Use this notebook to obtain "expected" values for
test_geom_imshow_nan_values.py
test suite.
import numpy as np
from lets_plot import *
LetsPlot.setup_html()
LetsPlot.set_theme(flavor_solarized_light())
arr = np.array([
[50., 150., 200.],
[200., 100., 50.]
])
ggplot() + geom_imshow(arr)
Normalization: 0.00015306472778320312 Clipping: 7.295608520507812e-05 image_2d: 0.00016307830810546875 png.Writer: 0.00023698806762695312 base64: 0.00018596649169921875
# With NaN values
arr_nan = np.array([
[50., np.nan, 200.],
[np.nan, 100., 50.]
])
ggplot() + geom_imshow(arr_nan)
LA add alpha: 5.1021575927734375e-05 Normalization: 0.0002892017364501953 Clipping: 5.698204040527344e-05 image_2d: 6.29425048828125e-05 png.Writer: 0.00018787384033203125 base64: 2.7179718017578125e-05
ggplot() + geom_imshow(arr_nan, cmap="magma")
Normalization: 0.0001461505889892578 Clipping: 0.00010395050048828125 image_2d: 3.528594970703125e-05 png.Writer: 0.00505375862121582 base64: 0.00016117095947265625
_.as_dict()
{'mapping': {}, 'data_meta': {}, 'theme': {'flavor': 'solarized_light'}, 'kind': 'plot', 'scales': [], 'layers': [{'geom': 'image', 'mapping': {}, 'data_meta': {}, 'href': '', 'xmin': -0.5, 'ymin': -0.5, 'xmax': 2.5, 'ymax': 1.5}], 'metainfo_list': []}