194247 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 76xgyieq wandb: Agent Starting Run: 0yngjqqa with config: batch_size: 3 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 0yngjqqa
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.013466119766235 The number of items in train is: 14 The loss for epoch 0 1.143819008554731 The running loss is: 29.16191405057907 The number of items in train is: 14 The loss for epoch 1 2.0829938607556477 The running loss is: 17.242529824376106 The number of items in train is: 14 The loss for epoch 2 1.231609273169722 The running loss is: 15.2852763235569 The number of items in train is: 14 The loss for epoch 3 1.0918054516826357 The running loss is: 13.825423995032907 The number of items in train is: 14 The loss for epoch 4 0.9875302853594933 The running loss is: 14.278043230995536 The number of items in train is: 14 The loss for epoch 5 1.0198602307853954 The running loss is: 13.592282935976982 The number of items in train is: 14 The loss for epoch 6 0.9708773525697845 The running loss is: 14.36550104059279 The number of items in train is: 14 The loss for epoch 7 1.0261072171851993 The running loss is: 14.437449997290969 The number of items in train is: 14 The loss for epoch 8 1.0312464283779263 The running loss is: 14.289774606004357 The number of items in train is: 14 The loss for epoch 9 1.0206981861431683 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 10.096048 47 30819 ... 11.764206 48 30820 ... 11.783741 49 30821 ... 11.437365 50 30822 ... 11.009774 51 30823 ... 10.564157 52 30824 ... 10.114541 53 30825 ... 12.119022 54 30826 ... 12.213205 55 30827 ... 11.883397 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0yngjqqa wandb: Agent Starting Run: fjhq2m63 with config: batch_size: 3 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: fjhq2m63
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.899971932172775 The number of items in train is: 14 The loss for epoch 0 1.4214265665837698 The running loss is: 30.802632376551628 The number of items in train is: 14 The loss for epoch 1 2.200188026896545 The running loss is: 19.786646991968155 The number of items in train is: 14 The loss for epoch 2 1.4133319279977254 The running loss is: 18.989270001649857 The number of items in train is: 14 The loss for epoch 3 1.3563764286892754 The running loss is: 17.26893775165081 The number of items in train is: 14 The loss for epoch 4 1.2334955536893435 The running loss is: 17.307947099208832 The number of items in train is: 14 The loss for epoch 5 1.2362819356577737 The running loss is: 17.254249587655067 The number of items in train is: 14 The loss for epoch 6 1.232446399118219 The running loss is: 16.732941687107086 The number of items in train is: 14 The loss for epoch 7 1.195210120507649 The running loss is: 16.49874599277973 The number of items in train is: 14 The loss for epoch 8 1.1784818566271238 The running loss is: 16.410493820905685 The number of items in train is: 14 The loss for epoch 9 1.1721781300646918 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 14.413111 47 30819 ... 17.841599 48 30820 ... 18.107571 49 30821 ... 17.371849 50 30822 ... 16.318855 51 30823 ... 15.165368 52 30824 ... 13.980051 53 30825 ... 18.524395 54 30826 ... 19.143803 55 30827 ... 18.520027 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fjhq2m63 wandb: Agent Starting Run: cptzspm9 with config: batch_size: 3 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: cptzspm9
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.011935591697693 The number of items in train is: 13 The loss for epoch 0 1.3855335070536687 The running loss is: 31.434290528297424 The number of items in train is: 13 The loss for epoch 1 2.418022348330571 The running loss is: 19.867827773094177 The number of items in train is: 13 The loss for epoch 2 1.5282944440841675 The running loss is: 18.71837419271469 The number of items in train is: 13 The loss for epoch 3 1.4398749379011302 The running loss is: 17.043402820825577 The number of items in train is: 13 The loss for epoch 4 1.3110309862173521 The running loss is: 17.26927536725998 The number of items in train is: 13 The loss for epoch 5 1.3284057974815369 The running loss is: 16.922881990671158 The number of items in train is: 13 The loss for epoch 6 1.3017601531285505 The running loss is: 16.785142093896866 The number of items in train is: 13 The loss for epoch 7 1.2911647764536052 The running loss is: 16.733474850654602 The number of items in train is: 13 The loss for epoch 8 1.2871903731272771 The running loss is: 16.36581662297249 The number of items in train is: 13 The loss for epoch 9 1.2589089709978838 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 2.694916 47 30819 Eagle County, Colorado, United States ... 47 2.521640 48 30820 Eagle County, Colorado, United States ... 48 2.190051 49 30821 Eagle County, Colorado, United States ... 49 1.845047 50 30822 Eagle County, Colorado, United States ... 50 1.498905 51 30823 Eagle County, Colorado, United States ... 51 1.152667 52 30824 Eagle County, Colorado, United States ... 52 0.806421 53 30825 Eagle County, Colorado, United States ... 53 2.678512 54 30826 Eagle County, Colorado, United States ... 54 2.520250 55 30827 Eagle County, Colorado, United States ... 55 2.189933 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cptzspm9 wandb: Agent Starting Run: v3ynd9po with config: batch_size: 3 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: v3ynd9po
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.401278633624315 The number of items in train is: 14 The loss for epoch 0 1.2429484738303083 The running loss is: 20.994035825133324 The number of items in train is: 14 The loss for epoch 1 1.499573987509523 The running loss is: 20.901939246803522 The number of items in train is: 14 The loss for epoch 2 1.4929956604859658 The running loss is: 17.49182690680027 The number of items in train is: 14 The loss for epoch 3 1.2494162076285906 The running loss is: 14.579859712161124 The number of items in train is: 14 The loss for epoch 4 1.0414185508686518 The running loss is: 14.753086706623435 The number of items in train is: 14 The loss for epoch 5 1.0537919076159596 The running loss is: 13.997532527893782 The number of items in train is: 14 The loss for epoch 6 0.999823751992413 The running loss is: 14.817034468054771 The number of items in train is: 14 The loss for epoch 7 1.058359604861055 The running loss is: 14.553301157429814 The number of items in train is: 14 The loss for epoch 8 1.0395215112449867 The running loss is: 14.703020714223385 The number of items in train is: 14 The loss for epoch 9 1.0502157653016704 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 10.369466 47 30819 ... 11.836428 48 30820 ... 11.770448 49 30821 ... 11.407104 50 30822 ... 10.986075 51 30823 ... 10.553859 52 30824 ... 10.119472 53 30825 ... 12.138479 54 30826 ... 12.179585 55 30827 ... 11.837014 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: v3ynd9po wandb: Agent Starting Run: 30q9ac39 with config: batch_size: 3 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 30q9ac39
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.857100248336792 The number of items in train is: 14 The loss for epoch 0 1.418364303452628 The running loss is: 26.54387801885605 The number of items in train is: 14 The loss for epoch 1 1.8959912870611464 The running loss is: 23.77830880880356 The number of items in train is: 14 The loss for epoch 2 1.6984506292002541 The running loss is: 20.03038616478443 The number of items in train is: 14 The loss for epoch 3 1.4307418689131737 The running loss is: 17.19534194469452 The number of items in train is: 14 The loss for epoch 4 1.2282387103353227 The running loss is: 16.544086322188377 The number of items in train is: 14 The loss for epoch 5 1.181720451584884 The running loss is: 16.140186935663223 The number of items in train is: 14 The loss for epoch 6 1.152870495404516 The running loss is: 15.713112562894821 The number of items in train is: 14 The loss for epoch 7 1.1223651830639159 The running loss is: 15.244650691747665 The number of items in train is: 14 The loss for epoch 8 1.088903620839119 The running loss is: 14.965971872210503 The number of items in train is: 14 The loss for epoch 9 1.0689979908721787 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 13.930508 47 30819 ... 16.271799 48 30820 ... 16.045662 49 30821 ... 15.197029 50 30822 ... 14.197470 51 30823 ... 13.161317 52 30824 ... 12.116292 53 30825 ... 16.625732 54 30826 ... 16.925278 55 30827 ... 16.204102 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 30q9ac39 wandb: Agent Starting Run: fcdxmr7c with config: batch_size: 3 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: fcdxmr7c
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.934100329875946 The number of items in train is: 13 The loss for epoch 0 1.4564692561443036 The running loss is: 27.40670943260193 The number of items in train is: 13 The loss for epoch 1 2.108208417892456 The running loss is: 23.129272490739822 The number of items in train is: 13 The loss for epoch 2 1.7791748069799864 The running loss is: 19.054784208536148 The number of items in train is: 13 The loss for epoch 3 1.4657526314258575 The running loss is: 16.83181044459343 The number of items in train is: 13 The loss for epoch 4 1.29475464958411 The running loss is: 16.373175472021103 The number of items in train is: 13 The loss for epoch 5 1.2594750363093157 The running loss is: 15.920186161994934 The number of items in train is: 13 The loss for epoch 6 1.224629704768841 The running loss is: 15.883338451385498 The number of items in train is: 13 The loss for epoch 7 1.221795265491192 The running loss is: 15.632668197154999 The number of items in train is: 13 The loss for epoch 8 1.2025129382426922 The running loss is: 15.228438049554825 The number of items in train is: 13 The loss for epoch 9 1.1714183115042174 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.237244 47 30819 Eagle County, Colorado, United States ... 47 4.232128 48 30820 Eagle County, Colorado, United States ... 48 3.997910 49 30821 Eagle County, Colorado, United States ... 49 3.747505 50 30822 Eagle County, Colorado, United States ... 50 3.495956 51 30823 Eagle County, Colorado, United States ... 51 3.244326 52 30824 Eagle County, Colorado, United States ... 52 2.992691 53 30825 Eagle County, Colorado, United States ... 53 4.378044 54 30826 Eagle County, Colorado, United States ... 54 4.242076 55 30827 Eagle County, Colorado, United States ... 55 3.998613 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fcdxmr7c wandb: Agent Starting Run: t1l0vtle with config: batch_size: 3 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: t1l0vtle
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 34.37906017899513 The number of items in train is: 14 The loss for epoch 0 2.4556471556425095 The running loss is: 26.15366743505001 The number of items in train is: 14 The loss for epoch 1 1.8681191025035722 The running loss is: 25.3820013217628 The number of items in train is: 14 The loss for epoch 2 1.8130000944116287 The running loss is: 28.283599134534597 The number of items in train is: 14 The loss for epoch 3 2.0202570810381855 The running loss is: 33.98149111866951 The number of items in train is: 14 The loss for epoch 4 2.4272493656192506 The running loss is: 17.64745257794857 The number of items in train is: 14 The loss for epoch 5 1.2605323269963264 The running loss is: 15.027765817940235 The number of items in train is: 14 The loss for epoch 6 1.0734118441385883 The running loss is: 14.682047221809626 The number of items in train is: 14 The loss for epoch 7 1.0487176587006874 The running loss is: 14.17528066970408 The number of items in train is: 14 The loss for epoch 8 1.0125200478360057 The running loss is: 14.080418163910508 The number of items in train is: 14 The loss for epoch 9 1.0057441545650363 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 9.958035 47 30819 ... 11.445734 48 30820 ... 11.345182 49 30821 ... 10.906959 50 30822 ... 10.396943 51 30823 ... 9.871664 52 30824 ... 9.343140 53 30825 ... 11.731848 54 30826 ... 11.822859 55 30827 ... 11.425363 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: t1l0vtle wandb: Agent Starting Run: zwxvm8ym with config: batch_size: 3 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: zwxvm8ym
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 37.94893169403076 The number of items in train is: 14 The loss for epoch 0 2.7106379781450545 The running loss is: 27.68363320827484 The number of items in train is: 14 The loss for epoch 1 1.9774023720196314 The running loss is: 26.667637139558792 The number of items in train is: 14 The loss for epoch 2 1.9048312242541994 The running loss is: 27.63523341715336 The number of items in train is: 14 The loss for epoch 3 1.9739452440823828 The running loss is: 21.57915799319744 The number of items in train is: 14 The loss for epoch 4 1.5413684280855315 The running loss is: 21.874824732542038 The number of items in train is: 14 The loss for epoch 5 1.5624874808958598 The running loss is: 14.983947649598122 The number of items in train is: 14 The loss for epoch 6 1.0702819749712944 The running loss is: 14.43506047129631 The number of items in train is: 14 The loss for epoch 7 1.0310757479497366 The running loss is: 14.08886642754078 The number of items in train is: 14 The loss for epoch 8 1.0063476019671984 The running loss is: 13.513579778373241 The number of items in train is: 14 The loss for epoch 9 0.9652556984552315 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 12.079294 47 30819 ... 14.102061 48 30820 ... 13.870899 49 30821 ... 13.078794 50 30822 ... 12.147085 51 30823 ... 11.180633 52 30824 ... 10.205533 53 30825 ... 14.370306 54 30826 ... 14.672234 55 30827 ... 14.012800 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: zwxvm8ym wandb: Agent Starting Run: 0ns4eryb with config: batch_size: 3 forecast_history: 1 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 0ns4eryb
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 45.304227113723755 The number of items in train is: 13 The loss for epoch 0 3.4849405472095194 The running loss is: 31.466166585683823 The number of items in train is: 13 The loss for epoch 1 2.4204743527449093 The running loss is: 27.548714011907578 The number of items in train is: 13 The loss for epoch 2 2.1191318470698137 The running loss is: 22.79436346888542 The number of items in train is: 13 The loss for epoch 3 1.7534125745296478 The running loss is: 17.69319573044777 The number of items in train is: 13 The loss for epoch 4 1.3610150561882899 The running loss is: 16.08399274945259 The number of items in train is: 13 The loss for epoch 5 1.2372302114963531 The running loss is: 15.254592299461365 The number of items in train is: 13 The loss for epoch 6 1.1734301768816435 The running loss is: 16.17251518368721 The number of items in train is: 13 The loss for epoch 7 1.2440396295144007 The running loss is: 15.37093037366867 The number of items in train is: 13 The loss for epoch 8 1.1823792595129747 The running loss is: 14.669757455587387 The number of items in train is: 13 The loss for epoch 9 1.1284428811990297 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 7.828729 47 30819 Eagle County, Colorado, United States ... 47 8.117490 48 30820 Eagle County, Colorado, United States ... 48 7.883338 49 30821 Eagle County, Colorado, United States ... 49 7.607377 50 30822 Eagle County, Colorado, United States ... 50 7.328072 51 30823 Eagle County, Colorado, United States ... 51 7.048500 52 30824 Eagle County, Colorado, United States ... 52 6.768906 53 30825 Eagle County, Colorado, United States ... 53 8.289990 54 30826 Eagle County, Colorado, United States ... 54 8.154371 55 30827 Eagle County, Colorado, United States ... 55 7.886288 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0ns4eryb wandb: Agent Starting Run: 8e0eacod with config: batch_size: 3 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 8e0eacod
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 19.603286884725094 The number of items in train is: 14 The loss for epoch 0 1.4002347774803638 The running loss is: 16.837858743965626 The number of items in train is: 14 The loss for epoch 1 1.2027041959975446 The running loss is: 13.142932513728738 The number of items in train is: 14 The loss for epoch 2 0.938780893837767 The running loss is: 12.648434773087502 The number of items in train is: 14 The loss for epoch 3 0.9034596266491073 The running loss is: 12.131098728626966 The number of items in train is: 14 The loss for epoch 4 0.8665070520447833 The running loss is: 12.628641948103905 The number of items in train is: 14 The loss for epoch 5 0.9020458534359932 The running loss is: 11.111840911209583 The number of items in train is: 14 The loss for epoch 6 0.793702922229256 The running loss is: 12.15914048999548 The number of items in train is: 14 The loss for epoch 7 0.8685100349996772 The running loss is: 10.403061028569937 The number of items in train is: 14 The loss for epoch 8 0.7430757877549955 The running loss is: 11.373059086501598 The number of items in train is: 14 The loss for epoch 9 0.8123613633215427 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.309699 47 30819 Eagle County, Colorado, United States ... 47 5.267597 48 30820 Eagle County, Colorado, United States ... 48 6.171280 49 30821 Eagle County, Colorado, United States ... 49 5.798432 50 30822 Eagle County, Colorado, United States ... 50 4.700201 51 30823 Eagle County, Colorado, United States ... 51 3.081073 52 30824 Eagle County, Colorado, United States ... 52 1.101784 53 30825 Eagle County, Colorado, United States ... 53 0.857389 54 30826 Eagle County, Colorado, United States ... 54 5.437455 55 30827 Eagle County, Colorado, United States ... 55 6.270850 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8e0eacod wandb: Agent Starting Run: 9bth5gk6 with config: batch_size: 3 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 9bth5gk6
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.307483822107315 The number of items in train is: 13 The loss for epoch 0 1.2544218324697936 The running loss is: 16.8885560631752 The number of items in train is: 13 The loss for epoch 1 1.2991196971673231 The running loss is: 14.11893281340599 The number of items in train is: 13 The loss for epoch 2 1.086071754877384 The running loss is: 13.040117263793945 The number of items in train is: 13 The loss for epoch 3 1.003085943368765 The running loss is: 12.399544507265091 The number of items in train is: 13 The loss for epoch 4 0.9538111159434686 The running loss is: 12.317954629659653 The number of items in train is: 13 The loss for epoch 5 0.9475349715122809 The running loss is: 12.517528355121613 The number of items in train is: 13 The loss for epoch 6 0.9628867965478164 The running loss is: 11.37213283777237 The number of items in train is: 13 The loss for epoch 7 0.8747794490594131 The running loss is: 11.30318507552147 The number of items in train is: 13 The loss for epoch 8 0.869475775040113 The running loss is: 11.03271347284317 The number of items in train is: 13 The loss for epoch 9 0.8486702671417823 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... -1.502937 47 30819 ... 10.155432 48 30820 ... 10.315764 49 30821 ... 9.580840 50 30822 ... 6.320834 51 30823 ... 2.762872 52 30824 ... -2.164825 53 30825 ... -2.477209 54 30826 ... 8.475018 55 30827 ... 9.378270 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9bth5gk6 wandb: Agent Starting Run: 8xkfkomp with config: batch_size: 3 forecast_history: 2 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8xkfkomp
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.484009578824043 The number of items in train is: 13 The loss for epoch 0 1.4218468906787725 The running loss is: 16.133168160915375 The number of items in train is: 13 The loss for epoch 1 1.2410129354550288 The running loss is: 14.021970570087433 The number of items in train is: 13 The loss for epoch 2 1.0786131207759564 The running loss is: 13.871418491005898 The number of items in train is: 13 The loss for epoch 3 1.0670321916158383 The running loss is: 13.513418480753899 The number of items in train is: 13 The loss for epoch 4 1.0394937292887614 The running loss is: 13.288902163505554 The number of items in train is: 13 The loss for epoch 5 1.022223243346581 The running loss is: 13.067702129483223 The number of items in train is: 13 The loss for epoch 6 1.005207856114094 The running loss is: 12.999311462044716 The number of items in train is: 13 The loss for epoch 7 0.9999470355419012 The running loss is: 13.027460411190987 The number of items in train is: 13 The loss for epoch 8 1.0021123393223836 The running loss is: 12.958777263760567 The number of items in train is: 13 The loss for epoch 9 0.9968290202892743 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.103645 47 30819 ... 10.392696 48 30820 ... 11.688851 49 30821 ... 12.198536 50 30822 ... 11.687592 51 30823 ... 10.778344 52 30824 ... 9.438768 53 30825 ... 10.621546 54 30826 ... 13.821482 55 30827 ... 13.794540 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8xkfkomp wandb: Agent Starting Run: d240mu9g with config: batch_size: 3 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: d240mu9g
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.578325545415282 The number of items in train is: 14 The loss for epoch 0 1.1127375389582344 The running loss is: 31.160696268081665 The number of items in train is: 14 The loss for epoch 1 2.2257640191486905 The running loss is: 20.564725056290627 The number of items in train is: 14 The loss for epoch 2 1.4689089325921876 The running loss is: 14.949720822274685 The number of items in train is: 14 The loss for epoch 3 1.067837201591049 The running loss is: 14.392907034605742 The number of items in train is: 14 The loss for epoch 4 1.0280647881861245 The running loss is: 13.032162211835384 The number of items in train is: 14 The loss for epoch 5 0.9308687294168132 The running loss is: 11.537305176258087 The number of items in train is: 14 The loss for epoch 6 0.8240932268755776 The running loss is: 12.44920339807868 The number of items in train is: 14 The loss for epoch 7 0.8892288141484771 The running loss is: 11.219495192170143 The number of items in train is: 14 The loss for epoch 8 0.8013925137264388 The running loss is: 12.205912753939629 The number of items in train is: 14 The loss for epoch 9 0.8718509109956878 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.222100 47 30819 Eagle County, Colorado, United States ... 47 8.353811 48 30820 Eagle County, Colorado, United States ... 48 9.090399 49 30821 Eagle County, Colorado, United States ... 49 8.430327 50 30822 Eagle County, Colorado, United States ... 50 7.221142 51 30823 Eagle County, Colorado, United States ... 51 5.685931 52 30824 Eagle County, Colorado, United States ... 52 3.982207 53 30825 Eagle County, Colorado, United States ... 53 4.731750 54 30826 Eagle County, Colorado, United States ... 54 9.085600 55 30827 Eagle County, Colorado, United States ... 55 9.379979 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: d240mu9g wandb: Agent Starting Run: ekya2hyl with config: batch_size: 3 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ekya2hyl
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.734347730875015 The number of items in train is: 13 The loss for epoch 0 1.1334113639134626 The running loss is: 24.244850277900696 The number of items in train is: 13 The loss for epoch 1 1.8649884829154382 The running loss is: 16.024796843528748 The number of items in train is: 13 The loss for epoch 2 1.2326766802714422 The running loss is: 14.830536425113678 The number of items in train is: 13 The loss for epoch 3 1.1408104942395136 The running loss is: 12.796163737773895 The number of items in train is: 13 The loss for epoch 4 0.9843202875210688 The running loss is: 12.205731242895126 The number of items in train is: 13 The loss for epoch 5 0.9389024032996252 The running loss is: 11.800627201795578 The number of items in train is: 13 The loss for epoch 6 0.9077405539842752 The running loss is: 11.113345444202423 The number of items in train is: 13 The loss for epoch 7 0.8548727264771094 The running loss is: 11.361089408397675 The number of items in train is: 13 The loss for epoch 8 0.8739299544921288 The running loss is: 10.799745172262192 The number of items in train is: 13 The loss for epoch 9 0.8307496286355532 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... -0.377296 47 30819 ... 11.099423 48 30820 ... 11.109451 49 30821 ... 10.542838 50 30822 ... 7.268153 51 30823 ... 4.264411 52 30824 ... -0.463730 53 30825 ... -0.160548 54 30826 ... 10.614574 55 30827 ... 10.970974 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ekya2hyl wandb: Agent Starting Run: xuiv1iir with config: batch_size: 3 forecast_history: 2 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: xuiv1iir
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.830458275973797 The number of items in train is: 13 The loss for epoch 0 1.2177275596902921 The running loss is: 24.721736907958984 The number of items in train is: 13 The loss for epoch 1 1.9016720698429987 The running loss is: 15.899764001369476 The number of items in train is: 13 The loss for epoch 2 1.2230587693361135 The running loss is: 14.821087464690208 The number of items in train is: 13 The loss for epoch 3 1.140083651130016 The running loss is: 13.545907482504845 The number of items in train is: 13 The loss for epoch 4 1.0419928832696035 The running loss is: 13.130958944559097 The number of items in train is: 13 The loss for epoch 5 1.0100737649660845 The running loss is: 12.650900229811668 The number of items in train is: 13 The loss for epoch 6 0.9731461715239745 The running loss is: 12.674515426158905 The number of items in train is: 13 The loss for epoch 7 0.9749627250891465 The running loss is: 12.911895290017128 The number of items in train is: 13 The loss for epoch 8 0.9932227146167022 The running loss is: 13.055136889219284 The number of items in train is: 13 The loss for epoch 9 1.0042412991707141 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.861941 47 30819 ... 10.400677 48 30820 ... 11.311898 49 30821 ... 11.339298 50 30822 ... 10.857693 51 30823 ... 10.027314 52 30824 ... 8.962327 53 30825 ... 11.340019 54 30826 ... 12.713752 55 30827 ... 12.687253 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xuiv1iir wandb: Agent Starting Run: yae7j9w0 with config: batch_size: 3 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: yae7j9w0
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.342230960726738 The number of items in train is: 14 The loss for epoch 0 1.2387307829090528 The running loss is: 20.26045072078705 The number of items in train is: 14 The loss for epoch 1 1.4471750514847892 The running loss is: 22.982472449541092 The number of items in train is: 14 The loss for epoch 2 1.641605174967221 The running loss is: 20.817503929138184 The number of items in train is: 14 The loss for epoch 3 1.486964566367013 The running loss is: 14.470415085554123 The number of items in train is: 14 The loss for epoch 4 1.0336010775395803 The running loss is: 14.11274079978466 The number of items in train is: 14 The loss for epoch 5 1.008052914270333 The running loss is: 11.834928281605244 The number of items in train is: 14 The loss for epoch 6 0.8453520201146603 The running loss is: 13.143593035638332 The number of items in train is: 14 The loss for epoch 7 0.9388280739741666 The running loss is: 11.413032311946154 The number of items in train is: 14 The loss for epoch 8 0.8152165937104395 The running loss is: 13.267729237675667 The number of items in train is: 14 The loss for epoch 9 0.947694945548262 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.227926 47 30819 ... 9.815310 48 30820 ... 10.582678 49 30821 ... 10.106319 50 30822 ... 9.210567 51 30823 ... 8.057738 52 30824 ... 6.792384 53 30825 ... 6.137255 54 30826 ... 10.829433 55 30827 ... 10.909749 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yae7j9w0 wandb: Agent Starting Run: p0mhmney with config: batch_size: 3 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: p0mhmney
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.95596632361412 The number of items in train is: 13 The loss for epoch 0 1.227382024893394 The running loss is: 19.904814451932907 The number of items in train is: 13 The loss for epoch 1 1.5311395732256083 The running loss is: 17.617246568202972 The number of items in train is: 13 The loss for epoch 2 1.3551728129386902 The running loss is: 14.285056918859482 The number of items in train is: 13 The loss for epoch 3 1.0988505322199602 The running loss is: 13.227111101150513 The number of items in train is: 13 The loss for epoch 4 1.0174700847038856 The running loss is: 12.499546140432358 The number of items in train is: 13 The loss for epoch 5 0.9615035492640275 The running loss is: 13.50512745976448 The number of items in train is: 13 The loss for epoch 6 1.0388559584434216 The running loss is: 12.428839951753616 The number of items in train is: 13 The loss for epoch 7 0.9560646116733551 The running loss is: 11.402258604764938 The number of items in train is: 13 The loss for epoch 8 0.8770968157511491 The running loss is: 12.398717015981674 The number of items in train is: 13 The loss for epoch 9 0.9537474627678211 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.122801 47 30819 ... 10.667910 48 30820 ... 10.910122 49 30821 ... 9.676403 50 30822 ... 8.409630 51 30823 ... 6.942024 52 30824 ... 5.444630 53 30825 ... 4.966450 54 30826 ... 10.898521 55 30827 ... 10.963875 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: p0mhmney wandb: Agent Starting Run: qfsxslfo with config: batch_size: 3 forecast_history: 2 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: qfsxslfo
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.105710506439209 The number of items in train is: 13 The loss for epoch 0 1.1619777312645545 The running loss is: 21.77917169034481 The number of items in train is: 13 The loss for epoch 1 1.6753208992572932 The running loss is: 18.279946982860565 The number of items in train is: 13 The loss for epoch 2 1.4061497679123511 The running loss is: 16.003442779183388 The number of items in train is: 13 The loss for epoch 3 1.2310340599371836 The running loss is: 13.852836847305298 The number of items in train is: 13 The loss for epoch 4 1.0656028344080999 The running loss is: 13.569828808307648 The number of items in train is: 13 The loss for epoch 5 1.0438329852544344 The running loss is: 13.323665149509907 The number of items in train is: 13 The loss for epoch 6 1.0248973191930697 The running loss is: 12.957750007510185 The number of items in train is: 13 The loss for epoch 7 0.9967500005777066 The running loss is: 13.089145131409168 The number of items in train is: 13 The loss for epoch 8 1.0068573178007052 The running loss is: 12.660584628582 The number of items in train is: 13 The loss for epoch 9 0.9738911252755386 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.720401 47 30819 ... 14.553340 48 30820 ... 12.440676 49 30821 ... 12.086861 50 30822 ... 10.753763 51 30823 ... 10.002252 52 30824 ... 8.860445 53 30825 ... 11.386908 54 30826 ... 13.338316 55 30827 ... 12.476912 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: qfsxslfo wandb: Agent Starting Run: ma3rhz4r with config: batch_size: 3 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ma3rhz4r
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 49.51860047876835 The number of items in train is: 14 The loss for epoch 0 3.5370428913405965 The running loss is: 28.901946112513542 The number of items in train is: 14 The loss for epoch 1 2.064424722322396 The running loss is: 41.28298529610038 The number of items in train is: 14 The loss for epoch 2 2.94878466400717 The running loss is: 22.289564080536366 The number of items in train is: 14 The loss for epoch 3 1.592111720038312 The running loss is: 36.36759194731712 The number of items in train is: 14 The loss for epoch 4 2.59768513909408 The running loss is: 18.98034718632698 The number of items in train is: 14 The loss for epoch 5 1.3557390847376414 The running loss is: 12.218269184231758 The number of items in train is: 14 The loss for epoch 6 0.8727335131594113 The running loss is: 13.551307149231434 The number of items in train is: 14 The loss for epoch 7 0.9679505106593881 The running loss is: 11.265797924250364 The number of items in train is: 14 The loss for epoch 8 0.8046998517321688 The running loss is: 13.734506249427795 The number of items in train is: 14 The loss for epoch 9 0.9810361606734139 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.114567 47 30819 ... 10.723621 48 30820 ... 11.053820 49 30821 ... 10.402370 50 30822 ... 9.422271 51 30823 ... 8.319467 52 30824 ... 7.169548 53 30825 ... 7.787798 54 30826 ... 11.268772 55 30827 ... 11.166240 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ma3rhz4r wandb: Agent Starting Run: lu4h4r69 with config: batch_size: 3 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: lu4h4r69
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 33.13056826591492 The number of items in train is: 13 The loss for epoch 0 2.5485052512242246 The running loss is: 24.387350022792816 The number of items in train is: 13 The loss for epoch 1 1.8759500017532935 The running loss is: 17.332179129123688 The number of items in train is: 13 The loss for epoch 2 1.3332445483941298 The running loss is: 15.971165239810944 The number of items in train is: 13 The loss for epoch 3 1.2285511722931495 The running loss is: 15.627148747444153 The number of items in train is: 13 The loss for epoch 4 1.2020883651880117 The running loss is: 15.911345362663269 The number of items in train is: 13 The loss for epoch 5 1.22394964328179 The running loss is: 16.257684774696827 The number of items in train is: 13 The loss for epoch 6 1.2505911365151405 The running loss is: 18.721322864294052 The number of items in train is: 13 The loss for epoch 7 1.44010175879185 The running loss is: 15.539374977350235 The number of items in train is: 13 The loss for epoch 8 1.1953365367192488 The running loss is: 13.293075650930405 The number of items in train is: 13 The loss for epoch 9 1.0225442808408003 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.132831 47 30819 ... 11.071928 48 30820 ... 11.549405 49 30821 ... 11.268209 50 30822 ... 10.758427 51 30823 ... 10.136646 52 30824 ... 9.477319 53 30825 ... 9.136482 54 30826 ... 11.781645 55 30827 ... 11.742226 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: lu4h4r69 wandb: Agent Starting Run: 8s2c6etq with config: batch_size: 3 forecast_history: 2 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8s2c6etq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 2 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 2 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 2 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 2 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 37.826194524765015 The number of items in train is: 13 The loss for epoch 0 2.9097072711357703 The running loss is: 25.056023612618446 The number of items in train is: 13 The loss for epoch 1 1.9273864317398806 The running loss is: 19.604462698101997 The number of items in train is: 13 The loss for epoch 2 1.5080355921616921 The running loss is: 23.130129784345627 The number of items in train is: 13 The loss for epoch 3 1.7792407526419713 The running loss is: 19.19932833313942 The number of items in train is: 13 The loss for epoch 4 1.4768714102414937 The running loss is: 21.637010172009468 The number of items in train is: 13 The loss for epoch 5 1.664385397846882 The running loss is: 14.966464698314667 The number of items in train is: 13 The loss for epoch 6 1.1512665152549744 The running loss is: 14.04200291633606 The number of items in train is: 13 The loss for epoch 7 1.080154070487389 The running loss is: 13.40083523094654 The number of items in train is: 13 The loss for epoch 8 1.03083347930358 The running loss is: 13.39405021071434 The number of items in train is: 13 The loss for epoch 9 1.0303115546703339 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 2, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.445221 47 30819 ... 10.774174 48 30820 ... 10.911117 49 30821 ... 10.884237 50 30822 ... 10.770847 51 30823 ... 10.652215 52 30824 ... 10.530463 53 30825 ... 8.822457 54 30826 ... 11.169335 55 30827 ... 10.922230 [12 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8s2c6etq wandb: Agent Starting Run: kz9apop8 with config: batch_size: 3 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: kz9apop8
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.368877775967121 The number of items in train is: 13 The loss for epoch 0 0.9514521366128554 The running loss is: 34.86844050884247 The number of items in train is: 13 The loss for epoch 1 2.6821877314494205 The running loss is: 15.270158976316452 The number of items in train is: 13 The loss for epoch 2 1.174627613562804 The running loss is: 13.466378290206194 The number of items in train is: 13 The loss for epoch 3 1.0358752530927842 The running loss is: 12.005736976861954 The number of items in train is: 13 The loss for epoch 4 0.9235182289893811 The running loss is: 11.864228069782257 The number of items in train is: 13 The loss for epoch 5 0.912632928444789 The running loss is: 11.420268423855305 The number of items in train is: 13 The loss for epoch 6 0.8784821864504081 The running loss is: 10.192750919610262 The number of items in train is: 13 The loss for epoch 7 0.7840577630469432 The running loss is: 10.271923331543803 The number of items in train is: 13 The loss for epoch 8 0.7901479485802926 The running loss is: 11.089218605309725 The number of items in train is: 13 The loss for epoch 9 0.8530168157930558 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 -0.889949 47 30819 Eagle County, Colorado, United States ... 47 0.066653 48 30820 Eagle County, Colorado, United States ... 48 7.502620 49 30821 Eagle County, Colorado, United States ... 49 5.934364 50 30822 Eagle County, Colorado, United States ... 50 4.769490 51 30823 Eagle County, Colorado, United States ... 51 3.567657 52 30824 Eagle County, Colorado, United States ... 52 0.390301 53 30825 Eagle County, Colorado, United States ... 53 -0.119038 54 30826 Eagle County, Colorado, United States ... 54 0.273140 55 30827 Eagle County, Colorado, United States ... 55 7.478982 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: kz9apop8 wandb: Agent Starting Run: yd8h1fzr with config: batch_size: 3 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: yd8h1fzr
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.579489664174616 The number of items in train is: 13 The loss for epoch 0 1.2753453587826629 The running loss is: 19.769059717655182 The number of items in train is: 13 The loss for epoch 1 1.5206969013580909 The running loss is: 13.712854489684105 The number of items in train is: 13 The loss for epoch 2 1.0548349607449312 The running loss is: 13.466788783669472 The number of items in train is: 13 The loss for epoch 3 1.0359068295130363 The running loss is: 12.41582890599966 The number of items in train is: 13 The loss for epoch 4 0.9550637619999739 The running loss is: 11.723669052124023 The number of items in train is: 13 The loss for epoch 5 0.9018206963172326 The running loss is: 12.135962635278702 The number of items in train is: 13 The loss for epoch 6 0.9335355873291309 The running loss is: 10.866565614938736 The number of items in train is: 13 The loss for epoch 7 0.8358896626875951 The running loss is: 10.691195979714394 The number of items in train is: 13 The loss for epoch 8 0.822399690747261 The running loss is: 10.159182950854301 The number of items in train is: 13 The loss for epoch 9 0.781475611604177 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... -0.968152 47 30819 ... -0.342819 48 30820 ... 13.105046 49 30821 ... 8.941922 50 30822 ... 8.937499 51 30823 ... 7.656468 52 30824 ... 1.802312 53 30825 ... 2.238525 54 30826 ... 1.972946 55 30827 ... 14.276954 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yd8h1fzr wandb: Agent Starting Run: 3osejg4o with config: batch_size: 3 forecast_history: 3 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 3osejg4o
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.370196998119354 The number of items in train is: 13 The loss for epoch 0 1.1053997690861042 The running loss is: 19.316490292549133 The number of items in train is: 13 The loss for epoch 1 1.4858838686576257 The running loss is: 12.656078651547432 The number of items in train is: 13 The loss for epoch 2 0.9735445116574948 The running loss is: 12.666808053851128 The number of items in train is: 13 The loss for epoch 3 0.9743698502962406 The running loss is: 12.39689488708973 The number of items in train is: 13 The loss for epoch 4 0.9536072990069022 The running loss is: 11.922403216362 The number of items in train is: 13 The loss for epoch 5 0.9171079397201538 The running loss is: 11.341399416327477 The number of items in train is: 13 The loss for epoch 6 0.8724153397174982 The running loss is: 10.815890714526176 The number of items in train is: 13 The loss for epoch 7 0.8319915934250905 The running loss is: 11.103736594319344 The number of items in train is: 13 The loss for epoch 8 0.854133584178411 The running loss is: 10.415005251765251 The number of items in train is: 13 The loss for epoch 9 0.8011542501357886 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 0.309899 47 30819 ... 0.997727 48 30820 ... 9.866085 49 30821 ... 7.090917 50 30822 ... 6.927128 51 30823 ... 9.617968 52 30824 ... 5.897040 53 30825 ... 6.094452 54 30826 ... 7.577441 55 30827 ... 14.233065 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3osejg4o wandb: Agent Starting Run: 59unu0sl with config: batch_size: 3 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 59unu0sl
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.963503643870354 The number of items in train is: 13 The loss for epoch 0 0.9971925879900272 The running loss is: 37.13133166730404 The number of items in train is: 13 The loss for epoch 1 2.856256282100311 The running loss is: 21.90416258573532 The number of items in train is: 13 The loss for epoch 2 1.6849355835181017 The running loss is: 18.790213316679 The number of items in train is: 13 The loss for epoch 3 1.4454010243599231 The running loss is: 16.947905987501144 The number of items in train is: 13 The loss for epoch 4 1.3036850759616265 The running loss is: 13.11191101744771 The number of items in train is: 13 The loss for epoch 5 1.00860853980367 The running loss is: 11.513894490897655 The number of items in train is: 13 The loss for epoch 6 0.885684191607512 The running loss is: 11.091134123504162 The number of items in train is: 13 The loss for epoch 7 0.8531641633464739 The running loss is: 11.206058628857136 The number of items in train is: 13 The loss for epoch 8 0.8620045099120873 The running loss is: 11.77466919273138 The number of items in train is: 13 The loss for epoch 9 0.90574378405626 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.223539 47 30819 Eagle County, Colorado, United States ... 47 1.187161 48 30820 Eagle County, Colorado, United States ... 48 5.947976 49 30821 Eagle County, Colorado, United States ... 49 5.060910 50 30822 Eagle County, Colorado, United States ... 50 3.930160 51 30823 Eagle County, Colorado, United States ... 51 2.693713 52 30824 Eagle County, Colorado, United States ... 52 0.396199 53 30825 Eagle County, Colorado, United States ... 53 0.830643 54 30826 Eagle County, Colorado, United States ... 54 1.344829 55 30827 Eagle County, Colorado, United States ... 55 5.947390 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 59unu0sl wandb: Agent Starting Run: gsblnief with config: batch_size: 3 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: gsblnief
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.455913960933685 The number of items in train is: 13 The loss for epoch 0 1.1119933816102834 The running loss is: 22.357890762388706 The number of items in train is: 13 The loss for epoch 1 1.7198377509529774 The running loss is: 17.738923609256744 The number of items in train is: 13 The loss for epoch 2 1.364532585327442 The running loss is: 13.448972549289465 The number of items in train is: 13 The loss for epoch 3 1.0345363499453435 The running loss is: 14.64394161105156 The number of items in train is: 13 The loss for epoch 4 1.126457047003966 The running loss is: 11.938052050769329 The number of items in train is: 13 The loss for epoch 5 0.9183116962130253 The running loss is: 11.660171031951904 The number of items in train is: 13 The loss for epoch 6 0.8969362332270696 The running loss is: 10.605362512171268 The number of items in train is: 13 The loss for epoch 7 0.8157971163208668 The running loss is: 10.263663992285728 The number of items in train is: 13 The loss for epoch 8 0.7895126147912099 The running loss is: 9.898155242204666 The number of items in train is: 13 The loss for epoch 9 0.7613965570926666 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... -3.512244 47 30819 ... -4.168801 48 30820 ... 16.331560 49 30821 ... 7.215089 50 30822 ... 6.654920 51 30823 ... 7.448952 52 30824 ... -0.154256 53 30825 ... -2.483047 54 30826 ... -3.068379 55 30827 ... 14.678398 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gsblnief wandb: Agent Starting Run: yf2arj2o with config: batch_size: 3 forecast_history: 3 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: yf2arj2o
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.937836900353432 The number of items in train is: 13 The loss for epoch 0 0.9952182231041101 The running loss is: 23.048843041062355 The number of items in train is: 13 The loss for epoch 1 1.7729879262355657 The running loss is: 14.899169534444809 The number of items in train is: 13 The loss for epoch 2 1.1460899641880622 The running loss is: 13.64275423437357 The number of items in train is: 13 The loss for epoch 3 1.0494426334133515 The running loss is: 13.533750593662262 The number of items in train is: 13 The loss for epoch 4 1.0410577379740202 The running loss is: 12.572618752717972 The number of items in train is: 13 The loss for epoch 5 0.967124519439844 The running loss is: 11.828686103224754 The number of items in train is: 13 The loss for epoch 6 0.9098989310172888 The running loss is: 11.33057525753975 The number of items in train is: 13 The loss for epoch 7 0.8715827121184423 The running loss is: 11.64349377155304 The number of items in train is: 13 The loss for epoch 8 0.8956533670425415 The running loss is: 10.891612857580185 The number of items in train is: 13 The loss for epoch 9 0.8378163736600143 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 -0.278797 47 30819 Eagle County, Colorado, United States ... 47 -0.085567 48 30820 Eagle County, Colorado, United States ... 48 7.881258 49 30821 Eagle County, Colorado, United States ... 49 4.568991 50 30822 Eagle County, Colorado, United States ... 50 3.322025 51 30823 Eagle County, Colorado, United States ... 51 4.989382 52 30824 Eagle County, Colorado, United States ... 52 0.591432 53 30825 Eagle County, Colorado, United States ... 53 -0.368374 54 30826 Eagle County, Colorado, United States ... 54 -0.109885 55 30827 Eagle County, Colorado, United States ... 55 7.602907 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: yf2arj2o wandb: Agent Starting Run: f4an0eks with config: batch_size: 3 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: f4an0eks
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 24.400188378989697 The number of items in train is: 13 The loss for epoch 0 1.876937567614592 The running loss is: 31.185614429414272 The number of items in train is: 13 The loss for epoch 1 2.3988934176472516 The running loss is: 32.44879423826933 The number of items in train is: 13 The loss for epoch 2 2.496061095251487 The running loss is: 18.573741644620895 The number of items in train is: 13 The loss for epoch 3 1.4287493572785304 The running loss is: 13.560782168060541 The number of items in train is: 13 The loss for epoch 4 1.0431370898508108 The running loss is: 12.45004703849554 The number of items in train is: 13 The loss for epoch 5 0.9576959260381185 The running loss is: 12.11960457265377 The number of items in train is: 13 The loss for epoch 6 0.9322772748195208 The running loss is: 11.551337949931622 The number of items in train is: 13 The loss for epoch 7 0.8885644576870478 The running loss is: 12.185599125921726 The number of items in train is: 13 The loss for epoch 8 0.9373537789170558 The running loss is: 12.21959825605154 The number of items in train is: 13 The loss for epoch 9 0.9399690966193492 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.386969 47 30819 Eagle County, Colorado, United States ... 47 6.692326 48 30820 Eagle County, Colorado, United States ... 48 7.089355 49 30821 Eagle County, Colorado, United States ... 49 7.698109 50 30822 Eagle County, Colorado, United States ... 50 6.623402 51 30823 Eagle County, Colorado, United States ... 51 5.599646 52 30824 Eagle County, Colorado, United States ... 52 4.635734 53 30825 Eagle County, Colorado, United States ... 53 7.907625 54 30826 Eagle County, Colorado, United States ... 54 7.940404 55 30827 Eagle County, Colorado, United States ... 55 8.319972 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: f4an0eks wandb: Agent Starting Run: kwvkpv1h with config: batch_size: 3 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: kwvkpv1h
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.458874687552452 The number of items in train is: 13 The loss for epoch 0 1.3429903605809579 The running loss is: 18.81114272773266 The number of items in train is: 13 The loss for epoch 1 1.4470109790563583 The running loss is: 18.729552567005157 The number of items in train is: 13 The loss for epoch 2 1.4407348128465505 The running loss is: 14.729724779725075 The number of items in train is: 13 The loss for epoch 3 1.1330557522865443 The running loss is: 13.426510781049728 The number of items in train is: 13 The loss for epoch 4 1.0328085216192098 The running loss is: 12.910267278552055 The number of items in train is: 13 The loss for epoch 5 0.9930974829655427 The running loss is: 11.92785045132041 The number of items in train is: 13 The loss for epoch 6 0.9175269577938777 The running loss is: 12.008645549416542 The number of items in train is: 13 The loss for epoch 7 0.923741965339734 The running loss is: 12.661383390426636 The number of items in train is: 13 The loss for epoch 8 0.9739525684943566 The running loss is: 12.345752455294132 The number of items in train is: 13 The loss for epoch 9 0.9496732657918563 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.849866 47 30819 ... 7.589612 48 30820 ... 14.580077 49 30821 ... 13.545156 50 30822 ... 12.456741 51 30823 ... 10.941383 52 30824 ... 7.304590 53 30825 ... 9.950720 54 30826 ... 9.130615 55 30827 ... 17.259148 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: kwvkpv1h wandb: Agent Starting Run: hktgvt1n with config: batch_size: 3 forecast_history: 3 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: hktgvt1n
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.013039693236351 The number of items in train is: 13 The loss for epoch 0 1.154849207172027 The running loss is: 21.378779768943787 The number of items in train is: 13 The loss for epoch 1 1.6445215206879835 The running loss is: 16.609514646232128 The number of items in train is: 13 The loss for epoch 2 1.2776549727870867 The running loss is: 14.250408738851547 The number of items in train is: 13 The loss for epoch 3 1.0961852876039653 The running loss is: 12.660884097218513 The number of items in train is: 13 The loss for epoch 4 0.973914161324501 The running loss is: 12.710350036621094 The number of items in train is: 13 The loss for epoch 5 0.977719233586238 The running loss is: 12.260607942938805 The number of items in train is: 13 The loss for epoch 6 0.9431236879183695 The running loss is: 11.451108917593956 The number of items in train is: 13 The loss for epoch 7 0.880854532122612 The running loss is: 11.240634605288506 The number of items in train is: 13 The loss for epoch 8 0.8646642004068081 The running loss is: 11.278469979763031 The number of items in train is: 13 The loss for epoch 9 0.8675746138279254 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.299133 47 30819 Eagle County, Colorado, United States ... 47 -1.036485 48 30820 Eagle County, Colorado, United States ... 48 7.932483 49 30821 Eagle County, Colorado, United States ... 49 5.500789 50 30822 Eagle County, Colorado, United States ... 50 3.142856 51 30823 Eagle County, Colorado, United States ... 51 4.422402 52 30824 Eagle County, Colorado, United States ... 52 0.140528 53 30825 Eagle County, Colorado, United States ... 53 0.239170 54 30826 Eagle County, Colorado, United States ... 54 -1.041948 55 30827 Eagle County, Colorado, United States ... 55 7.568707 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hktgvt1n wandb: Agent Starting Run: 5tagpuju with config: batch_size: 3 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5tagpuju
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 115.17622379213572 The number of items in train is: 13 The loss for epoch 0 8.859709522471977 The running loss is: 40.81747505068779 The number of items in train is: 13 The loss for epoch 1 3.13980577312983 The running loss is: 32.038784205913544 The number of items in train is: 13 The loss for epoch 2 2.4645218619933495 The running loss is: 44.92502377741039 The number of items in train is: 13 The loss for epoch 3 3.455771059800799 The running loss is: 36.635310769081116 The number of items in train is: 13 The loss for epoch 4 2.818100828390855 The running loss is: 46.61492267251015 The number of items in train is: 13 The loss for epoch 5 3.5857632825007806 The running loss is: 13.955021470785141 The number of items in train is: 13 The loss for epoch 6 1.0734631900603955 The running loss is: 14.969138577580452 The number of items in train is: 13 The loss for epoch 7 1.1514721982754195 The running loss is: 16.040683686733246 The number of items in train is: 13 The loss for epoch 8 1.2338987451333265 The running loss is: 16.49948103353381 The number of items in train is: 13 The loss for epoch 9 1.26919084873337 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.704542 47 30819 Eagle County, Colorado, United States ... 47 4.672008 48 30820 Eagle County, Colorado, United States ... 48 5.456105 49 30821 Eagle County, Colorado, United States ... 49 5.308846 50 30822 Eagle County, Colorado, United States ... 50 4.914132 51 30823 Eagle County, Colorado, United States ... 51 4.560124 52 30824 Eagle County, Colorado, United States ... 52 4.158611 53 30825 Eagle County, Colorado, United States ... 53 4.864852 54 30826 Eagle County, Colorado, United States ... 54 4.867615 55 30827 Eagle County, Colorado, United States ... 55 5.671974 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5tagpuju wandb: Agent Starting Run: nif4icxc with config: batch_size: 3 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: nif4icxc
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 66.03357294201851 The number of items in train is: 13 The loss for epoch 0 5.0795056109245005 The running loss is: 26.760784819722176 The number of items in train is: 13 The loss for epoch 1 2.0585219092093983 The running loss is: 22.731184750795364 The number of items in train is: 13 The loss for epoch 2 1.748552673138105 The running loss is: 20.40171890705824 The number of items in train is: 13 The loss for epoch 3 1.5693629928506339 The running loss is: 17.968903437256813 The number of items in train is: 13 The loss for epoch 4 1.3822233413274472 The running loss is: 15.660512588918209 The number of items in train is: 13 The loss for epoch 5 1.2046548145321698 The running loss is: 15.091655969619751 The number of items in train is: 13 The loss for epoch 6 1.1608966130476732 The running loss is: 13.655773513019085 The number of items in train is: 13 The loss for epoch 7 1.0504441163860834 The running loss is: 13.347086157649755 The number of items in train is: 13 The loss for epoch 8 1.0266989352038274 The running loss is: 12.99965537339449 The number of items in train is: 13 The loss for epoch 9 0.9999734902611146 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.025051 47 30819 ... 8.513655 48 30820 ... 11.325939 49 30821 ... 10.518827 50 30822 ... 9.861224 51 30823 ... 9.223644 52 30824 ... 8.587379 53 30825 ... 8.185777 54 30826 ... 8.146936 55 30827 ... 10.996994 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nif4icxc wandb: Agent Starting Run: thu9a8mz with config: batch_size: 3 forecast_history: 3 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: thu9a8mz
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 3 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 3 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 3 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 3 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 44.96720665693283 The number of items in train is: 13 The loss for epoch 0 3.459015896687141 The running loss is: 22.17994412779808 The number of items in train is: 13 The loss for epoch 1 1.70614954829216 The running loss is: 14.762777239084244 The number of items in train is: 13 The loss for epoch 2 1.1355982491603265 The running loss is: 14.303692415356636 The number of items in train is: 13 The loss for epoch 3 1.1002840319505105 The running loss is: 13.229048073291779 The number of items in train is: 13 The loss for epoch 4 1.017619082560906 The running loss is: 13.303537771105766 The number of items in train is: 13 The loss for epoch 5 1.023349059315828 The running loss is: 13.995450779795647 The number of items in train is: 13 The loss for epoch 6 1.0765731369073575 The running loss is: 12.943494260311127 The number of items in train is: 13 The loss for epoch 7 0.9956534046393174 The running loss is: 13.159868687391281 The number of items in train is: 13 The loss for epoch 8 1.012297591337791 The running loss is: 13.365740969777107 The number of items in train is: 13 The loss for epoch 9 1.0281339207520852 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 3, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.087015 47 30819 Eagle County, Colorado, United States ... 47 8.132568 48 30820 Eagle County, Colorado, United States ... 48 8.483716 49 30821 Eagle County, Colorado, United States ... 49 8.753112 50 30822 Eagle County, Colorado, United States ... 50 7.402977 51 30823 Eagle County, Colorado, United States ... 51 6.481536 52 30824 Eagle County, Colorado, United States ... 52 5.727474 53 30825 Eagle County, Colorado, United States ... 53 8.094894 54 30826 Eagle County, Colorado, United States ... 54 8.747983 55 30827 Eagle County, Colorado, United States ... 55 9.392281 [13 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: thu9a8mz wandb: Agent Starting Run: ky4qam1f with config: batch_size: 3 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ky4qam1f
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.872004628414288 The number of items in train is: 13 The loss for epoch 0 1.2209234329549452 The running loss is: 17.338138416409492 The number of items in train is: 13 The loss for epoch 1 1.3337029551084225 The running loss is: 12.708929975517094 The number of items in train is: 13 The loss for epoch 2 0.9776099981166996 The running loss is: 12.215490847826004 The number of items in train is: 13 The loss for epoch 3 0.9396531421404618 The running loss is: 12.03363348171115 The number of items in train is: 13 The loss for epoch 4 0.9256641139777807 The running loss is: 11.642251981422305 The number of items in train is: 13 The loss for epoch 5 0.8955578447247927 The running loss is: 10.20832685381174 The number of items in train is: 13 The loss for epoch 6 0.7852559118316724 The running loss is: 10.859044075012207 The number of items in train is: 13 The loss for epoch 7 0.8353110826932467 The running loss is: 10.322055157274008 The number of items in train is: 13 The loss for epoch 8 0.7940042428672314 The running loss is: 11.003573529422283 The number of items in train is: 13 The loss for epoch 9 0.8464287330324833 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 -0.346429 47 30819 Eagle County, Colorado, United States ... 47 0.829351 48 30820 Eagle County, Colorado, United States ... 48 1.952672 49 30821 Eagle County, Colorado, United States ... 49 9.118698 50 30822 Eagle County, Colorado, United States ... 50 5.451615 51 30823 Eagle County, Colorado, United States ... 51 3.901324 52 30824 Eagle County, Colorado, United States ... 52 2.318013 53 30825 Eagle County, Colorado, United States ... 53 2.697446 54 30826 Eagle County, Colorado, United States ... 54 2.428525 55 30827 Eagle County, Colorado, United States ... 55 3.743862 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ky4qam1f wandb: Agent Starting Run: 8ni0jy4b with config: batch_size: 3 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 8ni0jy4b
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.790921412408352 The number of items in train is: 13 The loss for epoch 0 1.291609339416027 The running loss is: 15.056650847196579 The number of items in train is: 13 The loss for epoch 1 1.1582039113228138 The running loss is: 12.714531168341637 The number of items in train is: 13 The loss for epoch 2 0.9780408591032028 The running loss is: 11.838263422250748 The number of items in train is: 13 The loss for epoch 3 0.9106356478654422 The running loss is: 11.716195069253445 The number of items in train is: 13 The loss for epoch 4 0.9012457745579573 The running loss is: 11.06982884556055 The number of items in train is: 13 The loss for epoch 5 0.85152529581235 The running loss is: 11.064709179103374 The number of items in train is: 13 The loss for epoch 6 0.8511314753156441 The running loss is: 10.000222440809011 The number of items in train is: 13 The loss for epoch 7 0.7692478800622317 The running loss is: 9.306559957563877 The number of items in train is: 13 The loss for epoch 8 0.7158892275049136 The running loss is: 9.157860904932022 The number of items in train is: 13 The loss for epoch 9 0.7044508388409247 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 1.791902 47 30819 ... 5.654204 48 30820 ... 8.961608 49 30821 ... 11.700377 50 30822 ... 10.315681 51 30823 ... 10.420052 52 30824 ... 9.844280 53 30825 ... 11.127863 54 30826 ... 15.757866 55 30827 ... 18.537880 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8ni0jy4b wandb: Agent Starting Run: w9sexr89 with config: batch_size: 3 forecast_history: 4 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: w9sexr89
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.78814585506916 The number of items in train is: 12 The loss for epoch 0 1.23234548792243 The running loss is: 18.438936561346054 The number of items in train is: 12 The loss for epoch 1 1.536578046778838 The running loss is: 12.376275420188904 The number of items in train is: 12 The loss for epoch 2 1.031356285015742 The running loss is: 12.264208257198334 The number of items in train is: 12 The loss for epoch 3 1.0220173547665279 The running loss is: 11.700051099061966 The number of items in train is: 12 The loss for epoch 4 0.9750042582551638 The running loss is: 10.987978845834732 The number of items in train is: 12 The loss for epoch 5 0.915664903819561 The running loss is: 10.582637771964073 The number of items in train is: 12 The loss for epoch 6 0.8818864809970061 The running loss is: 10.795451432466507 The number of items in train is: 12 The loss for epoch 7 0.8996209527055422 The running loss is: 10.955302745103836 The number of items in train is: 12 The loss for epoch 8 0.9129418954253197 The running loss is: 10.035184428095818 The number of items in train is: 12 The loss for epoch 9 0.8362653690079848 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.124487 47 30819 ... 8.182631 48 30820 ... 8.625867 49 30821 ... 8.606244 50 30822 ... 11.974076 51 30823 ... 12.952820 52 30824 ... 13.684759 53 30825 ... 16.254524 54 30826 ... 16.794670 55 30827 ... 17.070047 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: w9sexr89 wandb: Agent Starting Run: gkffdz2w with config: batch_size: 3 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: gkffdz2w
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.34749260544777 The number of items in train is: 13 The loss for epoch 0 1.0267302004190593 The running loss is: 25.4431431889534 The number of items in train is: 13 The loss for epoch 1 1.957164860688723 The running loss is: 14.405924782156944 The number of items in train is: 13 The loss for epoch 2 1.1081480601659188 The running loss is: 13.430022314190865 The number of items in train is: 13 The loss for epoch 3 1.0330786395531435 The running loss is: 12.23273740336299 The number of items in train is: 13 The loss for epoch 4 0.9409798002586915 The running loss is: 11.577613770961761 The number of items in train is: 13 The loss for epoch 5 0.8905856746893662 The running loss is: 10.150533594191074 The number of items in train is: 13 The loss for epoch 6 0.7808102764762365 The running loss is: 9.9775076135993 The number of items in train is: 13 The loss for epoch 7 0.7675005856614846 The running loss is: 10.126881934702396 The number of items in train is: 13 The loss for epoch 8 0.7789909180540305 The running loss is: 12.508168563246727 The number of items in train is: 13 The loss for epoch 9 0.9621668125574405 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 3.007489 47 30819 ... 2.314451 48 30820 ... 2.569708 49 30821 ... 12.613434 50 30822 ... 7.784388 51 30823 ... 6.070034 52 30824 ... 5.322172 53 30825 ... 9.416172 54 30826 ... 5.446332 55 30827 ... 7.896643 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gkffdz2w wandb: Agent Starting Run: hv9fm6aa with config: batch_size: 3 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: hv9fm6aa
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.490479558706284 The number of items in train is: 13 The loss for epoch 0 1.0377291968235602 The running loss is: 23.68451225757599 The number of items in train is: 13 The loss for epoch 1 1.8218855582750761 The running loss is: 14.904601812362671 The number of items in train is: 13 The loss for epoch 2 1.1465078317202055 The running loss is: 13.458257734775543 The number of items in train is: 13 The loss for epoch 3 1.0352505949827342 The running loss is: 12.307238146662712 The number of items in train is: 13 The loss for epoch 4 0.9467106266663625 The running loss is: 11.53241079300642 The number of items in train is: 13 The loss for epoch 5 0.8871085225389554 The running loss is: 11.265225373208523 The number of items in train is: 13 The loss for epoch 6 0.8665557979391172 The running loss is: 11.613157991319895 The number of items in train is: 13 The loss for epoch 7 0.8933198454861457 The running loss is: 10.200320366770029 The number of items in train is: 13 The loss for epoch 8 0.7846400282130792 The running loss is: 9.388746418058872 The number of items in train is: 13 The loss for epoch 9 0.7222112629276055 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 2.511043 47 30819 ... 6.511939 48 30820 ... 7.458131 49 30821 ... 9.090449 50 30822 ... 9.168793 51 30823 ... 10.198345 52 30824 ... 9.923094 53 30825 ... 8.366743 54 30826 ... 13.076762 55 30827 ... 13.979200 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: hv9fm6aa wandb: Agent Starting Run: gh5ouzzl with config: batch_size: 3 forecast_history: 4 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: gh5ouzzl
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.004660785198212 The number of items in train is: 12 The loss for epoch 0 1.083721732099851 The running loss is: 23.263212963938713 The number of items in train is: 12 The loss for epoch 1 1.938601080328226 The running loss is: 15.897933334112167 The number of items in train is: 12 The loss for epoch 2 1.3248277778426807 The running loss is: 13.413813337683678 The number of items in train is: 12 The loss for epoch 3 1.1178177781403065 The running loss is: 12.639265418052673 The number of items in train is: 12 The loss for epoch 4 1.053272118171056 The running loss is: 11.460458725690842 The number of items in train is: 12 The loss for epoch 5 0.9550382271409035 The running loss is: 11.300244197249413 The number of items in train is: 12 The loss for epoch 6 0.941687016437451 The running loss is: 10.694719895720482 The number of items in train is: 12 The loss for epoch 7 0.8912266579767069 The running loss is: 9.931787982583046 The number of items in train is: 12 The loss for epoch 8 0.8276489985485872 The running loss is: 9.597246825695038 The number of items in train is: 12 The loss for epoch 9 0.7997705688079199 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 1.344791 47 30819 ... 6.949912 48 30820 ... 7.202622 49 30821 ... 7.324420 50 30822 ... 8.290039 51 30823 ... 11.569249 52 30824 ... 12.225736 53 30825 ... 7.409237 54 30826 ... 13.821341 55 30827 ... 13.868330 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gh5ouzzl wandb: Agent Starting Run: 7mnzgjkp with config: batch_size: 3 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 7mnzgjkp
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.340472156181931 The number of items in train is: 13 The loss for epoch 0 1.1031132427832255 The running loss is: 23.359602227807045 The number of items in train is: 13 The loss for epoch 1 1.7968924790620804 The running loss is: 17.2289652582258 The number of items in train is: 13 The loss for epoch 2 1.325305019863523 The running loss is: 12.503187745809555 The number of items in train is: 13 The loss for epoch 3 0.9617836727545812 The running loss is: 12.070784609764814 The number of items in train is: 13 The loss for epoch 4 0.9285218930588319 The running loss is: 11.330001890659332 The number of items in train is: 13 The loss for epoch 5 0.8715386069737948 The running loss is: 11.012930020689964 The number of items in train is: 13 The loss for epoch 6 0.8471484631299973 The running loss is: 13.838854122906923 The number of items in train is: 13 The loss for epoch 7 1.0645272402236094 The running loss is: 10.799162855371833 The number of items in train is: 13 The loss for epoch 8 0.8307048350286025 The running loss is: 9.654880156274885 The number of items in train is: 13 The loss for epoch 9 0.742683088944222 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.577109 47 30819 Eagle County, Colorado, United States ... 47 1.884349 48 30820 Eagle County, Colorado, United States ... 48 2.142425 49 30821 Eagle County, Colorado, United States ... 49 7.987684 50 30822 Eagle County, Colorado, United States ... 50 5.628455 51 30823 Eagle County, Colorado, United States ... 51 5.215091 52 30824 Eagle County, Colorado, United States ... 52 4.537104 53 30825 Eagle County, Colorado, United States ... 53 5.395092 54 30826 Eagle County, Colorado, United States ... 54 5.019588 55 30827 Eagle County, Colorado, United States ... 55 5.951438 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 7mnzgjkp wandb: Agent Starting Run: y662r8p1 with config: batch_size: 3 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: y662r8p1
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.1878132969141 The number of items in train is: 13 The loss for epoch 0 1.0144471766857 The running loss is: 23.06560629606247 The number of items in train is: 13 The loss for epoch 1 1.7742774073894207 The running loss is: 16.96458823233843 The number of items in train is: 13 The loss for epoch 2 1.3049683255644946 The running loss is: 12.846139311790466 The number of items in train is: 13 The loss for epoch 3 0.9881645624454205 The running loss is: 12.694834038615227 The number of items in train is: 13 The loss for epoch 4 0.9765256952780944 The running loss is: 12.656872421503067 The number of items in train is: 13 The loss for epoch 5 0.9736055708848513 The running loss is: 13.498041197657585 The number of items in train is: 13 The loss for epoch 6 1.0383108613582759 The running loss is: 13.583044543862343 The number of items in train is: 13 The loss for epoch 7 1.0448495802971034 The running loss is: 13.378036141395569 The number of items in train is: 13 The loss for epoch 8 1.0290797031842744 The running loss is: 12.795019581913948 The number of items in train is: 13 The loss for epoch 9 0.9842322755318421 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.474936 47 30819 ... 10.948586 48 30820 ... 11.335421 49 30821 ... 10.313191 50 30822 ... 11.425502 51 30823 ... 11.269561 52 30824 ... 11.183122 53 30825 ... 11.199656 54 30826 ... 11.811131 55 30827 ... 12.008145 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: y662r8p1 wandb: Agent Starting Run: c4r1ypl4 with config: batch_size: 3 forecast_history: 4 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: c4r1ypl4
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.688956126570702 The number of items in train is: 12 The loss for epoch 0 1.1407463438808918 The running loss is: 21.444616466760635 The number of items in train is: 12 The loss for epoch 1 1.787051372230053 The running loss is: 19.336486667394638 The number of items in train is: 12 The loss for epoch 2 1.6113738889495532 The running loss is: 14.048754200339317 The number of items in train is: 12 The loss for epoch 3 1.1707295166949432 The running loss is: 12.343533247709274 The number of items in train is: 12 The loss for epoch 4 1.0286277706424396 The running loss is: 11.741394221782684 The number of items in train is: 12 The loss for epoch 5 0.9784495184818903 The running loss is: 11.405920177698135 The number of items in train is: 12 The loss for epoch 6 0.9504933481415113 The running loss is: 10.7405776232481 The number of items in train is: 12 The loss for epoch 7 0.8950481352706751 The running loss is: 10.536985754966736 The number of items in train is: 12 The loss for epoch 8 0.878082146247228 The running loss is: 12.78399670124054 The number of items in train is: 12 The loss for epoch 9 1.0653330584367116 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.240464 47 30819 ... 6.391535 48 30820 ... 7.531720 49 30821 ... 8.155801 50 30822 ... 9.021329 51 30823 ... 9.722328 52 30824 ... 10.298412 53 30825 ... 7.822366 54 30826 ... 9.580545 55 30827 ... 11.042983 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c4r1ypl4 wandb: Agent Starting Run: 5al65xub with config: batch_size: 3 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 5al65xub
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 50.24515789747238 The number of items in train is: 13 The loss for epoch 0 3.865012145959414 The running loss is: 23.777228504419327 The number of items in train is: 13 The loss for epoch 1 1.829017577263025 The running loss is: 15.574093259871006 The number of items in train is: 13 The loss for epoch 2 1.1980071738362312 The running loss is: 12.103242687880993 The number of items in train is: 13 The loss for epoch 3 0.931018668298538 The running loss is: 15.460729956626892 The number of items in train is: 13 The loss for epoch 4 1.1892869197405302 The running loss is: 13.119429018348455 The number of items in train is: 13 The loss for epoch 5 1.0091868475652659 The running loss is: 13.760254144668579 The number of items in train is: 13 The loss for epoch 6 1.0584810880514293 The running loss is: 14.075625222176313 The number of items in train is: 13 The loss for epoch 7 1.0827404017058702 The running loss is: 14.208767905831337 The number of items in train is: 13 The loss for epoch 8 1.0929821466024106 The running loss is: 13.554820150136948 The number of items in train is: 13 The loss for epoch 9 1.0426784730874574 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.039810 47 30819 Eagle County, Colorado, United States ... 47 8.730705 48 30820 Eagle County, Colorado, United States ... 48 8.790469 49 30821 Eagle County, Colorado, United States ... 49 9.177441 50 30822 Eagle County, Colorado, United States ... 50 9.388792 51 30823 Eagle County, Colorado, United States ... 51 9.147300 52 30824 Eagle County, Colorado, United States ... 52 8.993916 53 30825 Eagle County, Colorado, United States ... 53 6.918562 54 30826 Eagle County, Colorado, United States ... 54 8.720302 55 30827 Eagle County, Colorado, United States ... 55 8.799322 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5al65xub wandb: Agent Starting Run: 5s37jqge with config: batch_size: 3 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 5s37jqge
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 39.261084854602814 The number of items in train is: 13 The loss for epoch 0 3.0200834503540626 The running loss is: 22.115912914276123 The number of items in train is: 13 The loss for epoch 1 1.7012240703289325 The running loss is: 14.952192202210426 The number of items in train is: 13 The loss for epoch 2 1.1501686309392636 The running loss is: 13.682401984930038 The number of items in train is: 13 The loss for epoch 3 1.0524924603792338 The running loss is: 14.396343678236008 The number of items in train is: 13 The loss for epoch 4 1.1074110521720006 The running loss is: 13.456236526370049 The number of items in train is: 13 The loss for epoch 5 1.0350951174130807 The running loss is: 13.37515278160572 The number of items in train is: 13 The loss for epoch 6 1.028857906277363 The running loss is: 12.367682307958603 The number of items in train is: 13 The loss for epoch 7 0.9513601775352771 The running loss is: 12.126630112528801 The number of items in train is: 13 The loss for epoch 8 0.9328177009637539 The running loss is: 16.020440727472305 The number of items in train is: 13 The loss for epoch 9 1.2323415944209466 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.693578 47 30819 ... 11.420332 48 30820 ... 11.478680 49 30821 ... 11.421338 50 30822 ... 12.134402 51 30823 ... 12.323503 52 30824 ... 12.366034 53 30825 ... 11.342683 54 30826 ... 11.622007 55 30827 ... 12.030426 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5s37jqge wandb: Agent Starting Run: jw74vpwp with config: batch_size: 3 forecast_history: 4 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: jw74vpwp
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 4 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 4 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 4 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 4 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 41.467525988817215 The number of items in train is: 12 The loss for epoch 0 3.455627165734768 The running loss is: 20.88641083240509 The number of items in train is: 12 The loss for epoch 1 1.7405342360337575 The running loss is: 12.568571835756302 The number of items in train is: 12 The loss for epoch 2 1.0473809863130252 The running loss is: 12.954892814159393 The number of items in train is: 12 The loss for epoch 3 1.0795744011799495 The running loss is: 13.821066796779633 The number of items in train is: 12 The loss for epoch 4 1.1517555663983028 The running loss is: 12.612691268324852 The number of items in train is: 12 The loss for epoch 5 1.0510576056937377 The running loss is: 12.604485049843788 The number of items in train is: 12 The loss for epoch 6 1.050373754153649 The running loss is: 11.31302846968174 The number of items in train is: 12 The loss for epoch 7 0.9427523724734783 The running loss is: 11.463112786412239 The number of items in train is: 12 The loss for epoch 8 0.9552593988676866 The running loss is: 12.560555011034012 The number of items in train is: 12 The loss for epoch 9 1.0467129175861676 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 4, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 9.026195 47 30819 ... 10.410426 48 30820 ... 11.938659 49 30821 ... 10.415281 50 30822 ... 10.345819 51 30823 ... 10.234818 52 30824 ... 10.661693 53 30825 ... 10.597783 54 30826 ... 11.888622 55 30827 ... 11.954378 [14 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: jw74vpwp wandb: Agent Starting Run: sa751o4d with config: batch_size: 3 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: sa751o4d
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.105641320347786 The number of items in train is: 13 The loss for epoch 0 1.3927416400267527 The running loss is: 14.012058325111866 The number of items in train is: 13 The loss for epoch 1 1.0778506403932204 The running loss is: 12.297234199941158 The number of items in train is: 13 The loss for epoch 2 0.945941092303166 The running loss is: 11.648973919451237 The number of items in train is: 13 The loss for epoch 3 0.8960749168808644 The running loss is: 10.411581374704838 The number of items in train is: 13 The loss for epoch 4 0.8008908749772952 The running loss is: 9.843764215707779 The number of items in train is: 13 The loss for epoch 5 0.7572126319775214 The running loss is: 8.586901139467955 The number of items in train is: 13 The loss for epoch 6 0.6605308568821504 The running loss is: 8.218328204005957 The number of items in train is: 13 The loss for epoch 7 0.6321790926158428 The running loss is: 8.143619112670422 The number of items in train is: 13 The loss for epoch 8 0.6264322394361863 The running loss is: 8.618214875459671 The number of items in train is: 13 The loss for epoch 9 0.6629396058045901 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 4.038171 47 30819 ... 7.117307 48 30820 ... 6.792751 49 30821 ... 6.664652 50 30822 ... 7.004401 51 30823 ... 7.854282 52 30824 ... 8.201924 53 30825 ... 11.353144 54 30826 ... 15.248468 55 30827 ... 14.364745 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sa751o4d wandb: Agent Starting Run: 4c7m3af5 with config: batch_size: 3 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4c7m3af5
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.804713547229767 The number of items in train is: 12 The loss for epoch 0 1.233726128935814 The running loss is: 16.97213351726532 The number of items in train is: 12 The loss for epoch 1 1.41434445977211 The running loss is: 11.822531819343567 The number of items in train is: 12 The loss for epoch 2 0.9852109849452972 The running loss is: 11.416342198848724 The number of items in train is: 12 The loss for epoch 3 0.9513618499040604 The running loss is: 10.902691811323166 The number of items in train is: 12 The loss for epoch 4 0.9085576509435972 The running loss is: 9.671414703130722 The number of items in train is: 12 The loss for epoch 5 0.8059512252608935 The running loss is: 9.385768637061119 The number of items in train is: 12 The loss for epoch 6 0.78214738642176 The running loss is: 8.309829585254192 The number of items in train is: 12 The loss for epoch 7 0.6924857987711827 The running loss is: 8.777955651283264 The number of items in train is: 12 The loss for epoch 8 0.7314963042736053 The running loss is: 9.56509893387556 The number of items in train is: 12 The loss for epoch 9 0.7970915778229634 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.180499 47 30819 ... 7.501813 48 30820 ... 7.126774 49 30821 ... 7.140279 50 30822 ... 7.065376 51 30823 ... 9.210360 52 30824 ... 9.250754 53 30825 ... 13.100918 54 30826 ... 14.399408 55 30827 ... 13.769780 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4c7m3af5 wandb: Agent Starting Run: mx7gqnu2 with config: batch_size: 3 forecast_history: 5 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: mx7gqnu2
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.415991149842739 The number of items in train is: 12 The loss for epoch 0 1.2846659291535616 The running loss is: 15.498348452150822 The number of items in train is: 12 The loss for epoch 1 1.2915290376792352 The running loss is: 12.637772336602211 The number of items in train is: 12 The loss for epoch 2 1.053147694716851 The running loss is: 12.26582846045494 The number of items in train is: 12 The loss for epoch 3 1.0221523717045784 The running loss is: 11.29976324737072 The number of items in train is: 12 The loss for epoch 4 0.9416469372808933 The running loss is: 11.394211154431105 The number of items in train is: 12 The loss for epoch 5 0.949517596202592 The running loss is: 10.832007095217705 The number of items in train is: 12 The loss for epoch 6 0.9026672579348087 The running loss is: 10.655730500817299 The number of items in train is: 12 The loss for epoch 7 0.8879775417347749 The running loss is: 10.479210518300533 The number of items in train is: 12 The loss for epoch 8 0.8732675431917111 The running loss is: 10.922551706433296 The number of items in train is: 12 The loss for epoch 9 0.9102126422027746 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.188203 47 30819 ... 6.379559 48 30820 ... 5.693151 49 30821 ... 5.827620 50 30822 ... 6.130767 51 30823 ... 8.003571 52 30824 ... 9.042922 53 30825 ... 10.781850 54 30826 ... 12.356435 55 30827 ... 11.059150 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: mx7gqnu2 wandb: Agent Starting Run: nb7otgv0 with config: batch_size: 3 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: nb7otgv0
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.261770632117987 The number of items in train is: 13 The loss for epoch 0 1.1739823563167682 The running loss is: 22.147419825196266 The number of items in train is: 13 The loss for epoch 1 1.7036476788612513 The running loss is: 14.186409682035446 The number of items in train is: 13 The loss for epoch 2 1.091262283233496 The running loss is: 11.937791492789984 The number of items in train is: 13 The loss for epoch 3 0.9182916532915372 The running loss is: 10.14401987195015 The number of items in train is: 13 The loss for epoch 4 0.7803092209192423 The running loss is: 8.372021302580833 The number of items in train is: 13 The loss for epoch 5 0.6440016386600641 The running loss is: 7.423566944897175 The number of items in train is: 13 The loss for epoch 6 0.5710436111459365 The running loss is: 9.638437408953905 The number of items in train is: 13 The loss for epoch 7 0.7414182622272235 The running loss is: 11.166652858257294 The number of items in train is: 13 The loss for epoch 8 0.8589732967890226 The running loss is: 9.7910625487566 The number of items in train is: 13 The loss for epoch 9 0.7531586575966615 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.026867 47 30819 Eagle County, Colorado, United States ... 47 4.579353 48 30820 Eagle County, Colorado, United States ... 48 4.504891 49 30821 Eagle County, Colorado, United States ... 49 4.475537 50 30822 Eagle County, Colorado, United States ... 50 4.397957 51 30823 Eagle County, Colorado, United States ... 51 5.628908 52 30824 Eagle County, Colorado, United States ... 52 5.737713 53 30825 Eagle County, Colorado, United States ... 53 6.915092 54 30826 Eagle County, Colorado, United States ... 54 7.359157 55 30827 Eagle County, Colorado, United States ... 55 7.099442 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: nb7otgv0 wandb: Agent Starting Run: 4l7cv9be with config: batch_size: 3 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4l7cv9be
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.323792949318886 The number of items in train is: 12 The loss for epoch 0 1.026982745776574 The running loss is: 23.155533269047737 The number of items in train is: 12 The loss for epoch 1 1.9296277724206448 The running loss is: 14.94628620147705 The number of items in train is: 12 The loss for epoch 2 1.2455238501230876 The running loss is: 13.859730526804924 The number of items in train is: 12 The loss for epoch 3 1.1549775439004104 The running loss is: 11.672522738575935 The number of items in train is: 12 The loss for epoch 4 0.9727102282146612 The running loss is: 10.797379478812218 The number of items in train is: 12 The loss for epoch 5 0.8997816232343515 The running loss is: 10.294382557272911 The number of items in train is: 12 The loss for epoch 6 0.8578652131060759 The running loss is: 8.327066399157047 The number of items in train is: 12 The loss for epoch 7 0.6939221999297539 The running loss is: 8.611333400011063 The number of items in train is: 12 The loss for epoch 8 0.7176111166675886 The running loss is: 9.300903491675854 The number of items in train is: 12 The loss for epoch 9 0.7750752909729878 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.034604 47 30819 Eagle County, Colorado, United States ... 47 5.016776 48 30820 Eagle County, Colorado, United States ... 48 4.942604 49 30821 Eagle County, Colorado, United States ... 49 4.718325 50 30822 Eagle County, Colorado, United States ... 50 4.520617 51 30823 Eagle County, Colorado, United States ... 51 6.344130 52 30824 Eagle County, Colorado, United States ... 52 6.747848 53 30825 Eagle County, Colorado, United States ... 53 8.362752 54 30826 Eagle County, Colorado, United States ... 54 9.566703 55 30827 Eagle County, Colorado, United States ... 55 9.242714 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4l7cv9be wandb: Agent Starting Run: za86wxrm with config: batch_size: 3 forecast_history: 5 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: za86wxrm
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.776227623224258 The number of items in train is: 12 The loss for epoch 0 1.1480189686020215 The running loss is: 21.34618742763996 The number of items in train is: 12 The loss for epoch 1 1.7788489523033302 The running loss is: 14.572952851653099 The number of items in train is: 12 The loss for epoch 2 1.2144127376377583 The running loss is: 13.57256968319416 The number of items in train is: 12 The loss for epoch 3 1.1310474735995133 The running loss is: 12.092315569519997 The number of items in train is: 12 The loss for epoch 4 1.0076929641266663 The running loss is: 12.090366944670677 The number of items in train is: 12 The loss for epoch 5 1.0075305787225564 The running loss is: 11.1148621737957 The number of items in train is: 12 The loss for epoch 6 0.926238514482975 The running loss is: 10.491286784410477 The number of items in train is: 12 The loss for epoch 7 0.874273898700873 The running loss is: 10.797590360045433 The number of items in train is: 12 The loss for epoch 8 0.8997991966704527 The running loss is: 11.091501705348492 The number of items in train is: 12 The loss for epoch 9 0.9242918087790409 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.309795 47 30819 Eagle County, Colorado, United States ... 47 5.539655 48 30820 Eagle County, Colorado, United States ... 48 5.529214 49 30821 Eagle County, Colorado, United States ... 49 5.521837 50 30822 Eagle County, Colorado, United States ... 50 5.204870 51 30823 Eagle County, Colorado, United States ... 51 7.370545 52 30824 Eagle County, Colorado, United States ... 52 8.238771 53 30825 Eagle County, Colorado, United States ... 53 9.005033 54 30826 Eagle County, Colorado, United States ... 54 9.360201 55 30827 Eagle County, Colorado, United States ... 55 9.028099 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: za86wxrm wandb: Agent Starting Run: cbkj9g21 with config: batch_size: 3 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: cbkj9g21
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.15755881369114 The number of items in train is: 13 The loss for epoch 0 1.0121199087454722 The running loss is: 23.383041262626648 The number of items in train is: 13 The loss for epoch 1 1.7986954817405114 The running loss is: 20.34821653366089 The number of items in train is: 13 The loss for epoch 2 1.565247425666222 The running loss is: 13.35105698555708 The number of items in train is: 13 The loss for epoch 3 1.0270043835043907 The running loss is: 12.55769258737564 The number of items in train is: 13 The loss for epoch 4 0.9659763528750493 The running loss is: 10.44101019948721 The number of items in train is: 13 The loss for epoch 5 0.8031546307297853 The running loss is: 10.786027267575264 The number of items in train is: 13 The loss for epoch 6 0.8296944051980972 The running loss is: 11.164955213665962 The number of items in train is: 13 The loss for epoch 7 0.8588427087435355 The running loss is: 9.287103720009327 The number of items in train is: 13 The loss for epoch 8 0.7143925938468713 The running loss is: 8.763795241713524 The number of items in train is: 13 The loss for epoch 9 0.6741380955164249 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.958946 47 30819 Eagle County, Colorado, United States ... 47 6.848919 48 30820 Eagle County, Colorado, United States ... 48 6.667441 49 30821 Eagle County, Colorado, United States ... 49 6.700452 50 30822 Eagle County, Colorado, United States ... 50 3.761921 51 30823 Eagle County, Colorado, United States ... 51 7.074552 52 30824 Eagle County, Colorado, United States ... 52 7.613464 53 30825 Eagle County, Colorado, United States ... 53 9.098127 54 30826 Eagle County, Colorado, United States ... 54 9.997087 55 30827 Eagle County, Colorado, United States ... 55 8.320040 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cbkj9g21 wandb: Agent Starting Run: pab0srgj with config: batch_size: 3 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: pab0srgj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.774470299482346 The number of items in train is: 12 The loss for epoch 0 1.0645391916235287 The running loss is: 20.98992669582367 The number of items in train is: 12 The loss for epoch 1 1.7491605579853058 The running loss is: 17.23653557896614 The number of items in train is: 12 The loss for epoch 2 1.436377964913845 The running loss is: 13.365149036049843 The number of items in train is: 12 The loss for epoch 3 1.1137624196708202 The running loss is: 12.378368452191353 The number of items in train is: 12 The loss for epoch 4 1.0315307043492794 The running loss is: 11.96500751376152 The number of items in train is: 12 The loss for epoch 5 0.9970839594801267 The running loss is: 10.989426091313362 The number of items in train is: 12 The loss for epoch 6 0.9157855076094469 The running loss is: 9.780941367149353 The number of items in train is: 12 The loss for epoch 7 0.815078447262446 The running loss is: 16.21955992281437 The number of items in train is: 12 The loss for epoch 8 1.3516299935678642 The running loss is: 11.701737195253372 The number of items in train is: 12 The loss for epoch 9 0.9751447662711143 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.694775 47 30819 ... 11.760224 48 30820 ... 11.690811 49 30821 ... 11.608275 50 30822 ... 11.581036 51 30823 ... 11.688101 52 30824 ... 11.740479 53 30825 ... 11.747087 54 30826 ... 11.845592 55 30827 ... 11.739115 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: pab0srgj wandb: Agent Starting Run: 8h8obozd with config: batch_size: 3 forecast_history: 5 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8h8obozd
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.32255271077156 The number of items in train is: 12 The loss for epoch 0 1.11021272589763 The running loss is: 22.797952115535736 The number of items in train is: 12 The loss for epoch 1 1.8998293429613113 The running loss is: 16.07163879275322 The number of items in train is: 12 The loss for epoch 2 1.339303232729435 The running loss is: 13.264043867588043 The number of items in train is: 12 The loss for epoch 3 1.1053369889656703 The running loss is: 12.219512164592743 The number of items in train is: 12 The loss for epoch 4 1.0182926803827286 The running loss is: 11.778143614530563 The number of items in train is: 12 The loss for epoch 5 0.9815119678775469 The running loss is: 11.204492971301079 The number of items in train is: 12 The loss for epoch 6 0.9337077476084232 The running loss is: 11.166005790233612 The number of items in train is: 12 The loss for epoch 7 0.9305004825194677 The running loss is: 11.464188620448112 The number of items in train is: 12 The loss for epoch 8 0.9553490517040094 The running loss is: 10.929433912038803 The number of items in train is: 12 The loss for epoch 9 0.9107861593365669 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... -0.247660 47 30819 ... 9.233921 48 30820 ... 5.277986 49 30821 ... 6.317695 50 30822 ... 5.119556 51 30823 ... 4.109658 52 30824 ... 4.720734 53 30825 ... 2.022248 54 30826 ... 12.015410 55 30827 ... 8.368930 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8h8obozd wandb: Agent Starting Run: ayz6fdqn with config: batch_size: 3 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ayz6fdqn
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 43.19867384433746 The number of items in train is: 13 The loss for epoch 0 3.322974911102882 The running loss is: 20.882086783647537 The number of items in train is: 13 The loss for epoch 1 1.6063143679728875 The running loss is: 15.9086195230484 The number of items in train is: 13 The loss for epoch 2 1.2237399633114154 The running loss is: 17.856110900640488 The number of items in train is: 13 The loss for epoch 3 1.3735469923569605 The running loss is: 14.558780506253242 The number of items in train is: 13 The loss for epoch 4 1.119906192788711 The running loss is: 15.64150284230709 The number of items in train is: 13 The loss for epoch 5 1.2031925263313146 The running loss is: 15.482542432844639 The number of items in train is: 13 The loss for epoch 6 1.1909648025265107 The running loss is: 14.537198841571808 The number of items in train is: 13 The loss for epoch 7 1.1182460647362928 The running loss is: 13.648285038943868 The number of items in train is: 13 The loss for epoch 8 1.0498680799187592 The running loss is: 11.561186537146568 The number of items in train is: 13 The loss for epoch 9 0.8893220413189667 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 2.534576 47 30819 ... 12.769893 48 30820 ... 11.421350 49 30821 ... 10.561858 50 30822 ... 9.610747 51 30823 ... 7.076689 52 30824 ... 6.741565 53 30825 ... 5.326016 54 30826 ... 13.664184 55 30827 ... 11.970482 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ayz6fdqn wandb: Agent Starting Run: fhblqpew with config: batch_size: 3 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: fhblqpew
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 44.207919269800186 The number of items in train is: 12 The loss for epoch 0 3.683993272483349 The running loss is: 20.536793023347855 The number of items in train is: 12 The loss for epoch 1 1.7113994186123211 The running loss is: 14.74533599615097 The number of items in train is: 12 The loss for epoch 2 1.2287779996792476 The running loss is: 12.315197795629501 The number of items in train is: 12 The loss for epoch 3 1.026266482969125 The running loss is: 12.204134806990623 The number of items in train is: 12 The loss for epoch 4 1.0170112339158852 The running loss is: 11.466395795345306 The number of items in train is: 12 The loss for epoch 5 0.9555329829454422 The running loss is: 11.339310720562935 The number of items in train is: 12 The loss for epoch 6 0.9449425600469112 The running loss is: 9.619177401065826 The number of items in train is: 12 The loss for epoch 7 0.8015981167554855 The running loss is: 12.089902177453041 The number of items in train is: 12 The loss for epoch 8 1.0074918481210868 The running loss is: 13.646132752299309 The number of items in train is: 12 The loss for epoch 9 1.1371777293582757 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.995404 47 30819 ... 9.003286 48 30820 ... 8.999191 49 30821 ... 9.000885 50 30822 ... 8.894744 51 30823 ... 10.436748 52 30824 ... 10.697165 53 30825 ... 10.588944 54 30826 ... 10.588954 55 30827 ... 10.588938 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fhblqpew wandb: Agent Starting Run: 1t6pbtgz with config: batch_size: 3 forecast_history: 5 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 1t6pbtgz
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 5 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 5 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 5 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 5 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 38.5756913125515 The number of items in train is: 12 The loss for epoch 0 3.214640942712625 The running loss is: 18.708413749933243 The number of items in train is: 12 The loss for epoch 1 1.5590344791611035 The running loss is: 13.634418800473213 The number of items in train is: 12 The loss for epoch 2 1.1362015667061012 The running loss is: 13.00131143629551 The number of items in train is: 12 The loss for epoch 3 1.0834426196912925 The running loss is: 12.16117537021637 The number of items in train is: 12 The loss for epoch 4 1.0134312808513641 The running loss is: 12.743264377117157 The number of items in train is: 12 The loss for epoch 5 1.0619386980930965 The running loss is: 12.74788312613964 The number of items in train is: 12 The loss for epoch 6 1.06232359384497 The running loss is: 12.327722936868668 The number of items in train is: 12 The loss for epoch 7 1.0273102447390556 The running loss is: 11.793324664235115 The number of items in train is: 12 The loss for epoch 8 0.9827770553529263 The running loss is: 12.077590823173523 The number of items in train is: 12 The loss for epoch 9 1.0064659019311268 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 5, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.219585 47 30819 Eagle County, Colorado, United States ... 47 8.171262 48 30820 Eagle County, Colorado, United States ... 48 8.282984 49 30821 Eagle County, Colorado, United States ... 49 8.246166 50 30822 Eagle County, Colorado, United States ... 50 8.154293 51 30823 Eagle County, Colorado, United States ... 51 9.300027 52 30824 Eagle County, Colorado, United States ... 52 9.161006 53 30825 Eagle County, Colorado, United States ... 53 9.634283 54 30826 Eagle County, Colorado, United States ... 54 9.632183 55 30827 Eagle County, Colorado, United States ... 55 9.632958 [15 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1t6pbtgz wandb: Agent Starting Run: stuwxn27 with config: batch_size: 3 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: stuwxn27
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.118256822228432 The number of items in train is: 12 The loss for epoch 0 1.2598547351857026 The running loss is: 18.95265108346939 The number of items in train is: 12 The loss for epoch 1 1.579387590289116 The running loss is: 12.225189611315727 The number of items in train is: 12 The loss for epoch 2 1.0187658009429772 The running loss is: 11.719947949051857 The number of items in train is: 12 The loss for epoch 3 0.9766623290876547 The running loss is: 11.743443045765162 The number of items in train is: 12 The loss for epoch 4 0.9786202538137635 The running loss is: 11.300051920115948 The number of items in train is: 12 The loss for epoch 5 0.9416709933429956 The running loss is: 10.814161136746407 The number of items in train is: 12 The loss for epoch 6 0.9011800947288672 The running loss is: 10.698570221662521 The number of items in train is: 12 The loss for epoch 7 0.8915475184718767 The running loss is: 10.697828751057386 The number of items in train is: 12 The loss for epoch 8 0.8914857292547822 The running loss is: 10.184408448636532 The number of items in train is: 12 The loss for epoch 9 0.8487007040530443 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.240055 47 30819 Eagle County, Colorado, United States ... 47 1.800865 48 30820 Eagle County, Colorado, United States ... 48 1.639500 49 30821 Eagle County, Colorado, United States ... 49 1.430543 50 30822 Eagle County, Colorado, United States ... 50 1.315372 51 30823 Eagle County, Colorado, United States ... 51 1.186460 52 30824 Eagle County, Colorado, United States ... 52 3.861452 53 30825 Eagle County, Colorado, United States ... 53 3.363582 54 30826 Eagle County, Colorado, United States ... 54 3.074578 55 30827 Eagle County, Colorado, United States ... 55 2.776423 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: stuwxn27 wandb: Agent Starting Run: n3y19nh5 with config: batch_size: 3 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: n3y19nh5
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.848535776138306 The number of items in train is: 12 The loss for epoch 0 1.2373779813448589 The running loss is: 17.392040729522705 The number of items in train is: 12 The loss for epoch 1 1.4493367274602253 The running loss is: 11.61117922514677 The number of items in train is: 12 The loss for epoch 2 0.9675982687622309 The running loss is: 11.772338047623634 The number of items in train is: 12 The loss for epoch 3 0.9810281706353029 The running loss is: 11.49287236109376 The number of items in train is: 12 The loss for epoch 4 0.95773936342448 The running loss is: 10.781698107719421 The number of items in train is: 12 The loss for epoch 5 0.8984748423099518 The running loss is: 10.424548596143723 The number of items in train is: 12 The loss for epoch 6 0.8687123830119768 The running loss is: 10.12140953913331 The number of items in train is: 12 The loss for epoch 7 0.8434507949277759 The running loss is: 9.658258616924286 The number of items in train is: 12 The loss for epoch 8 0.8048548847436905 The running loss is: 9.880091970786452 The number of items in train is: 12 The loss for epoch 9 0.8233409975655377 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.166862 47 30819 Eagle County, Colorado, United States ... 47 2.140870 48 30820 Eagle County, Colorado, United States ... 48 3.050914 49 30821 Eagle County, Colorado, United States ... 49 2.472847 50 30822 Eagle County, Colorado, United States ... 50 2.448125 51 30823 Eagle County, Colorado, United States ... 51 2.150080 52 30824 Eagle County, Colorado, United States ... 52 5.302005 53 30825 Eagle County, Colorado, United States ... 53 5.484312 54 30826 Eagle County, Colorado, United States ... 54 6.253271 55 30827 Eagle County, Colorado, United States ... 55 7.036977 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: n3y19nh5 wandb: Agent Starting Run: h1q7w0qd with config: batch_size: 3 forecast_history: 6 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: h1q7w0qd
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.079257428646088 The number of items in train is: 12 The loss for epoch 0 1.2566047857205074 The running loss is: 15.718450710177422 The number of items in train is: 12 The loss for epoch 1 1.309870892514785 The running loss is: 12.495803490281105 The number of items in train is: 12 The loss for epoch 2 1.0413169575234253 The running loss is: 12.496650338172913 The number of items in train is: 12 The loss for epoch 3 1.041387528181076 The running loss is: 12.224688678979874 The number of items in train is: 12 The loss for epoch 4 1.0187240565816562 The running loss is: 11.561807550489902 The number of items in train is: 12 The loss for epoch 5 0.9634839625408252 The running loss is: 11.38438879698515 The number of items in train is: 12 The loss for epoch 6 0.9486990664154291 The running loss is: 11.246962681412697 The number of items in train is: 12 The loss for epoch 7 0.9372468901177248 The running loss is: 10.89895249903202 The number of items in train is: 12 The loss for epoch 8 0.9082460415860018 The running loss is: 10.400408629328012 The number of items in train is: 12 The loss for epoch 9 0.8667007191106677 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.580725 47 30819 Eagle County, Colorado, United States ... 47 1.974475 48 30820 Eagle County, Colorado, United States ... 48 -0.211604 49 30821 Eagle County, Colorado, United States ... 49 0.609134 50 30822 Eagle County, Colorado, United States ... 50 1.167469 51 30823 Eagle County, Colorado, United States ... 51 1.519079 52 30824 Eagle County, Colorado, United States ... 52 4.284061 53 30825 Eagle County, Colorado, United States ... 53 3.987715 54 30826 Eagle County, Colorado, United States ... 54 3.588098 55 30827 Eagle County, Colorado, United States ... 55 2.746731 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: h1q7w0qd wandb: Agent Starting Run: oxt2syp4 with config: batch_size: 3 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: oxt2syp4
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.496992111206055 The number of items in train is: 12 The loss for epoch 0 1.0414160092671711 The running loss is: 23.51863168179989 The number of items in train is: 12 The loss for epoch 1 1.959885973483324 The running loss is: 16.172030597925186 The number of items in train is: 12 The loss for epoch 2 1.3476692164937656 The running loss is: 13.880412250757217 The number of items in train is: 12 The loss for epoch 3 1.1567010208964348 The running loss is: 12.677022129297256 The number of items in train is: 12 The loss for epoch 4 1.0564185107747714 The running loss is: 12.19552794098854 The number of items in train is: 12 The loss for epoch 5 1.0162939950823784 The running loss is: 11.290437750518322 The number of items in train is: 12 The loss for epoch 6 0.9408698125431935 The running loss is: 10.617049016058445 The number of items in train is: 12 The loss for epoch 7 0.884754084671537 The running loss is: 10.623746745288372 The number of items in train is: 12 The loss for epoch 8 0.885312228774031 The running loss is: 9.808349553495646 The number of items in train is: 12 The loss for epoch 9 0.8173624627913038 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.538319 47 30819 Eagle County, Colorado, United States ... 47 3.409076 48 30820 Eagle County, Colorado, United States ... 48 4.306860 49 30821 Eagle County, Colorado, United States ... 49 3.943794 50 30822 Eagle County, Colorado, United States ... 50 4.117706 51 30823 Eagle County, Colorado, United States ... 51 3.392669 52 30824 Eagle County, Colorado, United States ... 52 6.199790 53 30825 Eagle County, Colorado, United States ... 53 5.883504 54 30826 Eagle County, Colorado, United States ... 54 6.553258 55 30827 Eagle County, Colorado, United States ... 55 7.520857 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: oxt2syp4 wandb: Agent Starting Run: ie9c1ks0 with config: batch_size: 3 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ie9c1ks0
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.599737614393234 The number of items in train is: 12 The loss for epoch 0 1.0499781345327694 The running loss is: 22.203148394823074 The number of items in train is: 12 The loss for epoch 1 1.8502623662352562 The running loss is: 14.325762331485748 The number of items in train is: 12 The loss for epoch 2 1.1938135276238124 The running loss is: 13.595742899924517 The number of items in train is: 12 The loss for epoch 3 1.1329785749937098 The running loss is: 11.89985717087984 The number of items in train is: 12 The loss for epoch 4 0.9916547642399868 The running loss is: 11.515253067016602 The number of items in train is: 12 The loss for epoch 5 0.9596044222513834 The running loss is: 11.157676301896572 The number of items in train is: 12 The loss for epoch 6 0.929806358491381 The running loss is: 10.4517732411623 The number of items in train is: 12 The loss for epoch 7 0.8709811034301916 The running loss is: 10.010308530181646 The number of items in train is: 12 The loss for epoch 8 0.8341923775151372 The running loss is: 10.091852685436606 The number of items in train is: 12 The loss for epoch 9 0.8409877237863839 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 2.594056 47 30819 Eagle County, Colorado, United States ... 47 1.672091 48 30820 Eagle County, Colorado, United States ... 48 4.155540 49 30821 Eagle County, Colorado, United States ... 49 3.079499 50 30822 Eagle County, Colorado, United States ... 50 2.709257 51 30823 Eagle County, Colorado, United States ... 51 1.828926 52 30824 Eagle County, Colorado, United States ... 52 4.691890 53 30825 Eagle County, Colorado, United States ... 53 3.811723 54 30826 Eagle County, Colorado, United States ... 54 5.404132 55 30827 Eagle County, Colorado, United States ... 55 8.138603 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ie9c1ks0 wandb: Agent Starting Run: 2fpwq82a with config: batch_size: 3 forecast_history: 6 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 2fpwq82a
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.415539905428886 The number of items in train is: 12 The loss for epoch 0 1.1179616587857406 The running loss is: 20.85493763536215 The number of items in train is: 12 The loss for epoch 1 1.7379114696135123 The running loss is: 14.253133296966553 The number of items in train is: 12 The loss for epoch 2 1.1877611080805461 The running loss is: 13.560869604349136 The number of items in train is: 12 The loss for epoch 3 1.1300724670290947 The running loss is: 12.388650253415108 The number of items in train is: 12 The loss for epoch 4 1.0323875211179256 The running loss is: 12.170100808143616 The number of items in train is: 12 The loss for epoch 5 1.0141750673453014 The running loss is: 11.739183232188225 The number of items in train is: 12 The loss for epoch 6 0.9782652693490187 The running loss is: 11.55619814991951 The number of items in train is: 12 The loss for epoch 7 0.9630165124932925 The running loss is: 10.790475085377693 The number of items in train is: 12 The loss for epoch 8 0.8992062571148077 The running loss is: 10.633037384599447 The number of items in train is: 12 The loss for epoch 9 0.8860864487166206 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.839489 47 30819 Eagle County, Colorado, United States ... 47 1.569898 48 30820 Eagle County, Colorado, United States ... 48 1.385082 49 30821 Eagle County, Colorado, United States ... 49 0.573623 50 30822 Eagle County, Colorado, United States ... 50 1.309624 51 30823 Eagle County, Colorado, United States ... 51 1.179892 52 30824 Eagle County, Colorado, United States ... 52 4.661685 53 30825 Eagle County, Colorado, United States ... 53 2.778619 54 30826 Eagle County, Colorado, United States ... 54 2.841144 55 30827 Eagle County, Colorado, United States ... 55 4.202115 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2fpwq82a wandb: Agent Starting Run: l8nn6c9n with config: batch_size: 3 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: l8nn6c9n
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.551168888807297 The number of items in train is: 12 The loss for epoch 0 1.3792640740672748 The running loss is: 16.275571942329407 The number of items in train is: 12 The loss for epoch 1 1.3562976618607838 The running loss is: 24.606696739792824 The number of items in train is: 12 The loss for epoch 2 2.050558061649402 The running loss is: 12.262774214148521 The number of items in train is: 12 The loss for epoch 3 1.0218978511790435 The running loss is: 12.773478485643864 The number of items in train is: 12 The loss for epoch 4 1.064456540470322 The running loss is: 11.611447669565678 The number of items in train is: 12 The loss for epoch 5 0.9676206391304731 The running loss is: 11.665397956967354 The number of items in train is: 12 The loss for epoch 6 0.9721164964139462 The running loss is: 10.316370545886457 The number of items in train is: 12 The loss for epoch 7 0.8596975454905381 The running loss is: 11.990142315626144 The number of items in train is: 12 The loss for epoch 8 0.9991785263021787 The running loss is: 10.906970590353012 The number of items in train is: 12 The loss for epoch 9 0.908914215862751 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.308692 47 30819 Eagle County, Colorado, United States ... 47 3.952347 48 30820 Eagle County, Colorado, United States ... 48 7.571158 49 30821 Eagle County, Colorado, United States ... 49 3.904990 50 30822 Eagle County, Colorado, United States ... 50 3.892237 51 30823 Eagle County, Colorado, United States ... 51 3.134773 52 30824 Eagle County, Colorado, United States ... 52 8.374115 53 30825 Eagle County, Colorado, United States ... 53 7.191282 54 30826 Eagle County, Colorado, United States ... 54 8.137844 55 30827 Eagle County, Colorado, United States ... 55 9.537454 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l8nn6c9n wandb: Agent Starting Run: km3ikef2 with config: batch_size: 3 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: km3ikef2
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.698626637458801 The number of items in train is: 12 The loss for epoch 0 1.2248855531215668 The running loss is: 20.655080318450928 The number of items in train is: 12 The loss for epoch 1 1.721256693204244 The running loss is: 18.092076182365417 The number of items in train is: 12 The loss for epoch 2 1.507673015197118 The running loss is: 12.09486810863018 The number of items in train is: 12 The loss for epoch 3 1.0079056757191818 The running loss is: 11.600006587803364 The number of items in train is: 12 The loss for epoch 4 0.9666672156502804 The running loss is: 10.95479815453291 The number of items in train is: 12 The loss for epoch 5 0.9128998462110758 The running loss is: 11.188478022813797 The number of items in train is: 12 The loss for epoch 6 0.9323731685678164 The running loss is: 10.409742364659905 The number of items in train is: 12 The loss for epoch 7 0.8674785303883255 The running loss is: 10.057693980634212 The number of items in train is: 12 The loss for epoch 8 0.8381411650528511 The running loss is: 12.17088376916945 The number of items in train is: 12 The loss for epoch 9 1.014240314097454 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 2.268881 47 30819 ... 1.202799 48 30820 ... 10.090469 49 30821 ... 8.409049 50 30822 ... 6.849900 51 30823 ... 2.807540 52 30824 ... 5.809826 53 30825 ... 2.110427 54 30826 ... 5.633467 55 30827 ... 13.213568 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: km3ikef2 wandb: Agent Starting Run: c5lun9dz with config: batch_size: 3 forecast_history: 6 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: c5lun9dz
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.00420992076397 The number of items in train is: 12 The loss for epoch 0 1.1670174933969975 The running loss is: 19.73149611055851 The number of items in train is: 12 The loss for epoch 1 1.6442913425465424 The running loss is: 15.858351707458496 The number of items in train is: 12 The loss for epoch 2 1.3215293089548747 The running loss is: 13.022899746894836 The number of items in train is: 12 The loss for epoch 3 1.0852416455745697 The running loss is: 12.677206307649612 The number of items in train is: 12 The loss for epoch 4 1.056433858970801 The running loss is: 12.486706361174583 The number of items in train is: 12 The loss for epoch 5 1.0405588634312153 The running loss is: 12.287828579545021 The number of items in train is: 12 The loss for epoch 6 1.023985714962085 The running loss is: 11.929625041782856 The number of items in train is: 12 The loss for epoch 7 0.9941354201485714 The running loss is: 12.279497995972633 The number of items in train is: 12 The loss for epoch 8 1.023291499664386 The running loss is: 11.818829461932182 The number of items in train is: 12 The loss for epoch 9 0.9849024551610152 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.814013 47 30819 ... 6.518628 48 30820 ... 9.284746 49 30821 ... 6.500539 50 30822 ... 7.052881 51 30823 ... 5.470279 52 30824 ... 9.392167 53 30825 ... 9.151134 54 30826 ... 9.920794 55 30827 ... 11.009304 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c5lun9dz wandb: Agent Starting Run: b3b14bgb with config: batch_size: 3 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: b3b14bgb
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 81.98305875062943 The number of items in train is: 12 The loss for epoch 0 6.831921562552452 The running loss is: 23.46656311303377 The number of items in train is: 12 The loss for epoch 1 1.9555469260861476 The running loss is: 18.955001026391983 The number of items in train is: 12 The loss for epoch 2 1.5795834188659985 The running loss is: 13.628064028918743 The number of items in train is: 12 The loss for epoch 3 1.1356720024098952 The running loss is: 13.840984091162682 The number of items in train is: 12 The loss for epoch 4 1.1534153409302235 The running loss is: 12.88997782766819 The number of items in train is: 12 The loss for epoch 5 1.0741648189723492 The running loss is: 12.13399039208889 The number of items in train is: 12 The loss for epoch 6 1.0111658660074074 The running loss is: 12.013321369886398 The number of items in train is: 12 The loss for epoch 7 1.0011101141571999 The running loss is: 11.848396576941013 The number of items in train is: 12 The loss for epoch 8 0.9873663814117511 The running loss is: 12.80077788233757 The number of items in train is: 12 The loss for epoch 9 1.0667314901947975 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.724473 47 30819 ... 8.855355 48 30820 ... 13.927794 49 30821 ... 10.620327 50 30822 ... 7.505313 51 30823 ... 5.085643 52 30824 ... 7.951116 53 30825 ... 8.628775 54 30826 ... 10.043982 55 30827 ... 17.028318 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: b3b14bgb wandb: Agent Starting Run: s1h956bq with config: batch_size: 3 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: s1h956bq
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 59.376845210790634 The number of items in train is: 12 The loss for epoch 0 4.9480704342325526 The running loss is: 20.686773542314768 The number of items in train is: 12 The loss for epoch 1 1.7238977951928973 The running loss is: 13.994047820568085 The number of items in train is: 12 The loss for epoch 2 1.1661706517140071 The running loss is: 11.97829656675458 The number of items in train is: 12 The loss for epoch 3 0.9981913805628816 The running loss is: 11.18816128000617 The number of items in train is: 12 The loss for epoch 4 0.9323467733338475 The running loss is: 14.145705461502075 The number of items in train is: 12 The loss for epoch 5 1.1788087884585063 The running loss is: 11.821292378008366 The number of items in train is: 12 The loss for epoch 6 0.9851076981673638 The running loss is: 12.026786141097546 The number of items in train is: 12 The loss for epoch 7 1.0022321784247954 The running loss is: 11.274334587156773 The number of items in train is: 12 The loss for epoch 8 0.9395278822630644 The running loss is: 10.756500020623207 The number of items in train is: 12 The loss for epoch 9 0.8963750017186006 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 3.249136 47 30819 ... 7.751321 48 30820 ... 12.270601 49 30821 ... 5.888708 50 30822 ... 4.762325 51 30823 ... 5.235315 52 30824 ... 7.638667 53 30825 ... 10.344776 54 30826 ... 10.507303 55 30827 ... 10.673805 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: s1h956bq wandb: Agent Starting Run: vo80oil3 with config: batch_size: 3 forecast_history: 6 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: vo80oil3
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 6 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 6 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 6 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 6 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 45.60368609428406 The number of items in train is: 12 The loss for epoch 0 3.8003071745236716 The running loss is: 18.71952261030674 The number of items in train is: 12 The loss for epoch 1 1.5599602175255616 The running loss is: 14.976400405168533 The number of items in train is: 12 The loss for epoch 2 1.2480333670973778 The running loss is: 12.58779701590538 The number of items in train is: 12 The loss for epoch 3 1.0489830846587818 The running loss is: 13.024215057492256 The number of items in train is: 12 The loss for epoch 4 1.0853512547910213 The running loss is: 12.297743678092957 The number of items in train is: 12 The loss for epoch 5 1.024811973174413 The running loss is: 12.213317602872849 The number of items in train is: 12 The loss for epoch 6 1.0177764669060707 The running loss is: 12.347241327166557 The number of items in train is: 12 The loss for epoch 7 1.0289367772638798 The running loss is: 12.762004941701889 The number of items in train is: 12 The loss for epoch 8 1.0635004118084908 The running loss is: 12.372626543045044 The number of items in train is: 12 The loss for epoch 9 1.0310522119204204 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 6, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.393170 47 30819 ... 11.193472 48 30820 ... 11.361673 49 30821 ... 11.471720 50 30822 ... 11.755054 51 30823 ... 11.518402 52 30824 ... 11.129681 53 30825 ... 11.483230 54 30826 ... 12.134523 55 30827 ... 13.660666 [16 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vo80oil3 wandb: Agent Starting Run: ubv4ystc with config: batch_size: 3 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: ubv4ystc
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.101865265518427 The number of items in train is: 12 The loss for epoch 0 1.1751554387932022 The running loss is: 26.686464205384254 The number of items in train is: 12 The loss for epoch 1 2.2238720171153545 The running loss is: 13.082868907600641 The number of items in train is: 12 The loss for epoch 2 1.0902390756333868 The running loss is: 12.054546843282878 The number of items in train is: 12 The loss for epoch 3 1.0045455702735733 The running loss is: 11.357063516043127 The number of items in train is: 12 The loss for epoch 4 0.9464219596702605 The running loss is: 10.975450985133648 The number of items in train is: 12 The loss for epoch 5 0.914620915427804 The running loss is: 10.746945226565003 The number of items in train is: 12 The loss for epoch 6 0.895578768880417 The running loss is: 10.431892652064562 The number of items in train is: 12 The loss for epoch 7 0.8693243876720468 The running loss is: 10.116163417696953 The number of items in train is: 12 The loss for epoch 8 0.8430136181414127 The running loss is: 9.563586957752705 The number of items in train is: 12 The loss for epoch 9 0.7969655798127254 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.468307 47 30819 ... 6.544013 48 30820 ... 5.728243 49 30821 ... 5.464718 50 30822 ... 5.680757 51 30823 ... 6.046756 52 30824 ... 6.474231 53 30825 ... 9.770175 54 30826 ... 10.915289 55 30827 ... 11.168087 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ubv4ystc wandb: Agent Starting Run: gz2rrs14 with config: batch_size: 3 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: gz2rrs14
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.668365709483624 The number of items in train is: 12 The loss for epoch 0 1.139030475790302 The running loss is: 22.000758349895477 The number of items in train is: 12 The loss for epoch 1 1.8333965291579564 The running loss is: 12.867923766374588 The number of items in train is: 12 The loss for epoch 2 1.0723269805312157 The running loss is: 12.467137441039085 The number of items in train is: 12 The loss for epoch 3 1.0389281200865905 The running loss is: 12.045014038681984 The number of items in train is: 12 The loss for epoch 4 1.0037511698901653 The running loss is: 11.449671164155006 The number of items in train is: 12 The loss for epoch 5 0.9541392636795839 The running loss is: 11.364717662334442 The number of items in train is: 12 The loss for epoch 6 0.9470598051945368 The running loss is: 11.024014353752136 The number of items in train is: 12 The loss for epoch 7 0.918667862812678 The running loss is: 10.835795931518078 The number of items in train is: 12 The loss for epoch 8 0.9029829942931732 The running loss is: 10.63074404746294 The number of items in train is: 12 The loss for epoch 9 0.8858953372885784 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.082046 47 30819 ... 5.716176 48 30820 ... 4.953457 49 30821 ... 5.225757 50 30822 ... 5.296615 51 30823 ... 5.834962 52 30824 ... 6.323007 53 30825 ... 9.013754 54 30826 ... 9.816219 55 30827 ... 10.285398 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gz2rrs14 wandb: Agent Starting Run: c7r3et8o with config: batch_size: 3 forecast_history: 7 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: c7r3et8o
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.087084546685219 The number of items in train is: 11 The loss for epoch 0 1.2806440496986562 The running loss is: 15.108550131320953 The number of items in train is: 11 The loss for epoch 1 1.373504557392814 The running loss is: 11.57915723323822 The number of items in train is: 11 The loss for epoch 2 1.0526506575671108 The running loss is: 11.622581869363785 The number of items in train is: 11 The loss for epoch 3 1.0565983517603441 The running loss is: 11.423680514097214 The number of items in train is: 11 The loss for epoch 4 1.038516410372474 The running loss is: 11.086277157068253 The number of items in train is: 11 The loss for epoch 5 1.0078433779152958 The running loss is: 10.852890878915787 The number of items in train is: 11 The loss for epoch 6 0.9866264435377988 The running loss is: 10.427777409553528 The number of items in train is: 11 The loss for epoch 7 0.9479797645048662 The running loss is: 10.2155372351408 The number of items in train is: 11 The loss for epoch 8 0.9286852031946182 The running loss is: 9.269150421023369 The number of items in train is: 11 The loss for epoch 9 0.8426500382748517 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.902751 47 30819 ... 6.116383 48 30820 ... 5.196961 49 30821 ... 6.538588 50 30822 ... 6.004770 51 30823 ... 7.052540 52 30824 ... 7.391847 53 30825 ... 11.100878 54 30826 ... 12.244072 55 30827 ... 14.028635 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c7r3et8o wandb: Agent Starting Run: 2btvbagt with config: batch_size: 3 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 2btvbagt
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.820672918111086 The number of items in train is: 12 The loss for epoch 0 1.1517227431759238 The running loss is: 26.606332644820213 The number of items in train is: 12 The loss for epoch 1 2.2171943870683513 The running loss is: 19.74119022488594 The number of items in train is: 12 The loss for epoch 2 1.6450991854071617 The running loss is: 13.292974773794413 The number of items in train is: 12 The loss for epoch 3 1.107747897816201 The running loss is: 12.035850204527378 The number of items in train is: 12 The loss for epoch 4 1.0029875170439482 The running loss is: 10.859765394590795 The number of items in train is: 12 The loss for epoch 5 0.904980449549233 The running loss is: 10.321846425533295 The number of items in train is: 12 The loss for epoch 6 0.8601538687944412 The running loss is: 10.080843094736338 The number of items in train is: 12 The loss for epoch 7 0.8400702578946948 The running loss is: 9.47326545137912 The number of items in train is: 12 The loss for epoch 8 0.7894387876149267 The running loss is: 9.196296703070402 The number of items in train is: 12 The loss for epoch 9 0.7663580585892001 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.013854 47 30819 Eagle County, Colorado, United States ... 47 4.551272 48 30820 Eagle County, Colorado, United States ... 48 3.015524 49 30821 Eagle County, Colorado, United States ... 49 1.243749 50 30822 Eagle County, Colorado, United States ... 50 1.685084 51 30823 Eagle County, Colorado, United States ... 51 2.245061 52 30824 Eagle County, Colorado, United States ... 52 3.145492 53 30825 Eagle County, Colorado, United States ... 53 5.108663 54 30826 Eagle County, Colorado, United States ... 54 6.053539 55 30827 Eagle County, Colorado, United States ... 55 5.009378 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 2btvbagt wandb: Agent Starting Run: vf9yil9d with config: batch_size: 3 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: vf9yil9d
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.319420583546162 The number of items in train is: 12 The loss for epoch 0 1.1099517152955134 The running loss is: 23.99860054254532 The number of items in train is: 12 The loss for epoch 1 1.9998833785454433 The running loss is: 16.226833522319794 The number of items in train is: 12 The loss for epoch 2 1.3522361268599827 The running loss is: 13.81850466877222 The number of items in train is: 12 The loss for epoch 3 1.1515420557310183 The running loss is: 12.647154584527016 The number of items in train is: 12 The loss for epoch 4 1.0539295487105846 The running loss is: 11.547047853469849 The number of items in train is: 12 The loss for epoch 5 0.962253987789154 The running loss is: 10.53432285785675 The number of items in train is: 12 The loss for epoch 6 0.8778602381547292 The running loss is: 10.211327746510506 The number of items in train is: 12 The loss for epoch 7 0.8509439788758755 The running loss is: 10.368523627519608 The number of items in train is: 12 The loss for epoch 8 0.864043635626634 The running loss is: 9.499119475483894 The number of items in train is: 12 The loss for epoch 9 0.7915932896236578 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.554091 47 30819 Eagle County, Colorado, United States ... 47 4.430425 48 30820 Eagle County, Colorado, United States ... 48 3.866688 49 30821 Eagle County, Colorado, United States ... 49 4.931254 50 30822 Eagle County, Colorado, United States ... 50 4.549019 51 30823 Eagle County, Colorado, United States ... 51 5.059370 52 30824 Eagle County, Colorado, United States ... 52 5.614854 53 30825 Eagle County, Colorado, United States ... 53 6.800270 54 30826 Eagle County, Colorado, United States ... 54 6.520226 55 30827 Eagle County, Colorado, United States ... 55 6.729157 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vf9yil9d wandb: Agent Starting Run: 95ntbs64 with config: batch_size: 3 forecast_history: 7 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 95ntbs64
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 12.921886771917343 The number of items in train is: 11 The loss for epoch 0 1.174716979265213 The running loss is: 19.92188435792923 The number of items in train is: 11 The loss for epoch 1 1.8110803961753845 The running loss is: 13.59029796719551 The number of items in train is: 11 The loss for epoch 2 1.23548163338141 The running loss is: 13.310383319854736 The number of items in train is: 11 The loss for epoch 3 1.2100348472595215 The running loss is: 11.705954015254974 The number of items in train is: 11 The loss for epoch 4 1.0641776377504522 The running loss is: 11.907550156116486 The number of items in train is: 11 The loss for epoch 5 1.0825045596469531 The running loss is: 11.72386035323143 The number of items in train is: 11 The loss for epoch 6 1.0658054866574027 The running loss is: 11.24789434671402 The number of items in train is: 11 The loss for epoch 7 1.0225358497012744 The running loss is: 10.430751740932465 The number of items in train is: 11 The loss for epoch 8 0.9482501582665877 The running loss is: 9.527582883834839 The number of items in train is: 11 The loss for epoch 9 0.8661438985304399 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.573842 47 30819 Eagle County, Colorado, United States ... 47 5.654085 48 30820 Eagle County, Colorado, United States ... 48 5.214627 49 30821 Eagle County, Colorado, United States ... 49 6.999577 50 30822 Eagle County, Colorado, United States ... 50 6.205671 51 30823 Eagle County, Colorado, United States ... 51 7.371466 52 30824 Eagle County, Colorado, United States ... 52 8.793597 53 30825 Eagle County, Colorado, United States ... 53 9.819304 54 30826 Eagle County, Colorado, United States ... 54 9.304229 55 30827 Eagle County, Colorado, United States ... 55 9.831146 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 95ntbs64 wandb: Agent Starting Run: 1x40zbqa with config: batch_size: 3 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 1x40zbqa
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 22.54161025211215 The number of items in train is: 12 The loss for epoch 0 1.8784675210093458 The running loss is: 17.038389161229134 The number of items in train is: 12 The loss for epoch 1 1.4198657634357612 The running loss is: 31.379464015364647 The number of items in train is: 12 The loss for epoch 2 2.6149553346137204 The running loss is: 13.966453918255866 The number of items in train is: 12 The loss for epoch 3 1.1638711598546554 The running loss is: 15.581669982522726 The number of items in train is: 12 The loss for epoch 4 1.2984724985435605 The running loss is: 11.612488612532616 The number of items in train is: 12 The loss for epoch 5 0.967707384377718 The running loss is: 11.270859359763563 The number of items in train is: 12 The loss for epoch 6 0.9392382799802969 The running loss is: 9.403395362198353 The number of items in train is: 12 The loss for epoch 7 0.7836162801831961 The running loss is: 8.220736034214497 The number of items in train is: 12 The loss for epoch 8 0.6850613361845413 The running loss is: 9.775267072021961 The number of items in train is: 12 The loss for epoch 9 0.8146055893351635 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.412656 47 30819 Eagle County, Colorado, United States ... 47 5.343231 48 30820 Eagle County, Colorado, United States ... 48 4.858974 49 30821 Eagle County, Colorado, United States ... 49 4.976553 50 30822 Eagle County, Colorado, United States ... 50 4.848750 51 30823 Eagle County, Colorado, United States ... 51 4.915821 52 30824 Eagle County, Colorado, United States ... 52 5.174218 53 30825 Eagle County, Colorado, United States ... 53 7.864298 54 30826 Eagle County, Colorado, United States ... 54 7.851389 55 30827 Eagle County, Colorado, United States ... 55 7.985761 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1x40zbqa wandb: Agent Starting Run: 0xhh0dml with config: batch_size: 3 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 0xhh0dml
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 18.429566003382206 The number of items in train is: 12 The loss for epoch 0 1.535797166948517 The running loss is: 18.622036963701248 The number of items in train is: 12 The loss for epoch 1 1.5518364136417706 The running loss is: 28.973867908120155 The number of items in train is: 12 The loss for epoch 2 2.414488992343346 The running loss is: 16.044194497168064 The number of items in train is: 12 The loss for epoch 3 1.3370162080973387 The running loss is: 16.122961774468422 The number of items in train is: 12 The loss for epoch 4 1.3435801478723686 The running loss is: 12.899257555603981 The number of items in train is: 12 The loss for epoch 5 1.074938129633665 The running loss is: 12.557156592607498 The number of items in train is: 12 The loss for epoch 6 1.0464297160506248 The running loss is: 12.619301199913025 The number of items in train is: 12 The loss for epoch 7 1.0516084333260853 The running loss is: 12.38354542851448 The number of items in train is: 12 The loss for epoch 8 1.0319621190428734 The running loss is: 11.681083425879478 The number of items in train is: 12 The loss for epoch 9 0.9734236188232899 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.246218 47 30819 ... 14.066824 48 30820 ... 12.973879 49 30821 ... 10.188002 50 30822 ... 10.609279 51 30823 ... 10.523514 52 30824 ... 11.179653 53 30825 ... 12.925735 54 30826 ... 13.551861 55 30827 ... 13.512096 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0xhh0dml wandb: Agent Starting Run: ye5e1j66 with config: batch_size: 3 forecast_history: 7 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ye5e1j66
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.376830667257309 The number of items in train is: 11 The loss for epoch 0 1.306984606114301 The running loss is: 16.50704401731491 The number of items in train is: 11 The loss for epoch 1 1.5006403652104465 The running loss is: 18.80806991457939 The number of items in train is: 11 The loss for epoch 2 1.7098245376890355 The running loss is: 12.212967872619629 The number of items in train is: 11 The loss for epoch 3 1.1102698066017844 The running loss is: 12.07007920742035 The number of items in train is: 11 The loss for epoch 4 1.0972799279473044 The running loss is: 11.875926405191422 The number of items in train is: 11 The loss for epoch 5 1.07962967319922 The running loss is: 11.825728297233582 The number of items in train is: 11 The loss for epoch 6 1.0750662088394165 The running loss is: 11.659875005483627 The number of items in train is: 11 The loss for epoch 7 1.0599886368621478 The running loss is: 11.533598870038986 The number of items in train is: 11 The loss for epoch 8 1.0485089881853624 The running loss is: 10.735102593898773 The number of items in train is: 11 The loss for epoch 9 0.9759184176271612 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.420413 47 30819 ... 8.245983 48 30820 ... 7.171728 49 30821 ... 7.246099 50 30822 ... 6.445683 51 30823 ... 7.200696 52 30824 ... 8.086080 53 30825 ... 11.314844 54 30826 ... 12.178420 55 30827 ... 12.283268 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ye5e1j66 wandb: Agent Starting Run: 62zrpq21 with config: batch_size: 3 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 62zrpq21
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 103.22703457251191 The number of items in train is: 12 The loss for epoch 0 8.60225288104266 The running loss is: 29.94053180515766 The number of items in train is: 12 The loss for epoch 1 2.495044317096472 The running loss is: 16.690219312906265 The number of items in train is: 12 The loss for epoch 2 1.3908516094088554 The running loss is: 13.111681044101715 The number of items in train is: 12 The loss for epoch 3 1.0926400870084763 The running loss is: 15.997931838035583 The number of items in train is: 12 The loss for epoch 4 1.3331609865029652 The running loss is: 11.851074589183554 The number of items in train is: 12 The loss for epoch 5 0.9875895490986295 The running loss is: 10.893377058207989 The number of items in train is: 12 The loss for epoch 6 0.9077814215173324 The running loss is: 11.342389456927776 The number of items in train is: 12 The loss for epoch 7 0.945199121410648 The running loss is: 10.936100173741579 The number of items in train is: 12 The loss for epoch 8 0.9113416811451316 The running loss is: 10.374511506408453 The number of items in train is: 12 The loss for epoch 9 0.8645426255340377 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 2.288023 47 30819 Eagle County, Colorado, United States ... 47 2.294388 48 30820 Eagle County, Colorado, United States ... 48 2.283244 49 30821 Eagle County, Colorado, United States ... 49 2.281832 50 30822 Eagle County, Colorado, United States ... 50 2.283400 51 30823 Eagle County, Colorado, United States ... 51 2.285488 52 30824 Eagle County, Colorado, United States ... 52 2.234835 53 30825 Eagle County, Colorado, United States ... 53 3.238281 54 30826 Eagle County, Colorado, United States ... 54 3.240119 55 30827 Eagle County, Colorado, United States ... 55 3.236318 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 62zrpq21 wandb: Agent Starting Run: 4hwszs1n with config: batch_size: 3 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 4hwszs1n
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 81.03642698377371 The number of items in train is: 12 The loss for epoch 0 6.753035581981142 The running loss is: 20.14825175702572 The number of items in train is: 12 The loss for epoch 1 1.6790209797521432 The running loss is: 21.776003628969193 The number of items in train is: 12 The loss for epoch 2 1.814666969080766 The running loss is: 12.587840363383293 The number of items in train is: 12 The loss for epoch 3 1.0489866969486077 The running loss is: 13.271085634827614 The number of items in train is: 12 The loss for epoch 4 1.105923802902301 The running loss is: 15.132914364337921 The number of items in train is: 12 The loss for epoch 5 1.26107619702816 The running loss is: 12.673068717122078 The number of items in train is: 12 The loss for epoch 6 1.056089059760173 The running loss is: 13.078043937683105 The number of items in train is: 12 The loss for epoch 7 1.0898369948069255 The running loss is: 12.038839250802994 The number of items in train is: 12 The loss for epoch 8 1.0032366042335827 The running loss is: 13.619364827871323 The number of items in train is: 12 The loss for epoch 9 1.1349470689892769 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.130917 47 30819 Eagle County, Colorado, United States ... 47 6.415527 48 30820 Eagle County, Colorado, United States ... 48 7.077496 49 30821 Eagle County, Colorado, United States ... 49 6.234654 50 30822 Eagle County, Colorado, United States ... 50 6.276112 51 30823 Eagle County, Colorado, United States ... 51 6.861938 52 30824 Eagle County, Colorado, United States ... 52 7.286839 53 30825 Eagle County, Colorado, United States ... 53 9.426314 54 30826 Eagle County, Colorado, United States ... 54 9.667464 55 30827 Eagle County, Colorado, United States ... 55 9.229389 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 4hwszs1n wandb: Agent Starting Run: cy9snt8t with config: batch_size: 3 forecast_history: 7 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: cy9snt8t
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 7 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 7 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 7 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 7 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 54.83278104662895 The number of items in train is: 11 The loss for epoch 0 4.984798276966268 The running loss is: 15.510921031236649 The number of items in train is: 11 The loss for epoch 1 1.4100837301124225 The running loss is: 15.879859685897827 The number of items in train is: 11 The loss for epoch 2 1.4436236078088933 The running loss is: 12.013406425714493 The number of items in train is: 11 The loss for epoch 3 1.0921278568831356 The running loss is: 13.37919408082962 The number of items in train is: 11 The loss for epoch 4 1.216290370984511 The running loss is: 11.679980754852295 The number of items in train is: 11 The loss for epoch 5 1.0618164322592996 The running loss is: 11.539081782102585 The number of items in train is: 11 The loss for epoch 6 1.0490074347365985 The running loss is: 11.794884741306305 The number of items in train is: 11 The loss for epoch 7 1.072262249209664 The running loss is: 11.983941286802292 The number of items in train is: 11 The loss for epoch 8 1.0894492078911175 The running loss is: 11.315197944641113 The number of items in train is: 11 The loss for epoch 9 1.0286543586037376 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 7, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 13.684507 47 30819 ... 13.638751 48 30820 ... 13.938817 49 30821 ... 15.181535 50 30822 ... 15.354393 51 30823 ... 14.973742 52 30824 ... 14.617647 53 30825 ... 19.675823 54 30826 ... 19.256590 55 30827 ... 20.088932 [17 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cy9snt8t wandb: Agent Starting Run: gllvj7he with config: batch_size: 3 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: gllvj7he
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.211308494210243 The number of items in train is: 12 The loss for epoch 0 1.4342757078508537 The running loss is: 16.233859598636627 The number of items in train is: 12 The loss for epoch 1 1.352821633219719 The running loss is: 12.66020293906331 The number of items in train is: 12 The loss for epoch 2 1.0550169115886092 The running loss is: 11.963709861040115 The number of items in train is: 12 The loss for epoch 3 0.996975821753343 The running loss is: 11.758347198367119 The number of items in train is: 12 The loss for epoch 4 0.9798622665305933 The running loss is: 11.206863448023796 The number of items in train is: 12 The loss for epoch 5 0.9339052873353163 The running loss is: 11.012989409267902 The number of items in train is: 12 The loss for epoch 6 0.9177491174389919 The running loss is: 10.944889828562737 The number of items in train is: 12 The loss for epoch 7 0.912074152380228 The running loss is: 11.287752538919449 The number of items in train is: 12 The loss for epoch 8 0.9406460449099541 The running loss is: 10.014553174376488 The number of items in train is: 12 The loss for epoch 9 0.8345460978647073 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.422697 47 30819 ... 7.106028 48 30820 ... 9.759746 49 30821 ... 8.222320 50 30822 ... 4.610928 51 30823 ... 6.268315 52 30824 ... 6.628915 53 30825 ... 6.769064 54 30826 ... 9.233932 55 30827 ... 12.926121 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: gllvj7he wandb: Agent Starting Run: 11cp523e with config: batch_size: 3 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 11cp523e
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.0985167324543 The number of items in train is: 11 The loss for epoch 0 1.3725924302231183 The running loss is: 16.43994829058647 The number of items in train is: 11 The loss for epoch 1 1.4945407536896793 The running loss is: 12.457493215799332 The number of items in train is: 11 The loss for epoch 2 1.1324993832544847 The running loss is: 12.50855478644371 The number of items in train is: 11 The loss for epoch 3 1.1371413442221554 The running loss is: 12.073927566409111 The number of items in train is: 11 The loss for epoch 4 1.0976297787644647 The running loss is: 11.802223101258278 The number of items in train is: 11 The loss for epoch 5 1.0729293728416616 The running loss is: 11.131017163395882 The number of items in train is: 11 The loss for epoch 6 1.0119106512178073 The running loss is: 10.766869887709618 The number of items in train is: 11 The loss for epoch 7 0.978806353428147 The running loss is: 10.445338189601898 The number of items in train is: 11 The loss for epoch 8 0.949576199054718 The running loss is: 10.062777064740658 The number of items in train is: 11 The loss for epoch 9 0.9147979149764235 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.078831 47 30819 ... 11.039064 48 30820 ... 16.357121 49 30821 ... 13.192023 50 30822 ... 6.326085 51 30823 ... 9.873568 52 30824 ... 10.910859 53 30825 ... 11.316805 54 30826 ... 15.975700 55 30827 ... 22.182123 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 11cp523e wandb: Agent Starting Run: 5qrg143a with config: batch_size: 3 forecast_history: 8 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 5qrg143a
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.156650215387344 The number of items in train is: 11 The loss for epoch 0 1.2869682013988495 The running loss is: 16.89894598722458 The number of items in train is: 11 The loss for epoch 1 1.5362678170204163 The running loss is: 11.663092344999313 The number of items in train is: 11 The loss for epoch 2 1.060281122272665 The running loss is: 11.744797706604004 The number of items in train is: 11 The loss for epoch 3 1.067708882418546 The running loss is: 11.475342273712158 The number of items in train is: 11 The loss for epoch 4 1.0432129339738325 The running loss is: 11.35976918041706 The number of items in train is: 11 The loss for epoch 5 1.0327062891288237 The running loss is: 11.192541688680649 The number of items in train is: 11 The loss for epoch 6 1.017503789880059 The running loss is: 11.171793431043625 The number of items in train is: 11 The loss for epoch 7 1.0156175846403295 The running loss is: 10.933511719107628 The number of items in train is: 11 The loss for epoch 8 0.9939556108279661 The running loss is: 10.853802099823952 The number of items in train is: 11 The loss for epoch 9 0.9867092818021774 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 7.104875 47 30819 Eagle County, Colorado, United States ... 47 7.535665 48 30820 Eagle County, Colorado, United States ... 48 7.494577 49 30821 Eagle County, Colorado, United States ... 49 6.863788 50 30822 Eagle County, Colorado, United States ... 50 6.753548 51 30823 Eagle County, Colorado, United States ... 51 6.998057 52 30824 Eagle County, Colorado, United States ... 52 7.178608 53 30825 Eagle County, Colorado, United States ... 53 7.816975 54 30826 Eagle County, Colorado, United States ... 54 8.525613 55 30827 Eagle County, Colorado, United States ... 55 8.816086 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 5qrg143a wandb: Agent Starting Run: xml2wk55 with config: batch_size: 3 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: xml2wk55
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.242870450019836 The number of items in train is: 12 The loss for epoch 0 1.103572537501653 The running loss is: 26.00589569658041 The number of items in train is: 12 The loss for epoch 1 2.167157974715034 The running loss is: 16.079134315252304 The number of items in train is: 12 The loss for epoch 2 1.3399278596043587 The running loss is: 14.295495130121708 The number of items in train is: 12 The loss for epoch 3 1.1912912608434756 The running loss is: 12.250516004860401 The number of items in train is: 12 The loss for epoch 4 1.0208763337383668 The running loss is: 12.25134564191103 The number of items in train is: 12 The loss for epoch 5 1.0209454701592524 The running loss is: 11.315909065306187 The number of items in train is: 12 The loss for epoch 6 0.9429924221088489 The running loss is: 12.214250043034554 The number of items in train is: 12 The loss for epoch 7 1.0178541702528794 The running loss is: 11.34765262156725 The number of items in train is: 12 The loss for epoch 8 0.9456377184639374 The running loss is: 11.16403116285801 The number of items in train is: 12 The loss for epoch 9 0.9303359302381674 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.780159 47 30819 ... 7.524302 48 30820 ... 8.775655 49 30821 ... 7.754395 50 30822 ... 4.720078 51 30823 ... 6.290050 52 30824 ... 6.727722 53 30825 ... 5.912613 54 30826 ... 8.422699 55 30827 ... 11.214253 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xml2wk55 wandb: Agent Starting Run: 57qin94v with config: batch_size: 3 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 57qin94v
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.26663488149643 The number of items in train is: 11 The loss for epoch 0 1.2969668074087664 The running loss is: 20.902589723467827 The number of items in train is: 11 The loss for epoch 1 1.900235429406166 The running loss is: 13.939648985862732 The number of items in train is: 11 The loss for epoch 2 1.267240816896612 The running loss is: 13.26231038570404 The number of items in train is: 11 The loss for epoch 3 1.205664580518549 The running loss is: 12.16365271806717 The number of items in train is: 11 The loss for epoch 4 1.105786610733379 The running loss is: 11.990179777145386 The number of items in train is: 11 The loss for epoch 5 1.0900163433768533 The running loss is: 10.77952553331852 The number of items in train is: 11 The loss for epoch 6 0.97995686666532 The running loss is: 9.914591431617737 The number of items in train is: 11 The loss for epoch 7 0.9013264937834307 The running loss is: 9.7501370459795 The number of items in train is: 11 The loss for epoch 8 0.8863760950890455 The running loss is: 10.100802019238472 The number of items in train is: 11 The loss for epoch 9 0.9182547290216793 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 6.128566 47 30819 ... 8.571231 48 30820 ... 13.003282 49 30821 ... 10.600195 50 30822 ... 3.180500 51 30823 ... 5.083227 52 30824 ... 6.587037 53 30825 ... 6.724599 54 30826 ... 10.925661 55 30827 ... 15.574051 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 57qin94v wandb: Agent Starting Run: c9vklx84 with config: batch_size: 3 forecast_history: 8 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: c9vklx84
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.399442881345749 The number of items in train is: 11 The loss for epoch 0 1.2181311710314318 The running loss is: 21.727802246809006 The number of items in train is: 11 The loss for epoch 1 1.9752547497099096 The running loss is: 14.162266343832016 The number of items in train is: 11 The loss for epoch 2 1.2874787585301832 The running loss is: 13.402291283011436 The number of items in train is: 11 The loss for epoch 3 1.2183901166374034 The running loss is: 11.804574847221375 The number of items in train is: 11 The loss for epoch 4 1.0731431679292158 The running loss is: 11.677122816443443 The number of items in train is: 11 The loss for epoch 5 1.0615566196766766 The running loss is: 11.409079656004906 The number of items in train is: 11 The loss for epoch 6 1.0371890596368096 The running loss is: 11.398159816861153 The number of items in train is: 11 The loss for epoch 7 1.0361963469873776 The running loss is: 11.29641242325306 The number of items in train is: 11 The loss for epoch 8 1.0269465839320964 The running loss is: 11.140063360333443 The number of items in train is: 11 The loss for epoch 9 1.0127330327575856 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.260872 47 30819 Eagle County, Colorado, United States ... 47 8.526230 48 30820 Eagle County, Colorado, United States ... 48 8.849753 49 30821 Eagle County, Colorado, United States ... 49 8.448010 50 30822 Eagle County, Colorado, United States ... 50 8.209758 51 30823 Eagle County, Colorado, United States ... 51 8.382380 52 30824 Eagle County, Colorado, United States ... 52 8.583577 53 30825 Eagle County, Colorado, United States ... 53 8.607120 54 30826 Eagle County, Colorado, United States ... 54 9.303979 55 30827 Eagle County, Colorado, United States ... 55 9.497848 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: c9vklx84 wandb: Agent Starting Run: i5gtlelt with config: batch_size: 3 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: i5gtlelt
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.092710718512535 The number of items in train is: 12 The loss for epoch 0 1.257725893209378 The running loss is: 20.450885623693466 The number of items in train is: 12 The loss for epoch 1 1.704240468641122 The running loss is: 21.794561214745045 The number of items in train is: 12 The loss for epoch 2 1.816213434562087 The running loss is: 12.902893766760826 The number of items in train is: 12 The loss for epoch 3 1.075241147230069 The running loss is: 12.682588957250118 The number of items in train is: 12 The loss for epoch 4 1.0568824131041765 The running loss is: 11.801365286111832 The number of items in train is: 12 The loss for epoch 5 0.9834471071759859 The running loss is: 12.599437983706594 The number of items in train is: 12 The loss for epoch 6 1.0499531653088827 The running loss is: 12.43399265408516 The number of items in train is: 12 The loss for epoch 7 1.0361660545070965 The running loss is: 12.696432754397392 The number of items in train is: 12 The loss for epoch 8 1.0580360628664494 The running loss is: 12.389419689774513 The number of items in train is: 12 The loss for epoch 9 1.0324516408145428 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 7.582536 47 30819 ... 9.944989 48 30820 ... 11.621634 49 30821 ... 10.119394 50 30822 ... 6.626044 51 30823 ... 9.020576 52 30824 ... 9.057504 53 30825 ... 7.155132 54 30826 ... 9.989118 55 30827 ... 12.453584 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: i5gtlelt wandb: Agent Starting Run: o7duvp7g with config: batch_size: 3 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: o7duvp7g
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.42051613330841 The number of items in train is: 11 The loss for epoch 0 1.3109560121189465 The running loss is: 21.608804553747177 The number of items in train is: 11 The loss for epoch 1 1.9644367776133798 The running loss is: 19.04217305779457 The number of items in train is: 11 The loss for epoch 2 1.7311066416176883 The running loss is: 12.788259238004684 The number of items in train is: 11 The loss for epoch 3 1.1625690216367894 The running loss is: 12.244571149349213 The number of items in train is: 11 The loss for epoch 4 1.1131428317590193 The running loss is: 11.830523952841759 The number of items in train is: 11 The loss for epoch 5 1.075502177531069 The running loss is: 10.642112955451012 The number of items in train is: 11 The loss for epoch 6 0.9674648141319101 The running loss is: 10.170588843524456 The number of items in train is: 11 The loss for epoch 7 0.9245989857749506 The running loss is: 11.671000733971596 The number of items in train is: 11 The loss for epoch 8 1.0610000667246906 The running loss is: 10.027777716517448 The number of items in train is: 11 The loss for epoch 9 0.9116161560470407 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 5.864102 47 30819 ... 8.607596 48 30820 ... 17.503693 49 30821 ... 15.386040 50 30822 ... 8.010992 51 30823 ... 12.374982 52 30824 ... 12.264388 53 30825 ... 6.375187 54 30826 ... 10.301676 55 30827 ... 19.392179 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: o7duvp7g wandb: Agent Starting Run: 52mcezh5 with config: batch_size: 3 forecast_history: 8 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 52mcezh5
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.35429021716118 The number of items in train is: 11 The loss for epoch 0 1.4867536561055616 The running loss is: 16.922948479652405 The number of items in train is: 11 The loss for epoch 1 1.5384498617865823 The running loss is: 17.590839356184006 The number of items in train is: 11 The loss for epoch 2 1.599167214198546 The running loss is: 13.326302886009216 The number of items in train is: 11 The loss for epoch 3 1.2114820805462925 The running loss is: 12.184310719370842 The number of items in train is: 11 The loss for epoch 4 1.1076646108518948 The running loss is: 11.508990198373795 The number of items in train is: 11 The loss for epoch 5 1.0462718362157994 The running loss is: 11.508930832147598 The number of items in train is: 11 The loss for epoch 6 1.0462664392861454 The running loss is: 11.157640248537064 The number of items in train is: 11 The loss for epoch 7 1.0143309316851876 The running loss is: 11.021537959575653 The number of items in train is: 11 The loss for epoch 8 1.0019579963250593 The running loss is: 11.048202827572823 The number of items in train is: 11 The loss for epoch 9 1.004382075233893 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.469040 47 30819 Eagle County, Colorado, United States ... 47 6.957081 48 30820 Eagle County, Colorado, United States ... 48 9.914102 49 30821 Eagle County, Colorado, United States ... 49 7.646966 50 30822 Eagle County, Colorado, United States ... 50 6.059446 51 30823 Eagle County, Colorado, United States ... 51 6.762846 52 30824 Eagle County, Colorado, United States ... 52 6.450365 53 30825 Eagle County, Colorado, United States ... 53 5.381968 54 30826 Eagle County, Colorado, United States ... 54 6.979038 55 30827 Eagle County, Colorado, United States ... 55 7.752284 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 52mcezh5 wandb: Agent Starting Run: a971extu with config: batch_size: 3 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: a971extu
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 62.512909442186356 The number of items in train is: 12 The loss for epoch 0 5.209409120182197 The running loss is: 17.651342948898673 The number of items in train is: 12 The loss for epoch 1 1.4709452457415562 The running loss is: 16.37899762019515 The number of items in train is: 12 The loss for epoch 2 1.3649164683495958 The running loss is: 15.15978118032217 The number of items in train is: 12 The loss for epoch 3 1.2633150983601809 The running loss is: 12.805925235152245 The number of items in train is: 12 The loss for epoch 4 1.067160436262687 The running loss is: 13.833072826266289 The number of items in train is: 12 The loss for epoch 5 1.152756068855524 The running loss is: 12.69072575867176 The number of items in train is: 12 The loss for epoch 6 1.0575604798893135 The running loss is: 11.099541798233986 The number of items in train is: 12 The loss for epoch 7 0.9249618165194988 The running loss is: 14.725254192948341 The number of items in train is: 12 The loss for epoch 8 1.2271045160790284 The running loss is: 13.127574309706688 The number of items in train is: 12 The loss for epoch 9 1.0939645258088906 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.151128 47 30819 ... 10.103148 48 30820 ... 8.635044 49 30821 ... 8.976196 50 30822 ... 11.631431 51 30823 ... 10.928533 52 30824 ... 10.460353 53 30825 ... 9.690262 54 30826 ... 9.819814 55 30827 ... 9.771276 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: a971extu wandb: Agent Starting Run: r5j5ub0k with config: batch_size: 3 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: r5j5ub0k
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 56.22648885846138 The number of items in train is: 11 The loss for epoch 0 5.111498987132853 The running loss is: 16.17362278699875 The number of items in train is: 11 The loss for epoch 1 1.4703293442726135 The running loss is: 12.739032804965973 The number of items in train is: 11 The loss for epoch 2 1.158093891360543 The running loss is: 12.801687873899937 The number of items in train is: 11 The loss for epoch 3 1.163789806718176 The running loss is: 11.013139143586159 The number of items in train is: 11 The loss for epoch 4 1.0011944675987416 The running loss is: 11.208409741520882 The number of items in train is: 11 The loss for epoch 5 1.018946340138262 The running loss is: 11.521547451615334 The number of items in train is: 11 The loss for epoch 6 1.0474134046923032 The running loss is: 12.145481154322624 The number of items in train is: 11 The loss for epoch 7 1.1041346503929659 The running loss is: 11.915283277630806 The number of items in train is: 11 The loss for epoch 8 1.0832075706937097 The running loss is: 10.81276260316372 The number of items in train is: 11 The loss for epoch 9 0.982978418469429 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 8.238698 47 30819 ... 15.917160 48 30820 ... 18.836643 49 30821 ... 15.165972 50 30822 ... 7.579820 51 30823 ... 11.474918 52 30824 ... 10.543474 53 30825 ... 3.774284 54 30826 ... 13.712145 55 30827 ... 21.918915 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r5j5ub0k wandb: Agent Starting Run: auiqco3o with config: batch_size: 3 forecast_history: 8 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: auiqco3o
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 8 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 8 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 8 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 8 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 68.5550007224083 The number of items in train is: 11 The loss for epoch 0 6.232272792946208 The running loss is: 17.13252791762352 The number of items in train is: 11 The loss for epoch 1 1.5575025379657745 The running loss is: 21.412274941802025 The number of items in train is: 11 The loss for epoch 2 1.9465704492547296 The running loss is: 18.478636503219604 The number of items in train is: 11 The loss for epoch 3 1.6798760457472368 The running loss is: 13.234049081802368 The number of items in train is: 11 The loss for epoch 4 1.2030953710729426 The running loss is: 12.859165400266647 The number of items in train is: 11 The loss for epoch 5 1.169015036387877 The running loss is: 12.60863396525383 The number of items in train is: 11 The loss for epoch 6 1.1462394513867118 The running loss is: 11.726247698068619 The number of items in train is: 11 The loss for epoch 7 1.0660225180062382 The running loss is: 11.967080354690552 The number of items in train is: 11 The loss for epoch 8 1.0879163958809592 The running loss is: 11.622294649481773 The number of items in train is: 11 The loss for epoch 9 1.0565722408619793 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 8, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 11.041265 47 30819 ... 11.052490 48 30820 ... 11.052483 49 30821 ... 11.052554 50 30822 ... 11.196361 51 30823 ... 11.056916 52 30824 ... 11.044400 53 30825 ... 11.057491 54 30826 ... 11.101706 55 30827 ... 11.101956 [18 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: auiqco3o wandb: Agent Starting Run: somsettb with config: batch_size: 3 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: somsettb
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.22938135266304 The number of items in train is: 11 The loss for epoch 0 1.2935801229693673 The running loss is: 19.941050857305527 The number of items in train is: 11 The loss for epoch 1 1.8128228052095934 The running loss is: 11.153500378131866 The number of items in train is: 11 The loss for epoch 2 1.0139545798301697 The running loss is: 11.50929357111454 The number of items in train is: 11 The loss for epoch 3 1.0462994155558674 The running loss is: 10.824358247220516 The number of items in train is: 11 The loss for epoch 4 0.9840325679291378 The running loss is: 10.066967114806175 The number of items in train is: 11 The loss for epoch 5 0.9151788286187432 The running loss is: 10.130360662937164 The number of items in train is: 11 The loss for epoch 6 0.9209418784488331 The running loss is: 9.796619072556496 The number of items in train is: 11 The loss for epoch 7 0.8906017338687723 The running loss is: 9.525743946433067 The number of items in train is: 11 The loss for epoch 8 0.8659767224030062 The running loss is: 9.004187449812889 The number of items in train is: 11 The loss for epoch 9 0.8185624954375353 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 1.641901 47 30819 Eagle County, Colorado, United States ... 47 0.659750 48 30820 Eagle County, Colorado, United States ... 48 0.145355 49 30821 Eagle County, Colorado, United States ... 49 -1.664633 50 30822 Eagle County, Colorado, United States ... 50 -3.271421 51 30823 Eagle County, Colorado, United States ... 51 -3.226503 52 30824 Eagle County, Colorado, United States ... 52 -4.404780 53 30825 Eagle County, Colorado, United States ... 53 -4.431837 54 30826 Eagle County, Colorado, United States ... 54 -3.693761 55 30827 Eagle County, Colorado, United States ... 55 -5.035707 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: somsettb wandb: Agent Starting Run: ahdp4ztj with config: batch_size: 3 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: ahdp4ztj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.904565572738647 The number of items in train is: 11 The loss for epoch 0 1.2640514157035134 The running loss is: 14.439204514026642 The number of items in train is: 11 The loss for epoch 1 1.3126549558206038 The running loss is: 11.414902299642563 The number of items in train is: 11 The loss for epoch 2 1.0377183908765966 The running loss is: 11.388078331947327 The number of items in train is: 11 The loss for epoch 3 1.035279848358848 The running loss is: 10.855302773416042 The number of items in train is: 11 The loss for epoch 4 0.9868457066741857 The running loss is: 10.968083716928959 The number of items in train is: 11 The loss for epoch 5 0.9970985197208144 The running loss is: 10.221406817436218 The number of items in train is: 11 The loss for epoch 6 0.9292188015851107 The running loss is: 10.399505764245987 The number of items in train is: 11 The loss for epoch 7 0.9454096149314534 The running loss is: 9.819108434021473 The number of items in train is: 11 The loss for epoch 8 0.8926462212746794 The running loss is: 10.10106372833252 The number of items in train is: 11 The loss for epoch 9 0.9182785207575018 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.993636 47 30819 Eagle County, Colorado, United States ... 47 0.337607 48 30820 Eagle County, Colorado, United States ... 48 -0.410252 49 30821 Eagle County, Colorado, United States ... 49 -2.278395 50 30822 Eagle County, Colorado, United States ... 50 -3.970787 51 30823 Eagle County, Colorado, United States ... 51 -4.415275 52 30824 Eagle County, Colorado, United States ... 52 -5.037481 53 30825 Eagle County, Colorado, United States ... 53 -4.421631 54 30826 Eagle County, Colorado, United States ... 54 -4.119612 55 30827 Eagle County, Colorado, United States ... 55 -5.898763 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ahdp4ztj wandb: Agent Starting Run: x81o8l78 with config: batch_size: 3 forecast_history: 9 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: x81o8l78
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.101940542459488 The number of items in train is: 11 The loss for epoch 0 1.3729036856781354 The running loss is: 23.97471283376217 The number of items in train is: 11 The loss for epoch 1 2.1795193485238333 The running loss is: 11.563013285398483 The number of items in train is: 11 The loss for epoch 2 1.0511830259453168 The running loss is: 11.633486792445183 The number of items in train is: 11 The loss for epoch 3 1.0575897084041075 The running loss is: 11.537669107317924 The number of items in train is: 11 The loss for epoch 4 1.0488790097561749 The running loss is: 10.989692643284798 The number of items in train is: 11 The loss for epoch 5 0.9990629675713453 The running loss is: 10.99491299688816 The number of items in train is: 11 The loss for epoch 6 0.9995375451716509 The running loss is: 10.651772901415825 The number of items in train is: 11 The loss for epoch 7 0.9683429910378023 The running loss is: 10.3761787712574 The number of items in train is: 11 The loss for epoch 8 0.9432889792052183 The running loss is: 10.486194789409637 The number of items in train is: 11 The loss for epoch 9 0.9532904354008761 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.549189 47 30819 Eagle County, Colorado, United States ... 47 5.238999 48 30820 Eagle County, Colorado, United States ... 48 5.157782 49 30821 Eagle County, Colorado, United States ... 49 4.296832 50 30822 Eagle County, Colorado, United States ... 50 3.588796 51 30823 Eagle County, Colorado, United States ... 51 3.961380 52 30824 Eagle County, Colorado, United States ... 52 3.981963 53 30825 Eagle County, Colorado, United States ... 53 4.519014 54 30826 Eagle County, Colorado, United States ... 54 5.010921 55 30827 Eagle County, Colorado, United States ... 55 4.995728 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: x81o8l78 wandb: Agent Starting Run: a8gs6fcn with config: batch_size: 3 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: a8gs6fcn
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.293268650770187 The number of items in train is: 11 The loss for epoch 0 1.2993880591609261 The running loss is: 25.236984327435493 The number of items in train is: 11 The loss for epoch 1 2.2942713024941357 The running loss is: 15.248826995491982 The number of items in train is: 11 The loss for epoch 2 1.3862569995901801 The running loss is: 13.369037687778473 The number of items in train is: 11 The loss for epoch 3 1.2153670625253157 The running loss is: 11.280201107263565 The number of items in train is: 11 The loss for epoch 4 1.0254728279330514 The running loss is: 10.680228557437658 The number of items in train is: 11 The loss for epoch 5 0.970929868857969 The running loss is: 10.887261852622032 The number of items in train is: 11 The loss for epoch 6 0.9897510775110938 The running loss is: 10.184634555131197 The number of items in train is: 11 The loss for epoch 7 0.9258758686482906 The running loss is: 10.048418715596199 The number of items in train is: 11 The loss for epoch 8 0.9134926105087454 The running loss is: 9.457138307392597 The number of items in train is: 11 The loss for epoch 9 0.8597398461265997 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.523421 47 30819 Eagle County, Colorado, United States ... 47 5.732596 48 30820 Eagle County, Colorado, United States ... 48 5.351936 49 30821 Eagle County, Colorado, United States ... 49 4.316126 50 30822 Eagle County, Colorado, United States ... 50 3.560244 51 30823 Eagle County, Colorado, United States ... 51 4.253401 52 30824 Eagle County, Colorado, United States ... 52 3.771999 53 30825 Eagle County, Colorado, United States ... 53 3.702273 54 30826 Eagle County, Colorado, United States ... 54 4.884375 55 30827 Eagle County, Colorado, United States ... 55 4.741635 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: a8gs6fcn wandb: Agent Starting Run: vu8mseek with config: batch_size: 3 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: vu8mseek
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.480009138584137 The number of items in train is: 11 The loss for epoch 0 1.2254553762349216 The running loss is: 18.653071716427803 The number of items in train is: 11 The loss for epoch 1 1.6957337924025275 The running loss is: 12.810831904411316 The number of items in train is: 11 The loss for epoch 2 1.1646210822192105 The running loss is: 12.394441686570644 The number of items in train is: 11 The loss for epoch 3 1.1267674260518767 The running loss is: 11.051628254354 The number of items in train is: 11 The loss for epoch 4 1.0046934776685454 The running loss is: 11.096481785178185 The number of items in train is: 11 The loss for epoch 5 1.008771071379835 The running loss is: 10.40086854994297 The number of items in train is: 11 The loss for epoch 6 0.9455335045402701 The running loss is: 10.105966605246067 The number of items in train is: 11 The loss for epoch 7 0.9187242368405516 The running loss is: 9.457882694900036 The number of items in train is: 11 The loss for epoch 8 0.8598075177181851 The running loss is: 9.17867822945118 The number of items in train is: 11 The loss for epoch 9 0.8344252935864709 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 0.126443 47 30819 Eagle County, Colorado, United States ... 47 1.472562 48 30820 Eagle County, Colorado, United States ... 48 0.837418 49 30821 Eagle County, Colorado, United States ... 49 -0.418314 50 30822 Eagle County, Colorado, United States ... 50 -1.061832 51 30823 Eagle County, Colorado, United States ... 51 -0.909486 52 30824 Eagle County, Colorado, United States ... 52 -1.210210 53 30825 Eagle County, Colorado, United States ... 53 -1.402265 54 30826 Eagle County, Colorado, United States ... 54 -1.178178 55 30827 Eagle County, Colorado, United States ... 55 -2.296195 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: vu8mseek wandb: Agent Starting Run: ypnfalp7 with config: batch_size: 3 forecast_history: 9 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: ypnfalp7
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.256483346223831 The number of items in train is: 11 The loss for epoch 0 1.3869530314748937 The running loss is: 20.161068454384804 The number of items in train is: 11 The loss for epoch 1 1.8328244049440732 The running loss is: 21.77994852513075 The number of items in train is: 11 The loss for epoch 2 1.9799953204664318 The running loss is: 14.009808540344238 The number of items in train is: 11 The loss for epoch 3 1.2736189582131126 The running loss is: 11.812053754925728 The number of items in train is: 11 The loss for epoch 4 1.0738230686296115 The running loss is: 11.489768326282501 The number of items in train is: 11 The loss for epoch 5 1.0445243932984092 The running loss is: 11.18503075838089 The number of items in train is: 11 The loss for epoch 6 1.0168209780346265 The running loss is: 10.996993936598301 The number of items in train is: 11 The loss for epoch 7 0.9997267215089365 The running loss is: 10.645965211093426 The number of items in train is: 11 The loss for epoch 8 0.9678150191903114 The running loss is: 10.70228710025549 The number of items in train is: 11 The loss for epoch 9 0.9729351909323172 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.941140 47 30819 Eagle County, Colorado, United States ... 47 5.203240 48 30820 Eagle County, Colorado, United States ... 48 5.400292 49 30821 Eagle County, Colorado, United States ... 49 5.070734 50 30822 Eagle County, Colorado, United States ... 50 4.472741 51 30823 Eagle County, Colorado, United States ... 51 4.626699 52 30824 Eagle County, Colorado, United States ... 52 4.676058 53 30825 Eagle County, Colorado, United States ... 53 4.822545 54 30826 Eagle County, Colorado, United States ... 54 4.917575 55 30827 Eagle County, Colorado, United States ... 55 5.222575 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: ypnfalp7 wandb: Agent Starting Run: fhuyeb8k with config: batch_size: 3 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: fhuyeb8k
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.009724855422974 The number of items in train is: 11 The loss for epoch 0 1.819065895947543 The running loss is: 17.003920286893845 The number of items in train is: 11 The loss for epoch 1 1.5458109351721676 The running loss is: 24.95011392235756 The number of items in train is: 11 The loss for epoch 2 2.268192174759778 The running loss is: 14.320160880684853 The number of items in train is: 11 The loss for epoch 3 1.3018328073349865 The running loss is: 13.634816728532314 The number of items in train is: 11 The loss for epoch 4 1.2395287935029378 The running loss is: 11.614453293383121 The number of items in train is: 11 The loss for epoch 5 1.0558593903075566 The running loss is: 10.36690553277731 The number of items in train is: 11 The loss for epoch 6 0.94244595752521 The running loss is: 11.941105760633945 The number of items in train is: 11 The loss for epoch 7 1.0855550691485405 The running loss is: 11.603152967989445 The number of items in train is: 11 The loss for epoch 8 1.0548320879990405 The running loss is: 10.878066308796406 The number of items in train is: 11 The loss for epoch 9 0.9889151189814914 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.755946 47 30819 Eagle County, Colorado, United States ... 47 3.948533 48 30820 Eagle County, Colorado, United States ... 48 4.109846 49 30821 Eagle County, Colorado, United States ... 49 3.798323 50 30822 Eagle County, Colorado, United States ... 50 3.180298 51 30823 Eagle County, Colorado, United States ... 51 3.435037 52 30824 Eagle County, Colorado, United States ... 52 3.290437 53 30825 Eagle County, Colorado, United States ... 53 3.229304 54 30826 Eagle County, Colorado, United States ... 54 3.526299 55 30827 Eagle County, Colorado, United States ... 55 3.496862 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fhuyeb8k wandb: Agent Starting Run: o12nxwrs with config: batch_size: 3 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: o12nxwrs
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.3218465000391 The number of items in train is: 11 The loss for epoch 0 1.483804227276282 The running loss is: 15.315989192575216 The number of items in train is: 11 The loss for epoch 1 1.3923626538704743 The running loss is: 14.728986725211143 The number of items in train is: 11 The loss for epoch 2 1.338998793201013 The running loss is: 11.862384408712387 The number of items in train is: 11 The loss for epoch 3 1.078398582610217 The running loss is: 11.441317409276962 The number of items in train is: 11 The loss for epoch 4 1.0401197644797238 The running loss is: 11.3860694617033 The number of items in train is: 11 The loss for epoch 5 1.035097223791209 The running loss is: 10.910162702202797 The number of items in train is: 11 The loss for epoch 6 0.991832972927527 The running loss is: 10.58010609447956 The number of items in train is: 11 The loss for epoch 7 0.9618278267708692 The running loss is: 10.980321384966373 The number of items in train is: 11 The loss for epoch 8 0.9982110349969431 The running loss is: 10.795635655522346 The number of items in train is: 11 The loss for epoch 9 0.9814214232293043 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.697867 47 30819 Eagle County, Colorado, United States ... 47 6.948792 48 30820 Eagle County, Colorado, United States ... 48 7.443105 49 30821 Eagle County, Colorado, United States ... 49 7.463962 50 30822 Eagle County, Colorado, United States ... 50 6.714512 51 30823 Eagle County, Colorado, United States ... 51 6.026889 52 30824 Eagle County, Colorado, United States ... 52 6.382638 53 30825 Eagle County, Colorado, United States ... 53 7.221634 54 30826 Eagle County, Colorado, United States ... 54 7.065754 55 30827 Eagle County, Colorado, United States ... 55 7.099236 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: o12nxwrs wandb: Agent Starting Run: xvue9u7r with config: batch_size: 3 forecast_history: 9 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: xvue9u7r
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 23.463824197649956 The number of items in train is: 11 The loss for epoch 0 2.133074927059087 The running loss is: 15.782015278935432 The number of items in train is: 11 The loss for epoch 1 1.434728661721403 The running loss is: 18.047666788101196 The number of items in train is: 11 The loss for epoch 2 1.6406969807364724 The running loss is: 15.659799247980118 The number of items in train is: 11 The loss for epoch 3 1.423618113452738 The running loss is: 12.579364575445652 The number of items in train is: 11 The loss for epoch 4 1.1435785977677866 The running loss is: 11.840390399098396 The number of items in train is: 11 The loss for epoch 5 1.0763991271907634 The running loss is: 11.462177857756615 The number of items in train is: 11 The loss for epoch 6 1.042016168886965 The running loss is: 11.036812007427216 The number of items in train is: 11 The loss for epoch 7 1.0033465461297468 The running loss is: 11.114317834377289 The number of items in train is: 11 The loss for epoch 8 1.0103925303979353 The running loss is: 10.485807582736015 The number of items in train is: 11 The loss for epoch 9 0.9532552347941832 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.167429 47 30819 Eagle County, Colorado, United States ... 47 5.274903 48 30820 Eagle County, Colorado, United States ... 48 5.347121 49 30821 Eagle County, Colorado, United States ... 49 5.224376 50 30822 Eagle County, Colorado, United States ... 50 4.545171 51 30823 Eagle County, Colorado, United States ... 51 4.629979 52 30824 Eagle County, Colorado, United States ... 52 4.639435 53 30825 Eagle County, Colorado, United States ... 53 4.866332 54 30826 Eagle County, Colorado, United States ... 54 4.865740 55 30827 Eagle County, Colorado, United States ... 55 5.358328 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xvue9u7r wandb: Agent Starting Run: 3k2gj89q with config: batch_size: 3 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 3k2gj89q
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 90.29608756303787 The number of items in train is: 11 The loss for epoch 0 8.208735233003443 The running loss is: 16.856530398130417 The number of items in train is: 11 The loss for epoch 1 1.5324118543754925 The running loss is: 21.56619629263878 The number of items in train is: 11 The loss for epoch 2 1.960563299330798 The running loss is: 15.163192972540855 The number of items in train is: 11 The loss for epoch 3 1.378472088412805 The running loss is: 16.831146404147148 The number of items in train is: 11 The loss for epoch 4 1.5301042185588316 The running loss is: 13.869851365685463 The number of items in train is: 11 The loss for epoch 5 1.2608955786986784 The running loss is: 14.04520610626787 The number of items in train is: 11 The loss for epoch 6 1.2768369187516244 The running loss is: 12.467475153505802 The number of items in train is: 11 The loss for epoch 7 1.133406832136891 The running loss is: 11.837162591516972 The number of items in train is: 11 The loss for epoch 8 1.0761056901379065 The running loss is: 11.645600214600563 The number of items in train is: 11 The loss for epoch 9 1.0586909286000512 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 12.232118 47 30819 ... 11.285740 48 30820 ... 11.412394 49 30821 ... 11.406689 50 30822 ... 11.396914 51 30823 ... 11.609783 52 30824 ... 11.633080 53 30825 ... 11.424625 54 30826 ... 11.864182 55 30827 ... 11.468259 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 3k2gj89q wandb: Agent Starting Run: 1tgk2elj with config: batch_size: 3 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: 1tgk2elj
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 59.00660365819931 The number of items in train is: 11 The loss for epoch 0 5.364236696199938 The running loss is: 14.09033265709877 The number of items in train is: 11 The loss for epoch 1 1.2809393324635245 The running loss is: 13.665505439043045 The number of items in train is: 11 The loss for epoch 2 1.2423186762766405 The running loss is: 15.05822366476059 The number of items in train is: 11 The loss for epoch 3 1.3689294240691445 The running loss is: 13.959211483597755 The number of items in train is: 11 The loss for epoch 4 1.2690192257816142 The running loss is: 12.256061419844627 The number of items in train is: 11 The loss for epoch 5 1.114187401804057 The running loss is: 12.423433378338814 The number of items in train is: 11 The loss for epoch 6 1.1294030343944377 The running loss is: 12.089040637016296 The number of items in train is: 11 The loss for epoch 7 1.0990036942742087 The running loss is: 12.20865024626255 The number of items in train is: 11 The loss for epoch 8 1.1098772951147773 The running loss is: 12.115084633231163 The number of items in train is: 11 The loss for epoch 9 1.101371330293742 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 9.465091 47 30819 Eagle County, Colorado, United States ... 47 9.144346 48 30820 Eagle County, Colorado, United States ... 48 9.144058 49 30821 Eagle County, Colorado, United States ... 49 8.759192 50 30822 Eagle County, Colorado, United States ... 50 8.681924 51 30823 Eagle County, Colorado, United States ... 51 8.518374 52 30824 Eagle County, Colorado, United States ... 52 8.642056 53 30825 Eagle County, Colorado, United States ... 53 8.642455 54 30826 Eagle County, Colorado, United States ... 54 8.403084 55 30827 Eagle County, Colorado, United States ... 55 9.770735 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 1tgk2elj wandb: Agent Starting Run: u0l4gkbl with config: batch_size: 3 forecast_history: 9 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: u0l4gkbl
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 9 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 9 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 9 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 9 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 88.96907395124435 The number of items in train is: 11 The loss for epoch 0 8.088097631931305 The running loss is: 28.60553839802742 The number of items in train is: 11 The loss for epoch 1 2.6005034907297655 The running loss is: 36.84468446671963 The number of items in train is: 11 The loss for epoch 2 3.3495167697017845 The running loss is: 12.81296344101429 The number of items in train is: 11 The loss for epoch 3 1.1648148582740263 The running loss is: 12.78886991739273 The number of items in train is: 11 The loss for epoch 4 1.1626245379447937 The running loss is: 12.014240890741348 The number of items in train is: 11 The loss for epoch 5 1.0922037173401227 The running loss is: 11.263784617185593 The number of items in train is: 11 The loss for epoch 6 1.0239804197441449 The running loss is: 11.543391533195972 The number of items in train is: 11 The loss for epoch 7 1.049399230290543 The running loss is: 11.280034869909286 The number of items in train is: 11 The loss for epoch 8 1.0254577154462987 The running loss is: 11.284744039177895 The number of items in train is: 11 The loss for epoch 9 1.025885821743445 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 9, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 8.673812 47 30819 Eagle County, Colorado, United States ... 47 7.985293 48 30820 Eagle County, Colorado, United States ... 48 8.133834 49 30821 Eagle County, Colorado, United States ... 49 7.933124 50 30822 Eagle County, Colorado, United States ... 50 7.829472 51 30823 Eagle County, Colorado, United States ... 51 7.938765 52 30824 Eagle County, Colorado, United States ... 52 7.902779 53 30825 Eagle County, Colorado, United States ... 53 8.302330 54 30826 Eagle County, Colorado, United States ... 54 8.484731 55 30827 Eagle County, Colorado, United States ... 55 8.491733 [19 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: u0l4gkbl wandb: Agent Starting Run: l929ks1j with config: batch_size: 3 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: l929ks1j
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.92371991276741 The number of items in train is: 11 The loss for epoch 0 1.3567018102515827 The running loss is: 16.43264576792717 The number of items in train is: 11 The loss for epoch 1 1.493876887993379 The running loss is: 11.552073381841183 The number of items in train is: 11 The loss for epoch 2 1.0501884892582893 The running loss is: 11.72037386894226 The number of items in train is: 11 The loss for epoch 3 1.0654885335402056 The running loss is: 11.173139587044716 The number of items in train is: 11 The loss for epoch 4 1.0157399624586105 The running loss is: 10.70702352002263 The number of items in train is: 11 The loss for epoch 5 0.9733657745475118 The running loss is: 10.8629803173244 The number of items in train is: 11 The loss for epoch 6 0.9875436652113091 The running loss is: 10.56940308585763 The number of items in train is: 11 The loss for epoch 7 0.9608548259870573 The running loss is: 10.278399351984262 The number of items in train is: 11 The loss for epoch 8 0.9343999410894784 The running loss is: 9.92225181683898 The number of items in train is: 11 The loss for epoch 9 0.9020228924399073 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.548505 47 30819 Eagle County, Colorado, United States ... 47 6.799479 48 30820 Eagle County, Colorado, United States ... 48 7.248922 49 30821 Eagle County, Colorado, United States ... 49 6.497251 50 30822 Eagle County, Colorado, United States ... 50 5.649336 51 30823 Eagle County, Colorado, United States ... 51 4.337851 52 30824 Eagle County, Colorado, United States ... 52 3.793358 53 30825 Eagle County, Colorado, United States ... 53 4.435680 54 30826 Eagle County, Colorado, United States ... 54 5.779097 55 30827 Eagle County, Colorado, United States ... 55 6.433308 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l929ks1j wandb: Agent Starting Run: uz1ls2ow with config: batch_size: 3 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: uz1ls2ow
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.075268387794495 The number of items in train is: 11 The loss for epoch 0 1.370478944344954 The running loss is: 18.250104278326035 The number of items in train is: 11 The loss for epoch 1 1.6591003889387304 The running loss is: 11.863716915249825 The number of items in train is: 11 The loss for epoch 2 1.078519719568166 The running loss is: 11.809837684035301 The number of items in train is: 11 The loss for epoch 3 1.0736216076395728 The running loss is: 11.555817887187004 The number of items in train is: 11 The loss for epoch 4 1.0505288988351822 The running loss is: 11.156246989965439 The number of items in train is: 11 The loss for epoch 5 1.01420427181504 The running loss is: 11.147064179182053 The number of items in train is: 11 The loss for epoch 6 1.013369470834732 The running loss is: 10.738830104470253 The number of items in train is: 11 The loss for epoch 7 0.9762572822245684 The running loss is: 10.667878225445747 The number of items in train is: 11 The loss for epoch 8 0.9698071114041589 The running loss is: 10.60825464129448 The number of items in train is: 11 The loss for epoch 9 0.9643867855722253 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 4.673477 47 30819 Eagle County, Colorado, United States ... 47 5.280448 48 30820 Eagle County, Colorado, United States ... 48 6.011500 49 30821 Eagle County, Colorado, United States ... 49 4.960355 50 30822 Eagle County, Colorado, United States ... 50 3.920301 51 30823 Eagle County, Colorado, United States ... 51 2.750020 52 30824 Eagle County, Colorado, United States ... 52 2.592566 53 30825 Eagle County, Colorado, United States ... 53 2.902614 54 30826 Eagle County, Colorado, United States ... 54 3.555806 55 30827 Eagle County, Colorado, United States ... 55 4.717776 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: uz1ls2ow wandb: Agent Starting Run: 54fe3ak1 with config: batch_size: 3 forecast_history: 10 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 54fe3ak1
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 13.83226963877678 The number of items in train is: 10 The loss for epoch 0 1.383226963877678 The running loss is: 15.266054153442383 The number of items in train is: 10 The loss for epoch 1 1.5266054153442383 The running loss is: 11.117882281541824 The number of items in train is: 10 The loss for epoch 2 1.1117882281541824 The running loss is: 11.215152770280838 The number of items in train is: 10 The loss for epoch 3 1.1215152770280838 The running loss is: 10.989554300904274 The number of items in train is: 10 The loss for epoch 4 1.0989554300904274 The running loss is: 10.816273152828217 The number of items in train is: 10 The loss for epoch 5 1.0816273152828217 The running loss is: 10.548416331410408 The number of items in train is: 10 The loss for epoch 6 1.0548416331410408 The running loss is: 10.31107048690319 The number of items in train is: 10 The loss for epoch 7 1.031107048690319 The running loss is: 10.179565638303757 The number of items in train is: 10 The loss for epoch 8 1.0179565638303756 The running loss is: 9.991168916225433 The number of items in train is: 10 The loss for epoch 9 0.9991168916225434 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.514035 47 30819 Eagle County, Colorado, United States ... 47 7.254191 48 30820 Eagle County, Colorado, United States ... 48 6.290533 49 30821 Eagle County, Colorado, United States ... 49 6.119982 50 30822 Eagle County, Colorado, United States ... 50 6.080837 51 30823 Eagle County, Colorado, United States ... 51 4.723925 52 30824 Eagle County, Colorado, United States ... 52 3.630096 53 30825 Eagle County, Colorado, United States ... 53 4.117791 54 30826 Eagle County, Colorado, United States ... 54 5.901507 55 30827 Eagle County, Colorado, United States ... 55 5.877332 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 54fe3ak1 wandb: Agent Starting Run: xlo78q8b with config: batch_size: 3 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: xlo78q8b
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.106579810380936 The number of items in train is: 11 The loss for epoch 0 1.3733254373073578 The running loss is: 22.456708751618862 The number of items in train is: 11 The loss for epoch 1 2.0415189774198965 The running loss is: 14.402357146143913 The number of items in train is: 11 The loss for epoch 2 1.309305195103992 The running loss is: 13.298728570342064 The number of items in train is: 11 The loss for epoch 3 1.2089753245765513 The running loss is: 11.133810125291348 The number of items in train is: 11 The loss for epoch 4 1.012164556844668 The running loss is: 11.0093739554286 The number of items in train is: 11 The loss for epoch 5 1.0008521777662365 The running loss is: 10.6600153259933 The number of items in train is: 11 The loss for epoch 6 0.9690923023630272 The running loss is: 10.412130199372768 The number of items in train is: 11 The loss for epoch 7 0.9465572908520699 The running loss is: 10.362909991294146 The number of items in train is: 11 The loss for epoch 8 0.942082726481286 The running loss is: 10.477576583623886 The number of items in train is: 11 The loss for epoch 9 0.952506962147626 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 7.556224 47 30819 Eagle County, Colorado, United States ... 47 8.307045 48 30820 Eagle County, Colorado, United States ... 48 8.447693 49 30821 Eagle County, Colorado, United States ... 49 8.431895 50 30822 Eagle County, Colorado, United States ... 50 8.247824 51 30823 Eagle County, Colorado, United States ... 51 7.643862 52 30824 Eagle County, Colorado, United States ... 52 7.295239 53 30825 Eagle County, Colorado, United States ... 53 7.528549 54 30826 Eagle County, Colorado, United States ... 54 8.345770 55 30827 Eagle County, Colorado, United States ... 55 8.461617 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: xlo78q8b wandb: Agent Starting Run: l9ce7gon with config: batch_size: 3 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: l9ce7gon
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.394998997449875 The number of items in train is: 11 The loss for epoch 0 1.399545363404534 The running loss is: 23.997811377048492 The number of items in train is: 11 The loss for epoch 1 2.1816192160953176 The running loss is: 14.285172209143639 The number of items in train is: 11 The loss for epoch 2 1.2986520190130582 The running loss is: 12.942523777484894 The number of items in train is: 11 The loss for epoch 3 1.1765930706804448 The running loss is: 11.262697920203209 The number of items in train is: 11 The loss for epoch 4 1.0238816291093826 The running loss is: 11.160549372434616 The number of items in train is: 11 The loss for epoch 5 1.014595397494056 The running loss is: 11.12978708744049 The number of items in train is: 11 The loss for epoch 6 1.0117988261309536 The running loss is: 10.566879317164421 The number of items in train is: 11 The loss for epoch 7 0.9606253924694929 The running loss is: 10.78386503458023 The number of items in train is: 11 The loss for epoch 8 0.980351366780021 The running loss is: 10.294064745306969 The number of items in train is: 11 The loss for epoch 9 0.935824067755179 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.395967 47 30819 Eagle County, Colorado, United States ... 47 5.880879 48 30820 Eagle County, Colorado, United States ... 48 6.679946 49 30821 Eagle County, Colorado, United States ... 49 5.419914 50 30822 Eagle County, Colorado, United States ... 50 4.428827 51 30823 Eagle County, Colorado, United States ... 51 3.509271 52 30824 Eagle County, Colorado, United States ... 52 4.432165 53 30825 Eagle County, Colorado, United States ... 53 4.058541 54 30826 Eagle County, Colorado, United States ... 54 4.401000 55 30827 Eagle County, Colorado, United States ... 55 5.193408 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: l9ce7gon wandb: Agent Starting Run: r358t16w with config: batch_size: 3 forecast_history: 10 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: r358t16w
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.527101278305054 The number of items in train is: 10 The loss for epoch 0 1.4527101278305055 The running loss is: 22.141034603118896 The number of items in train is: 10 The loss for epoch 1 2.2141034603118896 The running loss is: 12.012695848941803 The number of items in train is: 10 The loss for epoch 2 1.2012695848941803 The running loss is: 12.097595125436783 The number of items in train is: 10 The loss for epoch 3 1.2097595125436782 The running loss is: 11.048981189727783 The number of items in train is: 10 The loss for epoch 4 1.1048981189727782 The running loss is: 11.015377283096313 The number of items in train is: 10 The loss for epoch 5 1.1015377283096313 The running loss is: 10.59331339597702 The number of items in train is: 10 The loss for epoch 6 1.059331339597702 The running loss is: 10.057495325803757 The number of items in train is: 10 The loss for epoch 7 1.0057495325803756 The running loss is: 9.739617317914963 The number of items in train is: 10 The loss for epoch 8 0.9739617317914963 The running loss is: 9.51185992360115 The number of items in train is: 10 The loss for epoch 9 0.951185992360115 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 3.109675 47 30819 Eagle County, Colorado, United States ... 47 7.202462 48 30820 Eagle County, Colorado, United States ... 48 6.471476 49 30821 Eagle County, Colorado, United States ... 49 6.885487 50 30822 Eagle County, Colorado, United States ... 50 8.134160 51 30823 Eagle County, Colorado, United States ... 51 5.623744 52 30824 Eagle County, Colorado, United States ... 52 2.716154 53 30825 Eagle County, Colorado, United States ... 53 2.542940 54 30826 Eagle County, Colorado, United States ... 54 5.271421 55 30827 Eagle County, Colorado, United States ... 55 3.604456 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: r358t16w wandb: Agent Starting Run: 0n7rpkqi with config: batch_size: 3 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: 0n7rpkqi
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 20.287513837218285 The number of items in train is: 11 The loss for epoch 0 1.8443194397471168 The running loss is: 17.763389602303505 The number of items in train is: 11 The loss for epoch 1 1.6148536002094096 The running loss is: 18.308134004473686 The number of items in train is: 11 The loss for epoch 2 1.664375818588517 The running loss is: 13.646052297204733 The number of items in train is: 11 The loss for epoch 3 1.240550208836794 The running loss is: 11.77882007136941 The number of items in train is: 11 The loss for epoch 4 1.0708018246699462 The running loss is: 11.554875448346138 The number of items in train is: 11 The loss for epoch 5 1.0504432225769216 The running loss is: 10.891038347035646 The number of items in train is: 11 The loss for epoch 6 0.9900943951850588 The running loss is: 10.527192924171686 The number of items in train is: 11 The loss for epoch 7 0.9570175385610624 The running loss is: 10.677618101239204 The number of items in train is: 11 The loss for epoch 8 0.9706925546581094 The running loss is: 9.92277317494154 The number of items in train is: 11 The loss for epoch 9 0.9020702886310491 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.662254 47 30819 Eagle County, Colorado, United States ... 47 8.584000 48 30820 Eagle County, Colorado, United States ... 48 8.154727 49 30821 Eagle County, Colorado, United States ... 49 7.953487 50 30822 Eagle County, Colorado, United States ... 50 9.607455 51 30823 Eagle County, Colorado, United States ... 51 7.888170 52 30824 Eagle County, Colorado, United States ... 52 4.632975 53 30825 Eagle County, Colorado, United States ... 53 4.524205 54 30826 Eagle County, Colorado, United States ... 54 7.611029 55 30827 Eagle County, Colorado, United States ... 55 6.325020 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 0n7rpkqi wandb: Agent Starting Run: sm1667zy with config: batch_size: 3 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: sm1667zy
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 21.04368895292282 The number of items in train is: 11 The loss for epoch 0 1.9130626320838928 The running loss is: 17.420522198081017 The number of items in train is: 11 The loss for epoch 1 1.5836838361891834 The running loss is: 18.03695920109749 The number of items in train is: 11 The loss for epoch 2 1.6397235637361354 The running loss is: 12.567854255437851 The number of items in train is: 11 The loss for epoch 3 1.1425322050398046 The running loss is: 11.904003366827965 The number of items in train is: 11 The loss for epoch 4 1.0821821242570877 The running loss is: 11.364094316959381 The number of items in train is: 11 The loss for epoch 5 1.0330994833599438 The running loss is: 11.217663764953613 The number of items in train is: 11 The loss for epoch 6 1.019787614995783 The running loss is: 10.618583157658577 The number of items in train is: 11 The loss for epoch 7 0.9653257416053251 The running loss is: 10.280679374933243 The number of items in train is: 11 The loss for epoch 8 0.9346072159030221 The running loss is: 10.05563603155315 The number of items in train is: 11 The loss for epoch 9 0.9141487301411954 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 5.821763 47 30819 Eagle County, Colorado, United States ... 47 7.734202 48 30820 Eagle County, Colorado, United States ... 48 7.385605 49 30821 Eagle County, Colorado, United States ... 49 6.645911 50 30822 Eagle County, Colorado, United States ... 50 5.434975 51 30823 Eagle County, Colorado, United States ... 51 4.449950 52 30824 Eagle County, Colorado, United States ... 52 4.956104 53 30825 Eagle County, Colorado, United States ... 53 4.387439 54 30826 Eagle County, Colorado, United States ... 54 4.889442 55 30827 Eagle County, Colorado, United States ... 55 4.947524 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: sm1667zy wandb: Agent Starting Run: fxx2bd2s with config: batch_size: 3 forecast_history: 10 lr: 0.004 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: fxx2bd2s
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.389306485652924 The number of items in train is: 10 The loss for epoch 0 1.7389306485652924 The running loss is: 17.50364814698696 The number of items in train is: 10 The loss for epoch 1 1.750364814698696 The running loss is: 12.744259268045425 The number of items in train is: 10 The loss for epoch 2 1.2744259268045426 The running loss is: 11.429000854492188 The number of items in train is: 10 The loss for epoch 3 1.1429000854492188 The running loss is: 11.428666561841965 The number of items in train is: 10 The loss for epoch 4 1.1428666561841965 The running loss is: 11.07622879743576 The number of items in train is: 10 The loss for epoch 5 1.107622879743576 The running loss is: 10.732758343219757 The number of items in train is: 10 The loss for epoch 6 1.0732758343219757 The running loss is: 10.29849573969841 The number of items in train is: 10 The loss for epoch 7 1.029849573969841 The running loss is: 9.432255893945694 The number of items in train is: 10 The loss for epoch 8 0.9432255893945694 The running loss is: 10.343920201063156 The number of items in train is: 10 The loss for epoch 9 1.0343920201063157 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 3.357261 47 30819 ... 10.925328 48 30820 ... 7.806000 49 30821 ... 7.145774 50 30822 ... 8.982411 51 30823 ... 6.517039 52 30824 ... 1.144588 53 30825 ... 2.173529 54 30826 ... 7.736863 55 30827 ... 6.227529 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fxx2bd2s wandb: Agent Starting Run: w6g5blue with config: batch_size: 3 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: w6g5blue
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 90.27539926767349 The number of items in train is: 11 The loss for epoch 0 8.206854478879409 The running loss is: 17.084474243223667 The number of items in train is: 11 The loss for epoch 1 1.5531340221112424 The running loss is: 31.057914689183235 The number of items in train is: 11 The loss for epoch 2 2.8234467899257485 The running loss is: 12.706370091997087 The number of items in train is: 11 The loss for epoch 3 1.155124553817917 The running loss is: 13.30304903909564 The number of items in train is: 11 The loss for epoch 4 1.2093680944632401 The running loss is: 11.941582351922989 The number of items in train is: 11 The loss for epoch 5 1.0855983956293627 The running loss is: 11.729828983545303 The number of items in train is: 11 The loss for epoch 6 1.0663480894132094 The running loss is: 11.54419081658125 The number of items in train is: 11 The loss for epoch 7 1.0494718924164772 The running loss is: 11.445036083459854 The number of items in train is: 11 The loss for epoch 8 1.0404578257690777 The running loss is: 12.198932491242886 The number of items in train is: 11 The loss for epoch 9 1.1089938628402622 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 9.059834 47 30819 Eagle County, Colorado, United States ... 47 9.635443 48 30820 Eagle County, Colorado, United States ... 48 8.613738 49 30821 Eagle County, Colorado, United States ... 49 8.764878 50 30822 Eagle County, Colorado, United States ... 50 9.000231 51 30823 Eagle County, Colorado, United States ... 51 8.862867 52 30824 Eagle County, Colorado, United States ... 52 8.921799 53 30825 Eagle County, Colorado, United States ... 53 8.708253 54 30826 Eagle County, Colorado, United States ... 54 8.750038 55 30827 Eagle County, Colorado, United States ... 55 8.904809 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: w6g5blue wandb: Agent Starting Run: k5yt9z6i with config: batch_size: 3 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: k5yt9z6i
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 79.64415696263313 The number of items in train is: 11 The loss for epoch 0 7.240377905693921 The running loss is: 15.614883661270142 The number of items in train is: 11 The loss for epoch 1 1.4195348782972856 The running loss is: 31.27257139980793 The number of items in train is: 11 The loss for epoch 2 2.8429610363461753 The running loss is: 12.299777299165726 The number of items in train is: 11 The loss for epoch 3 1.1181615726514296 The running loss is: 12.365853264927864 The number of items in train is: 11 The loss for epoch 4 1.1241684786298058 The running loss is: 11.874301999807358 The number of items in train is: 11 The loss for epoch 5 1.0794819999824872 The running loss is: 11.15727785974741 The number of items in train is: 11 The loss for epoch 6 1.0142979872497646 The running loss is: 12.789401710033417 The number of items in train is: 11 The loss for epoch 7 1.1626728827303106 The running loss is: 12.836177736520767 The number of items in train is: 11 The loss for epoch 8 1.1669252487746151 The running loss is: 12.494936317205429 The number of items in train is: 11 The loss for epoch 9 1.13590330156413 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 36 30808 Eagle County, Colorado, United States ... 36 0.000000 37 30809 Eagle County, Colorado, United States ... 37 0.000000 38 30810 Eagle County, Colorado, United States ... 38 0.000000 39 30811 Eagle County, Colorado, United States ... 39 0.000000 40 30812 Eagle County, Colorado, United States ... 40 0.000000 41 30813 Eagle County, Colorado, United States ... 41 0.000000 42 30814 Eagle County, Colorado, United States ... 42 0.000000 43 30815 Eagle County, Colorado, United States ... 43 0.000000 44 30816 Eagle County, Colorado, United States ... 44 0.000000 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 9.161367 47 30819 Eagle County, Colorado, United States ... 47 7.209705 48 30820 Eagle County, Colorado, United States ... 48 7.124010 49 30821 Eagle County, Colorado, United States ... 49 6.953374 50 30822 Eagle County, Colorado, United States ... 50 6.195547 51 30823 Eagle County, Colorado, United States ... 51 6.672840 52 30824 Eagle County, Colorado, United States ... 52 8.153156 53 30825 Eagle County, Colorado, United States ... 53 8.977440 54 30826 Eagle County, Colorado, United States ... 54 7.785304 55 30827 Eagle County, Colorado, United States ... 55 7.588449 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: k5yt9z6i wandb: Agent Starting Run: 9x1zyi9m with config: batch_size: 3 forecast_history: 10 lr: 0.01 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 9x1zyi9m
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 3 dataset_params: desc: null value: batch_size: 3 class: default forecast_history: 10 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 10 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 10 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.01 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 10 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 3 criterion: MSE epochs: 10 optim_params: lr: 0.01 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 64.2933794260025 The number of items in train is: 10 The loss for epoch 0 6.429337942600251 The running loss is: 12.211681365966797 The number of items in train is: 10 The loss for epoch 1 1.2211681365966798 The running loss is: 21.949569940567017 The number of items in train is: 10 The loss for epoch 2 2.1949569940567017 The running loss is: 11.897155582904816 The number of items in train is: 10 The loss for epoch 3 1.1897155582904815 The running loss is: 11.937202170491219 The number of items in train is: 10 The loss for epoch 4 1.193720217049122 The running loss is: 11.373739659786224 The number of items in train is: 10 The loss for epoch 5 1.1373739659786224 The running loss is: 11.289853632450104 The number of items in train is: 10 The loss for epoch 6 1.1289853632450104 The running loss is: 12.61861452460289 The number of items in train is: 10 The loss for epoch 7 1.261861452460289 The running loss is: 11.258632987737656 The number of items in train is: 10 The loss for epoch 8 1.1258632987737656 The running loss is: 11.705809533596039 The number of items in train is: 10 The loss for epoch 9 1.1705809533596039 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 10, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 36 30808 ... 0.000000 37 30809 ... 0.000000 38 30810 ... 0.000000 39 30811 ... 0.000000 40 30812 ... 0.000000 41 30813 ... 0.000000 42 30814 ... 0.000000 43 30815 ... 0.000000 44 30816 ... 0.000000 45 30817 ... 0.000000 46 30818 ... 10.613785 47 30819 ... 10.972606 48 30820 ... 9.573963 49 30821 ... 10.296286 50 30822 ... 11.664459 51 30823 ... 11.187622 52 30824 ... 10.221498 53 30825 ... 9.448482 54 30826 ... 11.003543 55 30827 ... 10.186419 [20 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 9x1zyi9m wandb: Agent Starting Run: cnj2rij2 with config: batch_size: 4 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: cnj2rij2
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.563437849283218 The number of items in train is: 11 The loss for epoch 0 1.4148579862984745 The running loss is: 11.875256389379501 The number of items in train is: 11 The loss for epoch 1 1.0795687626708637 The running loss is: 11.802671521902084 The number of items in train is: 11 The loss for epoch 2 1.072970138354735 The running loss is: 10.889880567789078 The number of items in train is: 11 The loss for epoch 3 0.9899891425262798 The running loss is: 10.882348626852036 The number of items in train is: 11 The loss for epoch 4 0.9893044206229124 The running loss is: 10.595496848225594 The number of items in train is: 11 The loss for epoch 5 0.9632269862023267 The running loss is: 11.13110238313675 The number of items in train is: 11 The loss for epoch 6 1.0119183984669773 The running loss is: 11.167180925607681 The number of items in train is: 11 The loss for epoch 7 1.0151982659643346 The running loss is: 11.299386888742447 The number of items in train is: 11 The loss for epoch 8 1.027216989885677 The running loss is: 11.52681016921997 The number of items in train is: 11 The loss for epoch 9 1.047891833565452 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.068464 47 30819 Eagle County, Colorado, United States ... 47 7.053399 48 30820 Eagle County, Colorado, United States ... 48 7.034788 49 30821 Eagle County, Colorado, United States ... 49 6.769552 50 30822 Eagle County, Colorado, United States ... 50 6.443708 51 30823 Eagle County, Colorado, United States ... 51 6.102969 52 30824 Eagle County, Colorado, United States ... 52 5.758569 53 30825 Eagle County, Colorado, United States ... 53 7.237902 54 30826 Eagle County, Colorado, United States ... 54 7.340793 55 30827 Eagle County, Colorado, United States ... 55 7.105416 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: cnj2rij2 wandb: Agent Starting Run: j0ahel1n with config: batch_size: 4 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: j0ahel1n
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 17.160024404525757 The number of items in train is: 10 The loss for epoch 0 1.7160024404525758 The running loss is: 14.127461165189743 The number of items in train is: 10 The loss for epoch 1 1.4127461165189743 The running loss is: 14.144697785377502 The number of items in train is: 10 The loss for epoch 2 1.4144697785377502 The running loss is: 13.568500280380249 The number of items in train is: 10 The loss for epoch 3 1.356850028038025 The running loss is: 13.604806244373322 The number of items in train is: 10 The loss for epoch 4 1.3604806244373322 The running loss is: 13.699465811252594 The number of items in train is: 10 The loss for epoch 5 1.3699465811252594 The running loss is: 13.266174376010895 The number of items in train is: 10 The loss for epoch 6 1.3266174376010895 The running loss is: 13.102667212486267 The number of items in train is: 10 The loss for epoch 7 1.3102667212486268 The running loss is: 13.137517273426056 The number of items in train is: 10 The loss for epoch 8 1.3137517273426056 The running loss is: 13.256415218114853 The number of items in train is: 10 The loss for epoch 9 1.3256415218114852 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 17.149412 47 30819 ... 21.162560 48 30820 ... 21.526651 49 30821 ... 20.793573 50 30822 ... 19.730604 51 30823 ... 18.568447 52 30824 ... 17.376465 53 30825 ... 22.073378 54 30826 ... 22.643063 55 30827 ... 21.971800 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: j0ahel1n wandb: Agent Starting Run: fp31d2fi with config: batch_size: 4 forecast_history: 1 lr: 0.001 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: fp31d2fi
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.001 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.001 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.85852700471878 The number of items in train is: 10 The loss for epoch 0 1.685852700471878 The running loss is: 14.15521228313446 The number of items in train is: 10 The loss for epoch 1 1.415521228313446 The running loss is: 14.270996749401093 The number of items in train is: 10 The loss for epoch 2 1.4270996749401093 The running loss is: 13.61488264799118 The number of items in train is: 10 The loss for epoch 3 1.361488264799118 The running loss is: 13.466632664203644 The number of items in train is: 10 The loss for epoch 4 1.3466632664203644 The running loss is: 13.480274975299835 The number of items in train is: 10 The loss for epoch 5 1.3480274975299835 The running loss is: 13.14782440662384 The number of items in train is: 10 The loss for epoch 6 1.314782440662384 The running loss is: 13.135575473308563 The number of items in train is: 10 The loss for epoch 7 1.3135575473308563 The running loss is: 13.177307307720184 The number of items in train is: 10 The loss for epoch 8 1.3177307307720185 The running loss is: 13.156183660030365 The number of items in train is: 10 The loss for epoch 9 1.3156183660030365 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 1.945907 47 30819 Eagle County, Colorado, United States ... 47 1.576598 48 30820 Eagle County, Colorado, United States ... 48 1.056971 49 30821 Eagle County, Colorado, United States ... 49 0.520163 50 30822 Eagle County, Colorado, United States ... 50 -0.018607 51 30823 Eagle County, Colorado, United States ... 51 -0.557603 52 30824 Eagle County, Colorado, United States ... 52 -1.096623 53 30825 Eagle County, Colorado, United States ... 53 1.706281 54 30826 Eagle County, Colorado, United States ... 54 1.549211 55 30827 Eagle County, Colorado, United States ... 55 1.053840 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: fp31d2fi wandb: Agent Starting Run: rs828r4n with config: batch_size: 4 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: rs828r4n
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 14.697568587958813 The number of items in train is: 11 The loss for epoch 0 1.3361425989053466 The running loss is: 21.38100452721119 The number of items in train is: 11 The loss for epoch 1 1.9437276842919262 The running loss is: 12.067806363105774 The number of items in train is: 11 The loss for epoch 2 1.0970733057368884 The running loss is: 11.344721049070358 The number of items in train is: 11 The loss for epoch 3 1.0313382771882145 The running loss is: 11.251488268375397 The number of items in train is: 11 The loss for epoch 4 1.0228625698523088 The running loss is: 10.448600202798843 The number of items in train is: 11 The loss for epoch 5 0.9498727457089857 The running loss is: 10.87918820977211 The number of items in train is: 11 The loss for epoch 6 0.9890171099792827 The running loss is: 10.925427049398422 The number of items in train is: 11 The loss for epoch 7 0.993220640854402 The running loss is: 11.275335520505905 The number of items in train is: 11 The loss for epoch 8 1.0250305018641732 The running loss is: 11.531207740306854 The number of items in train is: 11 The loss for epoch 9 1.0482916127551685 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 6.516066 47 30819 Eagle County, Colorado, United States ... 47 7.549709 48 30820 Eagle County, Colorado, United States ... 48 7.593652 49 30821 Eagle County, Colorado, United States ... 49 7.419073 50 30822 Eagle County, Colorado, United States ... 50 7.196244 51 30823 Eagle County, Colorado, United States ... 51 6.962763 52 30824 Eagle County, Colorado, United States ... 52 6.726929 53 30825 Eagle County, Colorado, United States ... 53 7.780549 54 30826 Eagle County, Colorado, United States ... 54 7.828902 55 30827 Eagle County, Colorado, United States ... 55 7.655297 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: rs828r4n wandb: Agent Starting Run: tvqwisfk with config: batch_size: 4 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: tvqwisfk
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 2 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 2 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 2 number_time_series: 3 output_seq_len: 2 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 2 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 16.14820921421051 The number of items in train is: 10 The loss for epoch 0 1.614820921421051 The running loss is: 20.01530832052231 The number of items in train is: 10 The loss for epoch 1 2.001530832052231 The running loss is: 13.697478771209717 The number of items in train is: 10 The loss for epoch 2 1.3697478771209717 The running loss is: 13.846294492483139 The number of items in train is: 10 The loss for epoch 3 1.384629449248314 The running loss is: 13.398303747177124 The number of items in train is: 10 The loss for epoch 4 1.3398303747177125 The running loss is: 13.124554067850113 The number of items in train is: 10 The loss for epoch 5 1.3124554067850114 The running loss is: 12.877797603607178 The number of items in train is: 10 The loss for epoch 6 1.2877797603607177 The running loss is: 12.75420868396759 The number of items in train is: 10 The loss for epoch 7 1.275420868396759 The running loss is: 12.53428190946579 The number of items in train is: 10 The loss for epoch 8 1.253428190946579 The running loss is: 12.539280235767365 The number of items in train is: 10 The loss for epoch 9 1.2539280235767365 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 ... preds 45 30817 ... 0.000000 46 30818 ... 16.437286 47 30819 ... 19.616352 48 30820 ... 19.625738 49 30821 ... 18.815519 50 30822 ... 17.793373 51 30823 ... 16.716425 52 30824 ... 15.625306 53 30825 ... 20.219040 54 30826 ... 20.594223 55 30827 ... 19.878592 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: tvqwisfk wandb: Agent Starting Run: 8ncbbnk0 with config: batch_size: 4 forecast_history: 1 lr: 0.002 optimizer: Adam out_seq_length: 3 wandb: Agent Started Run: 8ncbbnk0
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 3 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 3 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.002 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 3 number_time_series: 3 output_seq_len: 3 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 3 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.002 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 15.368807047605515 The number of items in train is: 10 The loss for epoch 0 1.5368807047605515 The running loss is: 20.804774045944214 The number of items in train is: 10 The loss for epoch 1 2.080477404594421 The running loss is: 13.8933824300766 The number of items in train is: 10 The loss for epoch 2 1.38933824300766 The running loss is: 13.693770349025726 The number of items in train is: 10 The loss for epoch 3 1.3693770349025727 The running loss is: 13.354897767305374 The number of items in train is: 10 The loss for epoch 4 1.3354897767305374 The running loss is: 13.140376150608063 The number of items in train is: 10 The loss for epoch 5 1.3140376150608062 The running loss is: 12.762926369905472 The number of items in train is: 10 The loss for epoch 6 1.2762926369905472 The running loss is: 12.811955034732819 The number of items in train is: 10 The loss for epoch 7 1.2811955034732818 The running loss is: 12.677973330020905 The number of items in train is: 10 The loss for epoch 8 1.2677973330020904 The running loss is: 12.525837749242783 The number of items in train is: 10 The loss for epoch 9 1.2525837749242783 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 2.510345 47 30819 Eagle County, Colorado, United States ... 47 2.237988 48 30820 Eagle County, Colorado, United States ... 48 1.784898 49 30821 Eagle County, Colorado, United States ... 49 1.313485 50 30822 Eagle County, Colorado, United States ... 50 0.840213 51 30823 Eagle County, Colorado, United States ... 51 0.366755 52 30824 Eagle County, Colorado, United States ... 52 -0.106724 53 30825 Eagle County, Colorado, United States ... 53 2.398144 54 30826 Eagle County, Colorado, United States ... 54 2.226613 55 30827 Eagle County, Colorado, United States ... 55 1.783744 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: 8ncbbnk0 wandb: Agent Starting Run: p9hz0mzs with config: batch_size: 4 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 1 wandb: Agent Started Run: p9hz0mzs
interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv interpolate should be below Now loading and scaling Colorado_Eagle County.csv Using Wandb config: wandb_version: 1 GCS: desc: null value: false _wandb: desc: null value: cli_version: 0.8.35 framework: torch is_jupyter_run: true is_kaggle_kernel: false python_version: 3.6.9 batch_size: desc: null value: 4 dataset_params: desc: null value: batch_size: 4 class: default forecast_history: 1 forecast_length: 1 interpolate: false relevant_cols: - new_cases - month - weekday scaler: StandardScaler target_col: - new_cases test_path: Colorado_Eagle County.csv train_end: 44 training_path: Colorado_Eagle County.csv valid_end: 57 valid_start: 45 validation_path: Colorado_Eagle County.csv forecast_history: desc: null value: 1 forward_params: desc: null value: {} inference_params: desc: null value: dataset_params: file_path: Colorado_Eagle County.csv forecast_history: 1 forecast_length: 1 interpolate_param: false relevant_cols: - new_cases - month - weekday scaling: StandardScaler target_col: - new_cases datetime_start: '2020-04-21' decoder_params: decoder_function: simple_decode unsqueeze_dim: 1 hours_to_forecast: 10 test_csv_path: Colorado_Eagle County.csv lr: desc: null value: 0.004 metrics: desc: null value: - MSE model_name: desc: null value: MultiAttnHeadSimple model_params: desc: null value: forecast_length: 1 number_time_series: 3 output_seq_len: 1 seq_len: 1 model_type: desc: null value: PyTorch optimizer: desc: null value: Adam out_seq_length: desc: null value: 1 sweep: desc: null value: true training_params: desc: null value: batch_size: 4 criterion: MSE epochs: 10 optim_params: lr: 0.004 optimizer: Adam wandb: desc: null value: false Torch is using cpu The running loss is: 11.638315871357918 The number of items in train is: 11 The loss for epoch 0 1.0580287155779926 The running loss is: 27.962097346782684 The number of items in train is: 11 The loss for epoch 1 2.542008849707517 The running loss is: 18.45736888051033 The number of items in train is: 11 The loss for epoch 2 1.677942625500939 The running loss is: 12.270208045840263 The number of items in train is: 11 The loss for epoch 3 1.1154734587127513 The running loss is: 12.896877467632294 The number of items in train is: 11 The loss for epoch 4 1.1724434061483904 The running loss is: 10.983336746692657 The number of items in train is: 11 The loss for epoch 5 0.9984851587902416 The running loss is: 11.255826324224472 The number of items in train is: 11 The loss for epoch 6 1.0232569385658612 The running loss is: 11.209508925676346 The number of items in train is: 11 The loss for epoch 7 1.0190462659705768 The running loss is: 11.425876408815384 The number of items in train is: 11 The loss for epoch 8 1.0387160371650348 The running loss is: 11.56713530421257 The number of items in train is: 11 The loss for epoch 9 1.0515577549284154 interpolate should be below Now loading and scaling Colorado_Eagle County.csv CSV Path below Colorado_Eagle County.csv torch.Size([1, 1, 3]) Add debugging crap below
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'] = 0 /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor.numpy().tolist() /usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._set_with(key, value) /content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)
torch.Size([10]) test_data scale Un-transforming data
/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['preds'][history_length:] = end_tensor_list /content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_acc = evaluate_model(trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {})
Current historical dataframe Unnamed: 0 name ... original_index preds 45 30817 Eagle County, Colorado, United States ... 45 0.000000 46 30818 Eagle County, Colorado, United States ... 46 7.352677 47 30819 Eagle County, Colorado, United States ... 47 8.552509 48 30820 Eagle County, Colorado, United States ... 48 8.681703 49 30821 Eagle County, Colorado, United States ... 49 8.588442 50 30822 Eagle County, Colorado, United States ... 50 8.448961 51 30823 Eagle County, Colorado, United States ... 51 8.299876 52 30824 Eagle County, Colorado, United States ... 52 8.148796 53 30825 Eagle County, Colorado, United States ... 53 8.838028 54 30826 Eagle County, Colorado, United States ... 54 8.861131 55 30827 Eagle County, Colorado, United States ... 55 8.745827 [11 rows x 32 columns]
/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning: Blended transforms not yet supported. Zoom behavior may not work as expected. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning: The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3. /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning: Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates! /usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning: I found a path object that I don't think is part of a bar chart. Ignoring.
wandb: Agent Finished Run: p9hz0mzs wandb: Agent Starting Run: uz3tntwz with config: batch_size: 4 forecast_history: 1 lr: 0.004 optimizer: Adam out_seq_length: 2 wandb: Agent Started Run: uz3tntwz Buffered data was truncated after reaching the output size limit.
reduced_config = {
"name": "Default sweep",
"method": "grid",
"parameters": {
"batch_size": {
"values": [2, 3]
},
"lr":{
"values":[0.002, 0.001]
},
"forecast_history":{
"values":[5]
},
"out_seq_length":{
"values":[3]
}
}
}
for region_df in df_list:
region_df, len_region, file_path = format_corona_data(region_df, "county")
sweep_id = wandb.sweep(reduced_config, project="covid-forecast")
paths = []
if len(os.listdir("model_save"))>1:
weight_files = filter(lambda x: x.endswith(".pth"), os.listdir("model_save"))
for weight_file in weight_files:
paths.append(os.path.join("model_save", weight_file))
correct_file = max(paths, key = os.path.getctime)
print(correct_file)
wandb.agent(sweep_id, lambda:train_function("PyTorch", make_config_file(file_path, len_region, correct_file)))
else:
wandb.agent(sweep_id, lambda:train_function("PyTorch", make_config_file(file_path, len_region))
print("sucessfully completed sweep for: " + file_path)