This notebook examines various Dfs2 types:
For each of these types, it's possible to :
import mikeio
fn = "../tests/testdata/utm_not_rotated_neurope_temp.dfs2"
dfs = mikeio.open(fn)
da = dfs.read()[0]
da
<mikeio.DataArray> name: Temperature dims: (time:2, y:104, x:119) time: 2022-03-01 00:00:00 - 2022-03-01 12:00:00 (2 records) geometry: Grid2D (ny=104, nx=119)
da.geometry
<mikeio.Grid2D> x: [-2.778e+05, -2.611e+05, ..., 1.689e+06] (nx=119, dx=1.667e+04) y: [5.667e+06, 5.684e+06, ..., 7.384e+06] (ny=104, dy=1.667e+04) projection: UTM-32
da.plot();
fn = "../tests/testdata/europe_wind_long_lat.dfs2"
da = mikeio.read(fn)[1]
da
<mikeio.DataArray> name: Wind x-comp (10m) dims: (time:1, y:101, x:221) time: 2012-01-01 00:00:00 (time-invariant) geometry: Grid2D (ny=101, nx=221)
da.geometry
<mikeio.Grid2D> x: [-15, -14.75, ..., 40] (nx=221, dx=0.25) y: [30, 30.25, ..., 55] (ny=101, dy=0.25) projection: LONG/LAT
da.plot();
fn = "../tests/testdata/global_long_lat_pacific_view_temperature_delta.dfs2"
da = mikeio.read(fn)[0]
da
<mikeio.DataArray> name: air_temperature_anomaly dims: (time:12, y:73, x:96) time: 2089-01-16 00:00:00 - 2089-12-16 00:00:00 (12 non-equidistant records) geometry: Grid2D (ny=73, nx=96)
da.geometry
<mikeio.Grid2D> x: [0, 3.75, ..., 356.2] (nx=96, dx=3.75) y: [-90, -87.5, ..., 90] (ny=73, dy=2.5) projection: LONG/LAT
da.plot();
da.sel(area=[110,-50,160,-10]).plot();
import numpy as np
da = mikeio.DataArray(np.array([[1,2,3],[4,5,6]]), geometry=mikeio.Grid2D(nx=3, ny=2, dx=0.5, projection="NON-UTM"))
da.plot();
fn = "../tests/testdata/M3WFM_sponge_local_coordinates.dfs2"
da = mikeio.read(fn)[0]
da
<mikeio.DataArray> name: z (m) dims: (time:1, y:62, x:362) time: 1990-01-01 12:00:00 (time-invariant) geometry: Grid2D (ny=62, nx=362)
da.plot();
da.sel(y=3).plot();
fn = "../tests/testdata/BW_Ronne_Layout1998_rotated.dfs2"
da = mikeio.read(fn)[0]
da
<mikeio.DataArray> name: Bathymetry dims: (time:1, y:172, x:263) time: 1990-01-01 12:00:00 (time-invariant) geometry: Grid2D (ny=172, nx=263)
da.geometry
<mikeio.Grid2D> x: [0, 5, ..., 1310] (nx=263, dx=5) y: [0, 5, ..., 855] (ny=172, dy=5) origin: (4.797e+05, 6.105e+06), orientation: -22.239 projection: PROJCS["UTM-33",GEOGCS["Unused",DATUM["UTM Projections",SPHEROID["WGS 1984",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000],PARAMETER["False_Northing",0],PARAMETER["Central_Meridian",15],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0],UNIT["Meter",1]]
da.plot();
fn = "../tests/testdata/hd_vertical_slice.dfs2"
da = mikeio.open(fn, type="vertical").read()[0]
da
<mikeio.DataArray> name: U velocity dims: (time:13, y:76, x:41) time: 2022-04-23 00:00:00 - 2022-04-23 12:00:00 (13 records) geometry: Grid2D (ny=76, nx=41)
da.geometry
<mikeio.Grid2D> x: [0, 0.0193, ..., 0.7722] (nx=41, dx=0.0193) y: [0, 1, ..., 75] (ny=76, dy=1) projection: NON-UTM
da.plot();
da.isel(y=slice(45,None)).plot();
When reading spectral dfs2 files, the user must specify type='spectral'.
fn = "../tests/testdata/spectra/dir_wave_analysis_spectra.dfs2"
dfs = mikeio.open(fn, type="spectral")
da = dfs.read()[0]
da
<mikeio.DataArray> name: Directional spectrum [1] dims: (time:1, y:37, x:128) time: 1970-01-01 00:00:00 (time-invariant) geometry: Grid2D (ny=37, nx=128)
da.geometry
<mikeio.Grid2D> (spectral) x: [0.003906, 0.007812, ..., 0.5] (nx=128, dx=0.003906) y: [0, 10, ..., 360] (ny=37, dy=10) projection: NON-UTM
da.plot();
fn = "../tests/testdata/spectra/pt_spectra.dfs2"
dfs = mikeio.open(fn, type="spectral")
da = dfs.read()[0]
da
<mikeio.DataArray> name: Point 1: Energy density dims: (time:31, y:16, x:25) time: 2017-10-27 00:00:00 - 2017-10-27 05:00:00 (31 records) geometry: Grid2D (ny=16, nx=25)
da.geometry.is_spectral
True
da.geometry.x # logarithmic frequency axis
array([0.055 , 0.0605 , 0.06655 , 0.073205 , 0.08052551, 0.08857806, 0.09743587, 0.10717946, 0.1178974 , 0.12968715, 0.14265587, 0.15692146, 0.1726136 , 0.18987497, 0.20886247, 0.22974872, 0.2527236 , 0.27799597, 0.30579557, 0.33637513, 0.37001266, 0.40701393, 0.44771533, 0.49248688, 0.54173558])
da.geometry
<mikeio.Grid2D> (spectral) x: [0.055, 0.0605, ..., 0.5417] (nx=25, dx=1.1) y: [0, 22.5, ..., 337.5] (ny=16, dy=22.5) projection: LONG/LAT
da.plot();