import mumot
mumot.__version__
mumot.about()
model1 = mumot.parseModel(r"""
\emptyset -> P : k_3
P -> \emptyset : k
P + P -> Q + \emptyset : k_1
Q + \emptyset -> P + P : k_2
""")
model1.showODEs(method='vanKampen')
evol1 = model1.integrate(['Q', 'P'], legend_loc='center right')
evol1.showLogs(tail=True)
bookmark_evol1 = model1.integrate(showStateVars=['P', 'Q'], initialState = {'P': 1.0, 'Q': 0.0},
maxTime = 3.0, plotProportions = False,
params = [('k_{3}', 2.0), ('k_{2}', 2.0), ('k', 2.0), ('k_{1}', 2.0),
('plotLimits', 1), ('systemSize', 10.0)],
legend_loc = 'center right', bookmark = False)
Ncorr1 = model1.noiseCorrelations(maxTime=120, legend_loc='upper right', legend_fontsize=10)
Ncorr1.showLogs(tail=True)
model1.noiseCorrelations()
bookmark_ncorr1 = model1.noiseCorrelations(initialState = {'P': 1.0, 'Q': 0.0}, params = [('k_{3}', 2.0), ('k_{2}', 2.0), ('k', 2.0), ('k_{1}', 2.0), ('plotLimits', 1), ('systemSize', 10.0)], legend_loc = 'upper right', legend_fontsize = 10, maxTime = 120, bookmark = False)
model1.showFokkerPlanckEquation()
model1.showNoiseEquations()
model1.showNoiseSolutions()
stream1 = model1.stream('P', 'Q', showFixedPoints=True, showNoise = True)
stream1.showLogs()
bookmark_stream1 = model1.stream('P', 'Q', params = [('k_{3}', 2.0), ('k_{2}', 2.0), ('k', 2.0), ('k_{1}', 2.0), ('plotLimits', 1.5), ('systemSize', 10.0)], showFixedPoints = True, showNoise = True, bookmark = False)
model2 = mumot.parseModel(r"""
(\alpha) -> X : \gamma
X + X + Y -> X + X + X : \chi
(\beta) + X -> Y + \emptyset : \delta
X -> \emptyset : \xi
""")
evol2 = model2.integrate(legend_loc='lower right')
evol2.showLogs()
evol2b = model2.integrate(['X'], maxTime=50, legend_loc='lower right')
Ncorr2 = model2.noiseCorrelations(maxTime=20, legend_loc='upper right', legend_fontsize=14)
Ncorr2.showLogs()
model2.showFokkerPlanckEquation()
model2.showNoiseEquations()
model2.showNoiseSolutions()
stream2 = model2.stream('X', 'Y', showNoise=True, showFixedPoints=False)
stream2.showLogs()
model3 = mumot.parseModel(r"""
(A) -> X : \alpha
X + X -> Y + \emptyset : \gamma
Y -> (B) : \beta
""")
model3.showODEs(method='vanKampen')
evol3 = model3.integrate(legend_loc='center right')
evol3.showLogs()
Ncorr3 = model3.noiseCorrelations(maxTime=20, legend_loc='upper right', legend_fontsize=12)
Ncorr3.showLogs()
model3.showFokkerPlanckEquation()
model3.showNoiseEquations()
model3.showNoiseSolutions()
stream3 = model3.stream('X', 'Y', showNoise=True, showFixedPoints=True)
stream3.showLogs()
model4 = mumot.parseModel(r"""
\emptyset + X -> X + X : \mu
X + X + X -> X + X + \emptyset : \alpha
Y -> \emptyset : \beta
(A) -> Y : \kappa
X -> \emptyset : \gamma
""")
model4.showODEs(method='vanKampen')
evol4 = model4.integrate(['X', 'Y'], legend_loc='center right')
evol4.showLogs()
Ncorr4 = model4.noiseCorrelations(maxTime=20, legend_loc='upper right', legend_fontsize=12)
Ncorr4.showLogs()
model4.showFokkerPlanckEquation()
model4.showNoiseEquations()
model4.showNoiseSolutions()
stream4 = model4.stream('X', 'Y', showNoise=True, showFixedPoints=False)
stream4.showLogs()
model5 = mumot.parseModel(r"""
U -> A : g_A
U -> B : g_B
A -> U : a_A
B -> U : a_B
A + U -> A + A : r_A
B + U -> B + B : r_B
A + B -> A + U : s
A + B -> B + U : s
""")
evol5 = model5.integrate(['A', 'B', 'U'], maxTime=50, legend_loc='center right', legend_fontsize=13)
evol5.showLogs()
Ncorr5 = model5.noiseCorrelations(maxTime=50, legend_loc='upper right', legend_fontsize=12)
Ncorr5.showLogs()
model5.showNoiseEquations()
model6 = mumot.parseModel(r"""
U -> A : g_1
U -> B : g_2
U -> C : g_3
A -> U : a_1
B -> U : a_2
C -> U : a_3
A + U -> A + A : r_1
B + U -> B + B : r_2
C + U -> C + C : r_3
A + B -> A + U : s
A + B -> B + U : s
A + C -> A + U : s
A + C -> C + U : s
B + C -> B + U : s
B + C -> C + U : s
""")
evol6 = model6.integrate(['A', 'B', 'C'], maxTime=50, legend_loc='center right')
evol6.showLogs()
model7 = mumot.parseModel(r"""
A -> E : k_E
\emptyset + X -> X + X : k
\emptyset + X -> X + X : v_A
X + X -> X + \emptyset : k_m
E -> \emptyset : d_E
X -> A : v_A
A -> \emptyset : d_A
E + X -> E + \emptyset : d_N
A + \emptyset -> A + A : k_E
""")
model7.showODEs(method='vanKampen')
evol7 = model7.integrate(['A', 'E', 'X'], maxTime=50, legend_loc='center right')
evol7.showLogs()
Ncorr7 = model7.noiseCorrelations(maxTimeDS=100, tstep=0.02, maxTime=20,
legend_loc='upper right', legend_fontsize=16)
Ncorr7.showLogs()
model7.showFokkerPlanckEquation()
model7.showNoiseEquations()