Cohen-Bergstresser model

This example considers the Cohen-Bergstresser model1, reproducing the results of the original paper. This model is particularly simple since its linear nature allows one to get away without any self-consistent field calculation.


  1. M. L. Cohen and T. K. Bergstresser Phys. Rev. 141, 789 (1966) DOI 10.1103/PhysRev.141.789

We build the lattice using the tabulated lattice constant from the original paper, stored in DFTK:

In [1]:
using DFTK

Si = ElementCohenBergstresser(:Si)
atoms = [Si, Si]
positions = [ones(3)/8, -ones(3)/8]
lattice = Si.lattice_constant / 2 .* [[0 1 1.]; [1 0 1.]; [1 1 0.]]
Out[1]:
3×3 Matrix{Float64}:
 0.0      5.13061  5.13061
 5.13061  0.0      5.13061
 5.13061  5.13061  0.0

Next we build the rather simple model and discretize it with moderate Ecut:

In [2]:
model = Model(lattice, atoms, positions; terms=[Kinetic(), AtomicLocal()])
basis = PlaneWaveBasis(model, Ecut=10.0, kgrid=(1, 1, 1));

We diagonalise at the Gamma point to find a Fermi level ...

In [3]:
ham = Hamiltonian(basis)
eigres = diagonalize_all_kblocks(DFTK.lobpcg_hyper, ham, 6)
εF = DFTK.compute_occupation(basis, eigres.λ; occupation_threshold=0).εF
Out[3]:
0.3842999767139458

... and compute and plot 8 bands:

In [4]:
using Plots
using Unitful

p = plot_bandstructure(basis; n_bands=8, εF, kline_density=10, unit=u"eV")
ylims!(p, (-5, 6))
Computing bands along kpath:
       Γ -> X -> U  and  K -> Γ -> L -> W -> X
Diagonalising Hamiltonian kblocks: 100%|████████████████| Time: 0:00:00
Out[4]: