

UNIVERSIDADE DE MACAU UNIVERSITY OF MACAU The 1st International Symposium on Addiction and Decision Making

Towards human-compatible autonomous car: A study of Turing test in automated driving with affective variability modelling

sysumelab.com

ME LAB

Zhaoning Ll^{1, 2}

yc17319@umac.mo

github.com/Das-Boot

🖲 @lizhn7

andlab-um.com

¹Centre for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China, ²Centre for Cognitive and Brain Science and Department of Psychology, University of Macau, Macao SAR, China

1, 350, 000*

Automated driving have the potential to increase road safety, as they can react faster than human drivers and are not subject to human errors.

* World Health Organization. (2018). Global status report on road safety 2018.

Despite the potential benefits, there is no large scale deployment of autonomous cars (ACs) yet.

Existing literature has highlighted that the acceptance of the AC will increase if it drives in a human-like manner.

A variety of algorithms concern:

Human-like driving trajectories Human-like decision-making at intersections Human-like car following Human-like braking behaviour Human-like 'crawling forward' at pedestrian crossings Human-like 'peeking' when approaching road junctions Human-like cost function Human-like driving policies in collision avoidance and merging

Despite the potential benefits, there is no large scale deployment of autonomous cars (ACs) yet.

Existing literature has highlighted that the acceptance of the AC will increase if it drives in a human-like manner.

A variety of algorithms concern:

Human-like driving trajectories

Human-like decision-making at intersections

Human-like car following

Teaching ACs about human-like driving from the

Human-like 'algorithmic perspective crossings

Human-like 'peeking' when approaching road junctions

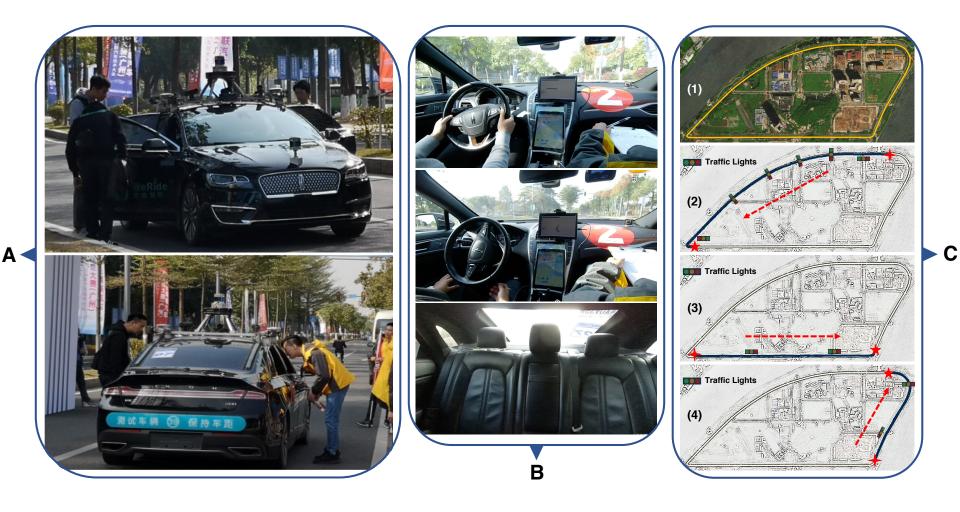
Human-like driving policies in collision avoidance and merging

Despite the potential benefits, there is no large scale deployment of autonomous cars (ACs) yet.

Existing literature has highlighted that the acceptance of the AC will increase if it drives in a human-like manner.

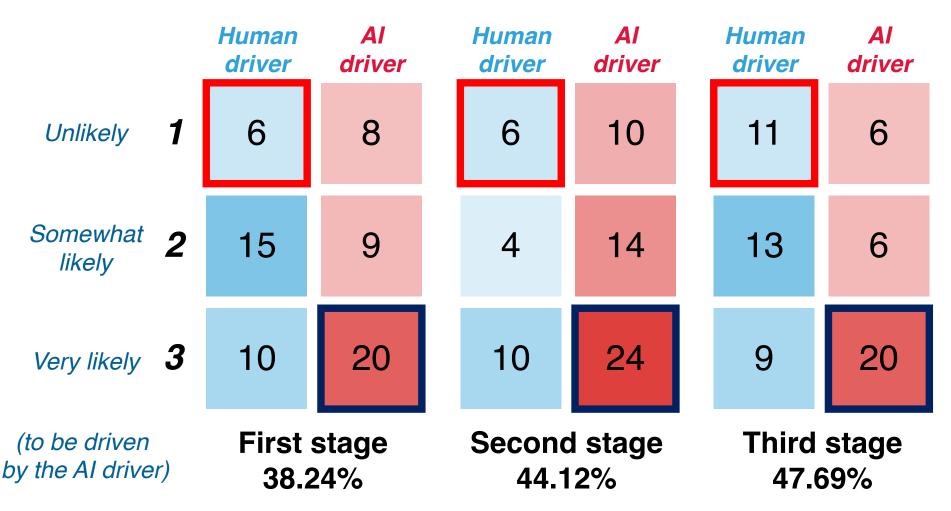
However, literature presents no human-subject research focusing on passengers in a natural environment that examines whether the AC should behave in a human-like manner. How to offer naturalistic experiences from a passenger's seat perspective to measure the people's acceptance of ACs?

The Turing test of automated driving



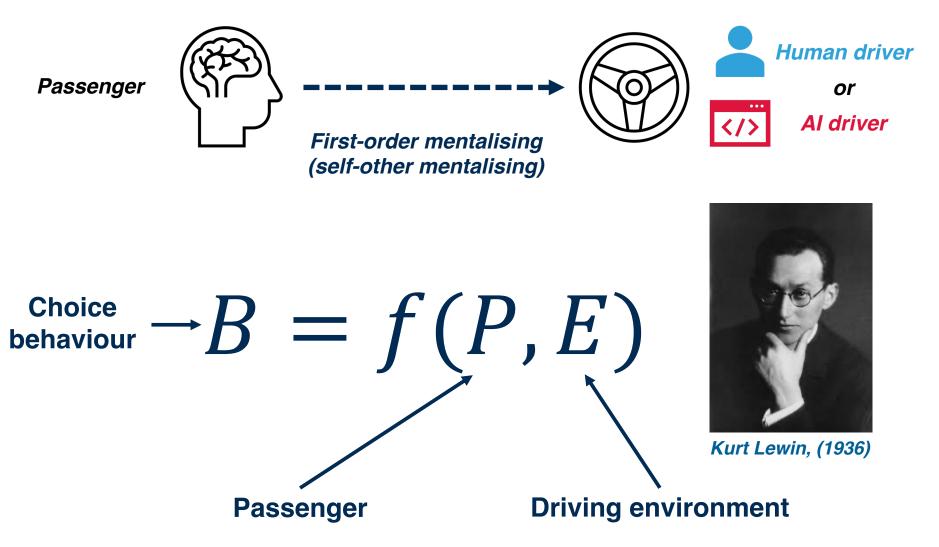
Results of the Turing test

Confusion matrix of three road stages for the results in the Turing test

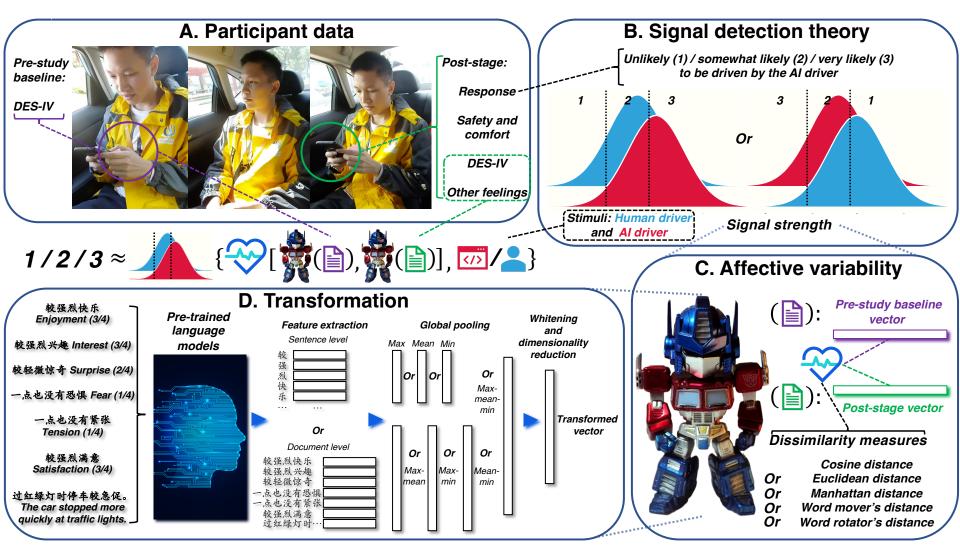


How do human passengers choose in the Turing test of automated driving?

How do human passengers choose?



How do human passengers choose?



Comparison on the Outer Loop Cross-Validation of Nested-LOOCV with Baselines

Models	ACC	Р	R	F1	rho
Baselines					
Random	33.27	33.21	33.25	32.27	0.07
Probability	36.14	33.24	33.26	33.00	-0.68
Golden	38.24	24.47	36.51	28.79	14.91
SDT-AV					
Original	33.82	27.36	28.21	27.09	16.31
PLM-tf (AA)	51.47	50.71	51.11	50.30	38.75**
PLM-tf (AA+OF)	54.41	50.94	50.08	50.37	38.96**

(a) Evaluation results on the first stage.

Comparison on the Outer Loop Cross-Validation of Nested-LOOCV with Baselines

M	(b) Evaluation results on the second stage.					je.
Baseline Rai	Models	ACC	Р	R	F1	rho
Prot	Baselines					
G	Random	33.35	33.37	33.36	32.15	0.15
	Probability	37.71	33.55	33.58	33.32	0.25
SDT-AI	Golden	44.12	26.67	36.03	30.62	3.94
Or PLM	SDT-AV					
PLM-tf	Original	45.59	41.20	37.19	36.92	15.43
	PLM-tf (AA)	57.35	56.65	53.80	54.59	29.70*
	PLM-tf (AA+OF)	63.24	59.74	56.62	57.48	41.20***

(a) Evaluation results on the first stage.

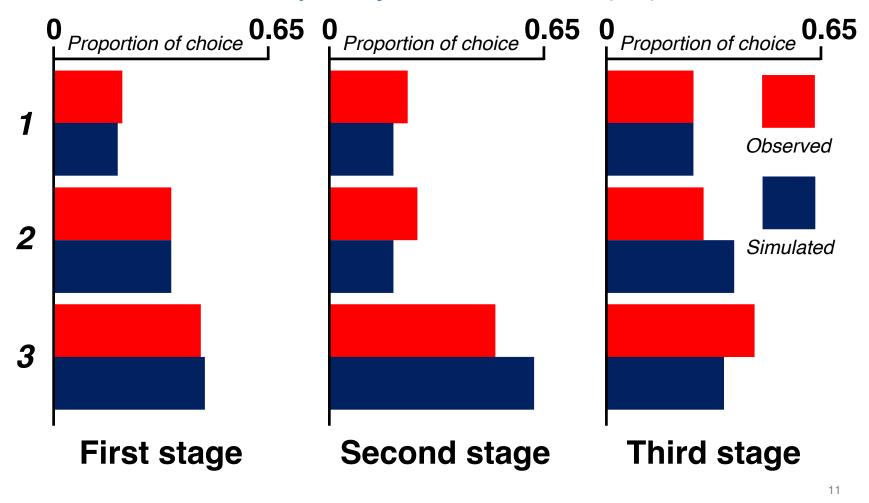
Comparison on the Outer Loop Cross-Validation of Nested-LOOCV with Baselines

M	(b) Evaluation results on the second stage.						
Baseline - Ra	N	(c) Evalu	ation rea	sults on	the thi	rd stage	
Prok	Baselii R	Models	ACC	Р	R	F1	rho
G(Pro	Baselines					
SDT-AV	C	Random	33.40	33.34	33.39	32.66	-0.58
Or	SDT-/	Probability	35.14	33.13	33.16	32.87	-0.15
PLM	M	Golden	47.69	31.94	44.56	36.52	31.68*
PLM-tf	PLN	SDT-AV					
ſ	PLM-	Original	53.85	48.84	45.62	45.42	27.54*
		PLM-tf (AA)	52.31	49.65	49.81	49.67	37.90**
		PLM-tf (AA+OF)	55.38	51.81	51.56	51.67	46.31***

(a) Evaluation results on the first stage.

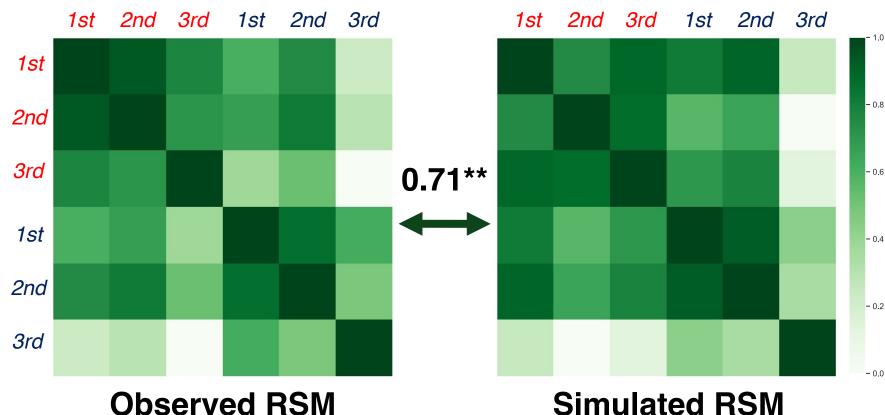
Comparison of the proportion of choices between model simulations (blue) and

empirically observed choices (red)



Representational similarity between the representational similarity matrix (RSM)

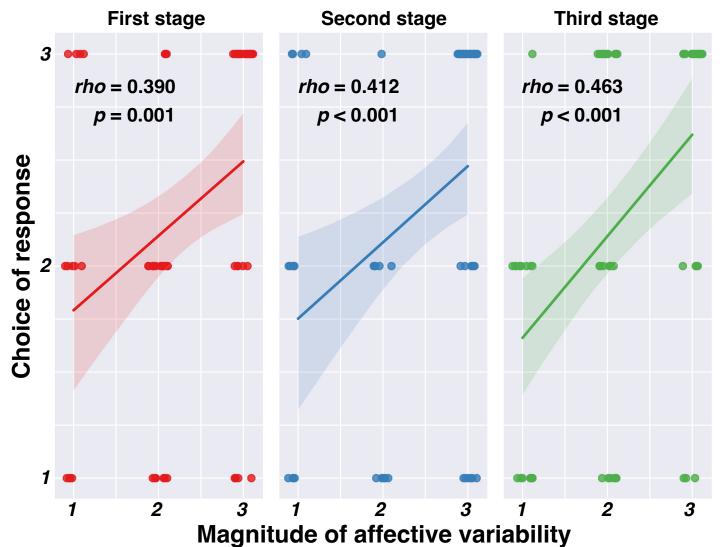
of empirically observed choices (left) and model simulations (right) averaged



over all participants.

Correlations between choice of response and affective variability The Spearman's rank correlation score between

the gold labels and the magnitude of affective variability (AV)



12

Ordinal logistic regression analysis of model simulations

					-
Coeff.	β (SE)	t Value	OR (95% CI)	p Value	-
I (1 2)	-2.31 (0.47)	-4.92		<.0001***	-
I (2 3)	0.40 (0.31)	1.26		.208	
PA	1.49 (0.32)	4.66	4.42 (2.47-8.72)	<.0001***	1s
NA	0.31 (0.29)	1.08	1.37 (0.78-2.47)	.28	
OF	1.29 (0.34)	3.74	3.62 (1.93-7.54)	<.001***	_ 2no

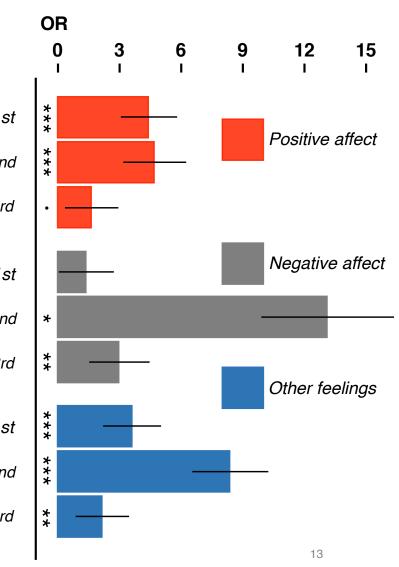
(a) Results of OLR predicting simulated labels on the first stage.

(b) Results of OLR predicting simulated labels on the second stage. 3rd

					-
Coeff.	β (SE)	t Value	OR (95% CI)	p Value	-
I (1 2)	-3.85 (0.85)	-4.55		<.0001***	- 1st
I (2 3)	-1.72 (0.65)	-2.67		.008**	
PA	1.55 (0.42)	3.65	4.70 (2.23-12.11)	<.001***	2nd
NA	2.57 (1.17)	2.19	13.11 (2.10-226.37)	.028*	
OF	2.12 (0.61)	3.47	8.37 (3.04-35.96)	<.001***	3rd
22					

(c) Results of OLR predicting simulated labels on the third stage.

					- 1si
Coeff.	β (SE)	t Value	OR (95% CI)	p Value	
I (1 2)	-1.35 (0.33)	-4.04		<.0001***	- 2na
I (2 3)	0.80 (0.30)	2.63		.009**	
PA	0.49 (0.26)	1.86	1.63 (0.98-2.78)	.062	3rd
NA	1.09 (0.38)	2.83	2.97 (1.56-7.14)	.005**	
OF	0.77 (0.26)	2.93	2.15 (1.31-3.69)	.003**	_



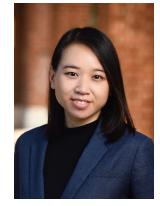
Summary

We conducted a Turing test of automated driving based on 69 passengers' feedback in a real scenario, and test results showed that SAE Level 4 ACs could pass the Turing test when cheating human passengers with more than 50% error judgements.

On this basis, we proposed a computational model combining SDT with AV (transformed by PLM) to predict the passenger's choice behaviour in the Turing test. This is, to the best of our knowledge, the first computational model which provides a mechanistic understanding underlying passengers' mentalising process.

Experimental results and further analysis showed that the greater AV that passengers had, the more likely they identified the driver as the AI algorithm. These findings provide insights into the future automated driving that we should incorporate and improve the affective stability of passengers inside of ACs.

Acknowledgement



Qiaoli Jiang

Zhengming Wu

Anqi Liu

Haiyan Wu

Miner Huang

Kai Huang

sysumelab.com

ME LAB

Yixuan Ku

Thanks for your attendance!