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"1, 350, 000*

A road user
will die in
Automated driving have the
potential to increase road safety,
as they can react faster than
human drivers and are not
subject to human errors.
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* World Health Organization. (2018). Global status report on road safety 2018.



Background

Despite the potential benefits, there is no large scale deployment of
autonomous cars (ACs) yet.

Existing literature has highlighted that the acceptance of the AC
will increase if it drives in a human-like manner.

A variety of algorithms concern:
Human-like driving trajectories
Human-like decision-making at intersections
Human-like car following
Human-like braking behaviour
Human-like ‘crawling forward’ at pedestrian crossings
Human-like ‘peeking’ when approaching road junctions
Human-like cost function
Human-like driving policies in collision avoidance and merging



Background

Despite the potential benefits, there is no large scale deployment of
autonomous cars (ACs) yet.

Existing literature has highlighted that the acceptance of the AC
will increase if it drives in a human-like manner.

Teaching ACs about human-like driving from the
algorithmic perspective



Background

Despite the potential benefits, there is no large scale deployment of
autonomous cars (ACs) yet.

Existing literature has highlighted that the acceptance of the AC
will increase if it drives in a human-like manner.

However, literature presents no human-subject
research focusing on passengers in a natural
environment that examines whether the AC should
behave in a human-like manner.



How to offer naturalistic experiences from a
passenger’s seat perspective to measure the
people’s acceptance of ACs?



The Turing test of automated driving

? Traffic Lights
R . T

(@) A




Results of the Turing test

Confusion matrix of three stages for the results in the Turing test

Human Al Human Al Human Al
driver driver driver driver driver driver
2 9 4 6
First Second Third
road stage road stage road stage

38.24% 44.12% 47.69%



How do human passengers choose in the
Turing test of automated driving?



How do human passengers choose?
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How do human passengers choose?
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How do human passengers choose?
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Results of the computational models

Comparison on the Outer Loop Cross Validation of Nested LOOCYV with Baselines

(a) Evaluation results on the first stage.

Models ACC P R F1 P
Baselines
Random 33.27 33.21 33.25 32.27 0.07
Probability 36.14 3324 33.26 33.00 -0.68
God 3824 2447 36.51 28.79 14.91
SDT-AV
PLM-tf (AA+QOF) 54.41 5094 50.08 50.37
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Results of the computational models

Comparison on the Outer Loop Cross Validation of Nested LOOCYV with Baselines

(a) Evaluation results on the first stage.

M (b) Evaluation results on the second stage.
Baselin: Models ACC P R F1 p
Ra -
Baselines
Prol
( Random 3335 3337 3336 3215 0.15
_ Probability 37.71 3355 3358 33.32 0.25
SDT-A' God 4412 2667 3603 30.62 3.94
O = hrav
PLM .
— Original 4559 4120 3719 3692 1543
:—' PLM-tf (AA 57.35 5459  36.46**
PLM-tf (AA+OF) || 63.24 59.74 56.62 57.48  41.20***
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Results of the computational models

Comparison on the Outer Loop Cross Validation of Nested LOOCYV with Baselines

(a) Evaluation results on the first stage.

M (b) Evaluation results on the second stage.
Baseline = (c) Evaluation results on the third stage.
Ra -
prop  DAselin Models ACC P R  FI P
R
( Prc? Baselines
SDT-A! ‘ Random 3340 3334 33.39 32.66 -0.58
Or Probability 35.14 33.13 33.16 32.87 -0.15
piy  CPTA God 4769 3194 4456 3652  31.68*
O
| PLM-tf PLN’ SDT-AV
PLM-tj Original 53.85 4884 45.62 4542 27 .54*
: PLM-tf (AA 52.31 49.67 38.50**
PLM-tf (AA+OF) || 55.38 51.81 51.56 51.67 46.31***
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Correlations between choice of preference and affective variability

Comparison of the Spearman’s rank correlation score between

the gold labels and the magnitude of affective variability
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Ordinal logistic regression analysis of model simulations

Comparison of the proportion of choices between model simulations (blue) and

empirically observed choices (red)
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Ordinal logistic regression analysis of model simulations

(a) Results of OLR predicting simulated labels on the first stage.

Coeff. B (SE) t Value OR (95% CI) p Value

I1(1)2) || -2.31(0.47) -4.92 <.0001***

1(213) || 040(031)  1.26 208
PA 1.49 (0.32) 4.66 442 (2.47-8.72) <.0007***
NA 0.31 (0.29) 1.08 1.37 (0.78-2.47) .28
OF 1.29 (0.34) 3.74 3.62 (1.93-7.54) <.001***

(b) Results of OLR predicting simulated labels on the second stage.

Coeff. B (SE) t Value OR (95% CI) p Value

I(1]2) -3.85 (0.85) -4.55 <.0007***

1Q2)3) || -1.72 (0.65)  -2.67 .008**
PA 1.55 (0.42) 3.65 4.70 (2.23-12.11) <L.007***
NA 2.57 (1.17) 2.19 13.11 (2.10-226.37) .028*
OF 2.12 (0.61) 3.47 8.37 (3.04-35.96) <L.007***

(c) Results of OLR predicting simulated labels on the third stage.

Coeff. B (SE) t Value OR (95% CI) p Value

I(@1]2) -1.35 (0.33) -4.04 <.0007***

I(2]3) 0.80 (0.30) 2.63 .009**
PA 0.49 (0.26) 1.86 1.63 (0.98-2.78) 062
NA 1.09 (0.38) 2.83 2.97 (1.56-7.14) .005**
OF 0.77 (0.26) 2.93 2.15 (1.31-3.69) .003**
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Summary

We conduct a Turing test of automated driving based on 69
passengers’ feedback in a real scenario, and test results show
that SAE Level 4 ACs could pass the Turing test with accuracy
no more than 50%.

On this basis, we propose a model combining SDT with AV
(transformed by PLMs) to predict the passenger’s choice
behaviour in the Turing test. This is, to the best of our
knowledge, the first computational model which provides a
mechanistic understanding underlying passengers’ mentalizing
process.

Extensive experimental results and further analysis show that
the the greater AV that passengers have, the more likely they
identify the driver as the Al algorithm. These findings suggest
that future automated driving should improve the affective
stability of passengers.
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Thanks for your attendance!



