

Affective Neuroscience and Decision-making Lab

@ANDIab3 ______ Emotion Lab

Towards human-compatible autonomous car: A study of non-verbal Turing test in automated driving with affective transition modelling 自动驾驶图灵测试中的情感计算初探

Presenter: Zhaoning Li 李肇宁

National Doctoral Forum on Brain-Computer Intelligence and Psychology, Zhejiang University, 2022

PROLOGUE

'Well, I'm human in part.' "你哪部分是人类?"

… 'Which part, Andrew?' 远里,我的心!"

... 'My mind. My heart. I may be artificial, alien, inhuman so far as your strict genetic definition goes. But I'm human in every way that counts. And I can be recognised as such legally.'

(Adapted from IMDb)

ISAAC ASIMOV AND ROBERT SILVERBERG – THE POSITRONIC MAN

BACKGROUND

- Autonomous cars (AC) have the potential to increase road safety, as they can react faster than human drivers and are not subject to human errors.
- Despite the potential benefits, there has yet to be a large-scale deployment of ACs.
- One main obstacle is that these cars are not humanoid, i.e., they are not driving in a human-like manner.
- Existing literature highlights that the acceptance of AC will increase if it drives in a human-like manner.
- However, sparse research offers the true-to-life ride experience as a passenger in the AC that examines the human likeness of the AC.

RQ1: How to offer the naturalistic experience from a passenger's seat perspective to measure the human likeness of current autonomous cars?

Father of computer science and AI

How to offer the naturalistic experience from a passenger's seat perspective to measure the human likeness of current autonomous cars?

In 1950, Alan Turing proposed the Turing test ¹ to evaluate the **ascription of intelligence**, i.e., whether humans would ascribe human-like intelligent behaviour to machines.

1. A. M. Turing, "Computing machinery and intelligence," Mind, vol. 59, no. 236, 1950.

How to offer the naturalistic experience from a passenger's seat perspective to measure the human likeness of current autonomous cars?

We designed a ride experience-based version of the nonverbal Turing test to evaluate the **ascription of humanness**, i.e., whether the AI driver could create a human-like ride experience for passengers, such that passengers would have either chance-level or even higher humanness ratings under the AI driver condition.

THE NON-VERBAL VARIATION OF THE TURING TEST

RESULTS OF THE NON-VERBAL VARIATION OF THE TURING TEST

Normalised humanness rating scores, their mean values and 95%

6

• The AI driver's failure inspired us to explore further why the AI algorithm could trick human passengers in some trials and not in most others.

RQ2: How do human passengers ascribe humanness in the non-verbal variation of the Turing test?

RESEARCH QUESTION

How do human passengers ascribe humanness in the non-verbal variation of the Turing test?

Father of modern social psychology

Lewin's Field theory ² states that a person's psychological field (i.e., the total psychological environment that the person experiences subjectively) determines their behaviour, which can be expressed by the following equation:

2. K. Lewin, Principles of Topological Psychology. McGraw-Hill, 1936.

RESEARCH QUESTION

How do human passengers ascribe humanness in the non-verbal variation of the Turing test?

Father of modern social psychology

Lewin's Field theory ² states that a person's psychological field (i.e., the total psychological environment that the person experiences subjectively) determines their behaviour, which can be expressed by the following equation:

2. K. Lewin, Principles of Topological Psychology. McGraw-Hill, 1936.

COMPUTATIONAL MODELLING

Comparisons on the outer loop cross-validation of nested-LOOCV with baselines

						-			
Baselines	AA	AA_{pre}	AA_{post}	PA	PA_{pre}	PA_{post}	NA	NA_{pre}	NApost
MLR	-0.1844	0.1312	0.1283	0.0988	0.1761	-0.0082	-0.0453	0.0390	0.0744
KNN	0.1431	0.0543	0.1753	0.4755****	0.2370*	-0.0669	0.0870	-0.1078	0.1129
SVC	-0.1039	-0.1027	-0.0268	0.1704	0.0431	-0.0932	0.0780	0.0340	-0.0578
RF	-0.0654	0.1239	-0.0122	0.1125	0.1245	-0.2744	0.0688	0.0586	0.1301
XGBoost	0.1794	0.4125***	0.0537	0.2188*	0.0754	0.0430	0.1013	0.1508	0.1321
MLP	0.2185*	0.3211**	-0.1391	-0.0759	0.1083	0.0953	0.0448	-0.1041	0.0342
Baselines	None	SDT-AT	AA+MF	AA	PA+MF	PA	NA+MF	NA	MF
Random	0.0029	Original	-0.3985	-0.3552	-0.2580	0.1738	-0.3397	0.0828	0.0990
Probability	-0.0060	PLM-wv	0.4511***	0.4152***	0.4092***	0.3939***	0.4064***	0.1359	0.3030**
Detective	0.1491	PLM-tf	0.4113***	0.4639****	0.4768****	0.3939***	0.3484**	0.1842	0.3738**

(a) Evaluation results on the first stage.

'AA' for all affect,
'PA' for positive affect,
'NA' for negative affect and
'MF' for mixed feelings
'Pre' for pre-study baseline and 'post' for post-stage

Comparisons on the outer loop cross-validation of nested-LOOCV with baselines

(a) Evaluation results on the first stage.									'PA' fo	r positive affect,	
Baselir	nes AA	A AA ₁	pre AApo	pst PA	PA_{pr}	re PA _{po}	ost NA	NA_{pre}	NApos	t 'NA' for r t 'MF' fo	legative affect and or mixed feelings
MLI KNI				(b) Evalua	ation results	on the secor	nd stage.			'Pre' for and 'pc	pre-study baseline st' for post-stage
SVC	Baselines	AA	AA_{pre}	AA_{post}	PA	PA_{pre}	PA_{post}	NA	NA_{pre}	NA _{post}	
RF-	MLR	0.2752*	0.1524	-0.2298	0.1539	0.2095*	-0.1659	0.0205	0.1947	-0.1728	
XGB0	KNN	0.2046*	0.3069**	-0.3189	0.1436	0.1297	-0.3123	-0.2696	-0.1486	-0.1639	
	SVC	0.1061	0.0945	-0.1743	0.1270	-0.0558	-0.0776	0.0161	0.0541	0.0997	
Baseli	RF	0.0416	0.3126**	-0.1799	0.2379*	0.2588*	-0.2196	0.0573	0.2087*	-0.3861	
Rando	XGBoost	0.0835	0.2839**	-0.2254	0.1895	0.3613**	-0.1368	-0.0965	-0.2473	-0.1788	
Probab	MLP	0.1986	0.1981	-0.3661	0.1302	0.3687**	-0.1213	-0.0608	-0.3048	-0.3838	
Detect	Baselines	None	SDT-AT	AA+MF	AA	PA+MF	PA	NA+MF	NA	MF	
-	Random	0.0010	Original	0.1750	0.2409*	0.1539	0.1912	0.1865	-0.0105	0.1824	
	Probability	-0.0017	PLM-wv	0.4569****	0.4195***	0.4402***	0.4635****	0.3167**	0.1703	0.4276***	
	Detective	0.0394	PLM-tf	0.4375***	0.4173***	0.4545****	0.4739****	0.3528**	0.2636*	0.3578**	

Comparisons on the outer loop cross-validation of nested-LOOCV with baselines

(a) Evaluation results on the first stage.										'AA' for all affect, 'PA' for positive affect,	
Baselin	ies	AA	AA_{pre}	AA_{post}	PA	PApre	PApost	NA	NApre	NApost	'NA' for negative affect and 'MF' for mixed feelings
MLI KNľ	11	(b) Evaluation results on the second stage.									
SVC	Baseli	nes A	A AA	$_{pre}$ AA_{p}	ost P	A PA _p	PA_p	ost N.	A NA	pre NA	A_{post}
RF ⁻ XGBo ML1	ML KN				(c) Evalı	ation result	s on the third	l stage.		• · - •	
Baseli	SVC	Baselines	AA	AA_{pre}	AA_{post}	PA	PA_{pre}	PA_{post}	NA	NA_{pre}	NA_{post}
Rando	KI- XGB(MLR	0.2154*	0.3482**	0.2852*	0.0593	-0.0535	0.0076	0.3994***	0.3294**	0.3954***
Probab	ML	KNN	0.1782	0.4317***	0.2630*	0.0885	0.1510	0.1899	0.3998***	0.4161***	0.3301**
Detect	Baseli	RF	0.1425 0.1180	0.3438** 0.3615**	0.2218*	-0.0157 0.0654	-0.0608 0.1642	0.1165 0.0294	0.1932 0.3397**	0.1456 0.2815*	0.3215** 0.3244**
-	Rand	XGBoost	0.2186*	0.3625**	0.1942	0.0674	0.1525	0.1175	0.3339**	0.4016***	0.2987**
	Probal	MLP	0.1302	0.2144*	0.2740*	0.0347	0.0722	0.2187*	0.3674**	0.3126**	0.2512*
=	Detec	Baselines	None	SDT-AT	AA+MF	AA	PA+MF	PA	NA+MF	NA	MF
	-	Random	0.0001	Original	0.1490	0.2019	0.1978	-0.0258	0.4037***	0.4245***	0.1104
		Probability	-0.0021	PLM-wv	0.4861****	0.4556***	0.4624***	0.4322***	0.4419***	0.4256***	0.5615****
		Detective	0.3168**	PLM-tf	0.4807****	0.4974****	0.4654****	0.4570***	0.4769****	0.4429***	0.5422****

Comparisons on the outer loop cross-validation of nested-LOOCV with baselines

(a) Evaluation results on the first stage.										()	'AA' for a 'PA' for pos	ull affect, sitive affect,	
Baselir	nes	AA	AA_{pr}	AA_{po}	st PA	PA_{pre}	PA_{post}	NA	NA_{pro}	NA_p	ost N	MF' for negat	ive affect and ed feelings
MLI KNI					(b) Evaluat	ion results or	n the second	stage.			ʻF	Pre' for pre-s and 'post' fo	tudy baseline r post-stage
SVC	Baseli	nes	AA	AA_{pre}	AA_{post}	PA	PA_{pre}	PA_{post}	NA	NApre	NApa	ost	
RF ⁼ XGBo	ML KN	<u> </u>	~ ~~~ ~	· ·=- ·	(c)	Evaluation re	esults on the	e third stage.		~	~		
Baseli	SV(RF	Baseli	nes A	A AA	pre AAp	post PA	PA_p	re PA _p	ost N	A N	IApre	NApost	; ; ;
Rando	ML (d) Evaluation results on all stages.												
Detect	Baseli	SV	Baselines	AA	AA_{pre}	AA_{post}	PA	PA_{pre}	PA_{post}	NA	NA	A_{pre}	NApost
=	Rand		MLR	0.0573	0.1516*	0.0749	0.0543	0.1264*	0.0988	0.0931	0.1	160	0.0520
	Probal		KNN	0.0992	0.1521*	0.1198*	0.0419	0.0144	0.1216*	0.1116	0.1	422*	-0.0497
	Dotoc	IVIL	SVC	0.0854	0.0755	0.1457*	0.0414	0.0991	0.0688	0.0467	0.0	676	0.0038
=		Baseli	RF	0.0505	0.1308*	0.0292	0.1491*	0.0457	-0.0001	0.0117	0.0	500	0.1426*
		Rand	XGBoost	0.1411*	0.2586***	0.0198	0.1254*	0.1157	0.0044	0.2176**	0.19	969**	0.1357*
		Probal	MLP	0.0952	0.1949**	0.0701	0.1349*	0.0540	0.0830	0.2037**	0.20)78**	0.0842
		Detec	Baselines	None	SDT-AT	AA+MF	AA	PA+MF	PA	NA+MF	N	IA	MF
		-	Random	0.0013	Original	0.1850**	0.1816**	0.0326	0.1416*	-0.1204	0.16	685**	0.0570
			Probability	-0.0006	PLM-wv	0.2704***	0.2452***	0.2447***	0.2331***	0.2866***	* 0.18	871**).5093****
			Detective	0.1764**	PLM-tf	0.2837****	0.2879****	0.2734****	0.2878****	0.4178***	* 0.20	004**).4641****

Based on Lewin's equation, our proposed SDT-AT models provided superior within- (Table a-c) and cross-stage performance (Table d) than all other baselines, demonstrating the overall effectiveness of these models.

Comparisons of the proportion of humanness rating scores between empirical observations and model simulations

RESULTS OF THE COMPUTATIC

MODELLING

Our model exhibited the same humanness rating behaviour pattern as passengers did.

ANALYSIS

Affective transition, serving as a hypothetical essential part (i.e., *P*) of passengers' subjective ride experience in our model, may play a crucial role in their ascription of humanness.

Spearman's rank correlation scores between the humanness rating and the magnitude of affective transition

Mean changes in positive affect during the first and second stages

Conditions	ΔM	SD	z	p
First stage				
Human driver	0.742	2.627	1.68	0.046
AI driver	-0.622	2.803	-0.78	0.218
Second stage				
Human driver	0.500	1.396	1.51	0.065
AI driver	-0.375	2.983	-0.76	0.223

Enhancing positive affect may be the essence of the humanlike ride experience during the starting two stages.

ANALYSIS

Word cloud displaying mixed feelings (MF) from all stages, i.e., the difference in the passenger's subjective ride experience between the two conditions

The size of each MF item is proportional (positively for the human driver condition, negatively for the AI driver condition) to the related *z*scored transition from crossstage model simulations.

14

The figure illustrates details of what needs to be improved for current automated driving to offer a human-like ride experience for the passenger.

DISCUSSION

- The present study examined whether the current SAE Level 4 AC could create a human-like ride experience for passengers in a real-road scenario for the first time. The AI driver failed to pass our test because passengers detected the AI driver above chance.
- Our proposed computational model could adequately predict passengers' humanness rating behaviour. The practical success of basing the computational modelling on Lewin's seemingly abstract and theoretical field theory speaks directly to his famous maxim that 'there is nothing as practical as a good theory'³.
- We offer the first insights into what renders passengers' subjective ride experience truly humanlike for future automated driving: the passengers' ascription of humanness would increase with the greater affective transition.
- Our results demonstrate the possibility and feasibility of using NLP techniques (e.g., pre-trained language models) as **adjuncts** to the interaction between social cognition and artificial intelligence to guide theorising and the generation of conceptual insights.
- Our further analysis of affective transition provided more concrete suggestions for the selfdriving algorithm to offer a human-like ride experience for the passenger, e.g., improving passengers' positive affect during the starting stage and ensuring smoother starting and braking.
- We conjecture that the lack of a certain level of **mentalising ability** in the current self-driving algorithm may underlie its failure to pass our non-verbal variation of the Turing test. In this regard, our study calls for a spotlight on the importance of ensuring ACs (or **artificial social intelligence**, more broadly speaking) have at least some mentalising ability.

ACKNOWLEDGEMENT & CONTACT

Angi

Liu

Qiaoli Jiang Zhengming Wu Haiyan Wu Miner Huang Kai Huang

Yixuan Ku

Presenter: Zhaoning Li 李肇宁

@lizhn7@sciences.social
 github.com/das-boot
 yc17319@umac.mo
 @lizhn7