Use this notebook to obtain "expected" values for
test_geom_imshow_alpha.py
test suite.
import numpy as np
from lets_plot import *
LetsPlot.setup_html()
LetsPlot.set_theme(flavor_solarized_light())
arr = np.array([
[50, 150, 200],
[200, 100, 50]
])
ggplot() + geom_imshow(arr, alpha=.5)
Normalization: 0.0002799034118652344 Clipping: 6.794929504394531e-05 image_2d: 0.00014400482177734375 png.Writer: 0.0012731552124023438 base64: 4.887580871582031e-05
# 'norm' = False
ggplot() + geom_imshow(arr, norm=False, alpha=.5)
Normalization: 0.0002148151397705078 Clipping: 0.0002758502960205078 image_2d: 0.0001251697540283203 png.Writer: 0.00023508071899414062 base64: 4.1961669921875e-05
# With NaN-s
arr_nan = np.array([
[50., np.nan, 200.],
[np.nan, 100., 50.]
])
ggplot() + geom_imshow(arr_nan, alpha=0.5)
LA add alpha: 5.817413330078125e-05 Normalization: 0.0004942417144775391 Clipping: 5.1975250244140625e-05 image_2d: 0.0001399517059326172 png.Writer: 0.0002028942108154297 base64: 3.409385681152344e-05
ggplot() + geom_imshow(arr, cmap="magma", alpha=0.5)
Normalization: 0.00017714500427246094 Clipping: 0.00016498565673828125 image_2d: 4.8160552978515625e-05 png.Writer: 0.007149696350097656 base64: 0.00011801719665527344
# With NaN-s
arr_nan = np.array([
[50., np.nan, 200.],
[np.nan, 100., 50.]
])
ggplot() + geom_imshow(arr_nan, cmap="magma", alpha=0.5)
Normalization: 0.00024199485778808594 Clipping: 0.000186920166015625 image_2d: 5.412101745605469e-05 png.Writer: 0.007398843765258789 base64: 0.0001480579376220703
# RGB image
A2x3x3 = np.array([
[[255, 0, 0], [0, 255, 0], [0, 0, 255]],
[[0, 255, 0], [0, 0, 255], [255, 0, 0]]
])
ggplot() + geom_imshow(A2x3x3)
Normalization: 2.288818359375e-05 Clipping: 0.00014495849609375 image_2d: 3.409385681152344e-05 png.Writer: 0.00011992454528808594 base64: 3.218650817871094e-05
ggplot() + geom_imshow(A2x3x3, alpha=0.5)
Normalization: 9.298324584960938e-05 Clipping: 0.00023794174194335938 image_2d: 3.910064697265625e-05 png.Writer: 0.0002899169921875 base64: 3.600120544433594e-05
# RGBA image (with alpha channel)
A2x3x4 = np.array([
[[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]],
[[0, 1, 0, 0.3], [0, 0, 1, 0.3], [1, 0, 0, 0.3]]
])
ggplot() + geom_imshow(A2x3x4)
Normalization: 3.790855407714844e-05 Clipping: 0.00010609626770019531 image_2d: 5.4836273193359375e-05 png.Writer: 0.00015616416931152344 base64: 3.314018249511719e-05
ggplot() + geom_imshow(A2x3x4, alpha=0.5)
Normalization: 5.984306335449219e-05 Clipping: 8.511543273925781e-05 image_2d: 9.012222290039062e-05 png.Writer: 0.0002319812774658203 base64: 4.1961669921875e-05
_.as_dict()
{'mapping': {}, 'data_meta': {}, 'theme': {'flavor': 'solarized_light'}, 'kind': 'plot', 'scales': [], 'layers': [{'geom': 'image', 'mapping': {}, 'data_meta': {}, 'href': '', 'xmin': -0.5, 'ymin': -0.5, 'xmax': 2.5, 'ymax': 1.5}], 'metainfo_list': []}