VP-A-382-1047 Bot or Not: A Study of the Turing Test in Automated Driving with Affective Transition Modelling

I. Research Question

II. Non-verbal Variation of the Turing Test for Automated Driving

RQ1: How to offer the naturalistic experience from a passenger's seat perspective to measure the

humanness of current autonomous cars?

III. AI Driver Failed to Pass the Test

IV. Research Question

V. Basing the Computational Modelling on Lewin's Field Theory

RQ2:

How do human passengers ascribe humanness in the non-verbal variation of the **Turing test?**

VI. Ascription of Humanness Would Increase with the Greater Affective Transition

 $rho = 0.5615 \ p = 1.14 \times 10^{-6}$

较强烈兴趣 一点也没有紧张 Interest (3/4) Tension (1/4)	
较轻微惊奇 较强烈满意 Surprise (2/4) Satisfaction (3/4)	$\left \right $
过红绿灯时停车较急促。 The car stopped more	
quickly at traffic lights.	/

Fear (1/4)

Enjoyment (3/4)

VII. Discussion

We examined whether the current autonomous cars could create a human-like ride experience for passengers for the first time: the AI driver failed to pass our test because passengers detected the AI driver above chance.

We offer the first insights into what renders passengers' subjective ride experience truly human-like: the passengers' ascription of humanness would increase with the greater affective transition.