The Markdown parser included in IPython is MathJax-aware. This means that you can freely mix in mathematical expressions using the MathJax subset of Tex and LaTeX
In model fitting it is usually necessary to use equations for aggregated properties, because rainfall data are usually sampled over discrete time intervals. Let $Y_{ij}^{h}(x)$ be the aggregated time series of rainfall due to type $i$ storms at point $x = (x, y) ∈ R^2$ in the $j-th$ time interval of width $h$, and let $Y_{j}^h(x)$ be the total rainfall in the $j-th$ interval due to the superposition of the $n$ storm types [1]. Then,
$$Y_{j}^h (x) = \sum_{i=1}^{n} \int_{(j-1)/h}^{jh} Y_i (x, t)dt$$where $Y_i (x, t)$ is the rainfall intensity at point $x$ and time $t$ due to type $i$ storms $(i = 1, ..., n)$. Since the superposed processes are independent, statistical properties of the aggregated time series follow just by summing the various properties given below [1].
Mean ([2] Eq.12):
$$\mu(h)= \sum_{i=1}^{n} E\lbrace Y_{ij}^{h}(x)\rbrace=h\sum_{i=1}^{n}\frac{\lambda_{i}\nu_{i}}{\chi_{i}\eta_{i}}$$in the STNSRP model, $\chi_{i}$ must me change by $\chi_{i}^-1$
Covariance ([2] Eq.14):
$$\gamma(x,x, l, h) = \sum_{i=1}^{n} Cov\lbrace Y_{ij}^{h}, Y_{i,j+l}^{h}\rbrace = \frac{\lambda_i(\nu_{i}^{2}-1)[\beta_i^{3}A_i(h, l)-\eta_i^{3}B_i(h,l)]}{\beta_i\xi^{2}\eta_i^{3}(\beta_i^{2}-\eta_i^{2})} - \frac{4\lambda_i \chi_{i}A_i(h,l)}{\xi_i^{2}\eta_i^{3}}$$when $l =0$,
$$A_i(h,l)=A_i(h)=\eta_i h -1 + e^{-\eta_i h}$$$$B_i(h,l)=B_i(h)=\beta_i h -1 + e^{-\beta_i h}$$when $l >0$,
$$A_i(h,l)=0.5(1-e^{-\eta_i h})^{2}e^{-\eta_i h(l-1)}$$$$B_i(h,l)=0.5(1-e^{-\beta_i h})^{2}e^{-\beta_i h(l-1)}$$Probability of not rain in an arbitrary time of length $h$ ([3] Eq.6):
The probability that an arbitrary time interval $[(j − 1)h, j h]$ is dry at a point is obtained by multiplying the probabilities of the independent processes and is given by the following:
$$\phi(h) = \sum_{i=1}^{n} Pr\lbrace Y_{ij}^{(h)}(x)=0 \rbrace = exp(-\lambda_i h + \lambda_i \beta_i^{-1}(\nu_{i} -1)^{-1}\lbrace1-exp[1-\nu_{i} + (\nu_{i}-1) e^{-\beta_i h}]\rbrace -\lambda_i\int_{0}^{\infty}[1-p_{h}(t)]dt)$$We use the approximation shown in [2] Eq.17 to avoid having to solve the integral:
$$\int_{0}^{\infty}[1-p_{h}(t)]dt=\beta_i^{-1}[\gamma +ln(\alpha \nu_{i}-1)]$$where $\gamma =0.5771 $ y $\alpha_i = \eta_i/(\eta_i - \beta_i)-e^{-\beta_i h}$
Transition probabilities:
The transition probabilities, $pr \lbrace Y_{i,j+1}^{(h)}(x)>0 | Y_{ij}^{(h)}(x)>0 \rbrace$ and $pr \lbrace Y_{i,j+1}^{(h)}(x)=0 | Y_{i}^{(h)}(x)=0 \rbrace$, denoted as $\phi_{WW}(h)$ y $\phi_{DD}(h)$, respectively, can be expressed in terms of $\phi(h)$ following ([3] Eq.7,8 and 9):
$$\phi_{DD}(h)=\phi(2h)/\phi(h)$$$$\phi(h)=\phi_{DD}(h) + \lbrace 1-\phi_{WW}(h) \rbrace \lbrace(1-\phi(h))\rbrace$$$$\phi_{WW}(h)=\lbrace 1-2 \phi(h) + \phi(2h) \rbrace\lbrace 1 -\phi(h) \rbrace$$The third moment function ([4] Eq.10):
$$\xi_{h}=E\lbrace Y_{j}^{(h)}(x)-\mu(h)\rbrace^{3}= \sum_{i=1}^{n}[ 6\lambda_i\nu_{i}E(X^{3})(\eta_i h -2 +\eta_i h e^{-\eta_i h}+2e^{-\eta_i h})/\eta_i^{4} + 3\lambda_i\chi_i E(X^{2})\nu_{i}^2 f(\eta_i, \beta_i, h)/{\lbrace2\eta_i^{4}\beta_i (\beta_i^{2}-\eta_i^{2})^{2}}\rbrace + \lambda_i \chi_i^{3}\nu_{i}^{3} g(\eta_i, \beta_i, h)/{\lbrace e\eta_i^{4}\beta_i(e\eta_i^{2}-\beta_i^{2})(\eta_i-\beta_i)(2\beta_i +\eta_i)(\beta_i +2\eta_i)}\rbrace]$$In the STNSRP model, C is a Poisson random variable, so that $E\lbrace C(C-1)\rbrace = \nu^2$ and $E\lbrace C(C-1)(C-2)\rbrace = \nu^3$ If is a geometric then $E\lbrace C(C-1)\rbrace = 2\nu^2(\nu-1)$ and $E\lbrace C(C-1)(C-2)\rbrace = 6\nu^2(\nu-1)^{2}$
For exponential cell intensities, $E(X_{ijk})$ and $E(X_{ijk}^{k})$ are replaced by $2\chi_i^{2}$ and $6\chi_i^{3}$ respectively.
$f(\eta_i, \beta_i, h)$ and $g(\eta_i, \beta_i, h)$ are derived bellow:
For each storm, the number of cells $\nu$ that overlap a point in $R^2$ is a Poisson random variable with mean ([5] Eq.3):
$$\nu_C = \nu \phi_c^2/(2\pi) $$where $\nu_C$ denotes the two-dimensional Poisson process (cells per $km^2$)
The probability that a cell overlaps a point $x$ given that it overlapped a point $y$ a distance $d$ from $x$ ([5], Eq.9)
$$ P(\phi, d)\approx \frac{1}{30} \sum_{i=1}^{4} \lbrace 2f(\frac{2 \pi i}{20}) + 4f(\frac{2\pi i + \pi}{20})\rbrace - \frac{1}{30} f(0) $$where
$$f(y)=(\frac{\phi d}{2 cosy}+1)exp(\frac{-\phi d}{2cosy}), 0 \le y < \pi/2, f(\pi/2)$$Cross-correlation ([5], Eq.6):
$$\gamma(x,y,l,h)=\sum_{i=1}^{n} Cov\lbrace Y_{ij}^{h}(x), Y_{i,j+l}^{h}(y)\rbrace = \sum_{i=1}^{n} [\gamma_i(x,x,l,h)-2\lambda_i\lbrace1-P(\phi_i, d)\rbrace\nu_{Ci}E(X^2)A_i(h,l)/\eta_i^3]$$[1]: Cowpertwait, P., Ocio, D., Collazos, G., De Cos, O., Stocker, C. Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain (2013) Hydrology and Earth System Sciences, 17 (2), pp. 479-494.
[2]: Cowpertwait, P.S.P. Further developments of the neyman‐scott clustered point process for modeling rainfall (1991) Water Resources Research, 27 (7), pp. 1431-1438.
[3]: Cowpertwait, P.S.P., O'Connell, P.E., Metcalfe, A.V., Mawdsley, J.A. Stochastic point process modelling of rainfall. I. Single-site fitting and validation (1996) Journal of Hydrology, 175 (1-4), pp. 17-46.
[4]: Cowpertwait, P.S.P. A Poisson-cluster model of rainfall: High-order moments and extreme values (1998) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454 (1971), pp. 885-898.
[5]: Cowpertwait, P.S.P., Kilsby, C.G., O'Connell, P.E. A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes (2002) Water Resources Research, 38 (8), pp. 6-1-6-14.