=========================================================================================================================
=========================================================================================================================
=========================================================================================================================
List of physical (NIST CODATA2018) and mathematical constants used:
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔
from scipy import constants
import numpy as np
c=constants.c
print(c)
h=constants.h
print(h)
hbar=constants.hbar
print(hbar)
a=137.0359990836958
print(a)
d_e=1.00115965218128
print(d_e)
xi3=1.202056903159594
print(xi3)
xi2=np.pi**2/6
print(xi2)
#print(c,h,hbar,a,d_e,xi3,xi2)
e=np.e
print(e)
gamma=np.euler_gamma
print(gamma)
Gamma=(constants.fine_structure**-1*gamma)/np.pi
print(Gamma)
# F**(2/3)=2*137*Gamma
# Fermi's mass given by
F=(2*137*Gamma)**1.5
print(F)
lambdabare=constants.hbar/(constants.m_e*constants.c)
print(lambdabare)
lambdabar_F=lambdabare/F
print(lambdabar_F)
lambdabar_p=(constants.hbar/(constants.m_p*constants.c))
print(lambdabar_p)
H=1837.152646 # (0.06 ppb)
p=1836.15267343 # 1836.1526734400013 #(0.06 ppb)
n=1838.68366173 # 1838.6836617324586 #(0.5 ppb)
print(H,p,n)
m_e=constants.m_e
m_p=constants.m_p
m_n=constants.m_n
print(m_e,m_p,m_n)
beta=(H-p)**(-1)
print(beta)
j=(8*np.pi**2)/np.log(2)
print(j)
k_B=constants.Boltzmann
T_cmb=2.72582
print(k_B,T_cmb)
lambdabar_cmb=(constants.hbar*constants.c)/(k_B*T_cmb)
print(lambdabar_cmb)
# Planck's length CODATA2018 (hbar.G/c^3)^1/2 = 1.61639471.10^-35
# l_P=1.616255*10**(-35) CODATA2018
G_s=6.67545372*10**-11
print(G_s)
l_P=((constants.hbar*G_s)/constants.c**3)**0.5
print(l_P)
ƛ_w=(constants.hbar/(constants.m_e*constants.c))/F**2
print(ƛ_w)
lambdabar_w=(constants.hbar/(constants.m_e*constants.c))/F**2
P=lambdabare/l_P
print(P)
#2.897 771 955... e-3 m.K - NIST CODATA 2018
b=2.897771955*10**(-3)
#lambdawien=(h*c)/(k_B*)
# b=lambda/lambdawien
print(b)
𝜔=(h*c)/(k_B*b)
print(𝜔)
l_ph=(lambdabare*(np.pi*(a**2))**2)
print(l_ph)
aprime=137.1106292
# Hydrogen Atom Radius
r_H=(lambdabare*aprime)
print(r_H)
# Hydrogen Atom Radius
r_H=(lambdabare*aprime)
print(r_H)
Lucas=(2**127)-1
print(Lucas)
OM=2**46 * 3**20 * 5**9 * 7**6 * 11**2 * 13**3 * 17 * 19 * 23 * 29 * 31 * 41 * 47 * 59 * 71 # 808017424794512875886459904961710757005754368000000000
print(OM)
OB=2**41 * 3**13 * 5**6 * 7**2 * 11 * 13 * 17 * 19 * 23 * 31 * 47 # 4154781481226426191177580544000000
print(OB)
OP=2**8 * 3**7 * 5**6 * 7 * 11 * 31 * 37 * 67 * 2**9 * 3**4 * 5 * 7**3 * 11 * 19 * 31 * 2**14 * 3**3 * 5**3 * 7 * 13 * 29 * 2**21 * 3**3 * 5 * 7 * 11**3 * 23 * 29 * 31 * 37 * 43 * 2**7 * 3**5 * 5 * 17 * 19 * 2**3 * 3 * 5 * 7 * 11 * 19
print(OP)
299792458.0 6.62607015e-34 1.0545718176461565e-34 137.0359990836958 1.00115965218128 1.202056903159594 1.6449340668482264 2.718281828459045 0.5772156649015329 25.178097241906 573007.364905975 3.8615926796089057e-13 6.739167620022749e-19 2.1030891033555923e-16 1837.152646 1836.15267343 1838.68366173 9.1093837015e-31 1.67262192369e-27 1.67492749804e-27 1.000027430752471 113.91063459990004 1.380649e-23 2.72582 0.0008400718024707187 6.67545372e-11 1.6163947113699356e-35 1.1761048867371158e-24 2.389015908333496e+22 0.002897771955 4.965114232061555 0.0013440173951173593 5.294654020152911e-11 5.294654020152911e-11 170141183460469231731687303715884105727 808017424794512875886459904961710757005754368000000000 4154781481226426191177580544000000 2663849798329448283764291471531459318169741293570162121768960000000000000
# URL= 'https://github.com/laguer/hubble-table/hubble-table.csv'
URL= 'https://raw.githubusercontent.com/LaGuer/hubble-table/master/hubble-table.csv'
from urllib.request import urlretrieve
urlretrieve (URL, 'hubble-table.csv')
('hubble-table.csv', <http.client.HTTPMessage at 0x7f92a98faf90>)
URL= 'https://raw.githubusercontent.com/LaGuer/hubble-table/master/constant-table.csv'
from urllib.request import urlretrieve
urlretrieve (URL, 'constant-table.csv')
('constant-table.csv', <http.client.HTTPMessage at 0x7f92b2a52ad0>)
import pandas as pd
#from StringIO import StringIO
#df = pd.read_csv('hubble-table.csv')
df = pd.read_csv("hubble-table.csv", dtype = {"gly_value" : "float64","m_value" : "float64"}, skiprows = [10], sep = ",")
#df = pd.read_csv("hubble-table.csv", dtype = {"gly_value" : "float64","m_value" : "float64"}, usecols=range(1), skiprows = [10], sep = ",")
#df1 = pd.read_csv("constant-table.csv", dtype = {" c_value" : "float64"}, skiprows = [1], sep = ",")
#df = pd.to_csv('hubble-table.csv', float_format='%.3f')
df.tail ()
#df.head ()
Formula in Latex | Formula in plain | gly_value | m_value | |
---|---|---|---|---|
4 | $$(ƛ_e^2/l_P)(j/16)^16( e^e )^2.d_e√2$$ | (lambdabare**2/l_P)(j/16)**16( e**e )**2*d_e*... | 1.381200e+10 | 1.306715e+26 |
5 | $$((a/\sqrt(137)(4πF)^2)ƛe4 l_ph^3(\lambda_CMB... | ((a/np.sqrt(137)*(4np.pi*F)**2)*lambdabar**4*... | 1.381189e+10 | 1.306715e+26 |
6 | $$2\betaƛ_ej**{17}(4π)^2√137$$ | 2*beta*lambdabare*(j**17)*(4*np.pi)**2*np.sqr... | 1.381198e+10 | 1.306715e+26 |
7 | $$ƛ_e(3j^j /2H)^{1/6}$$ | lambdabare*(3*j**j /(2*H))**(1/6) | 1.381199e+10 | 1.306715e+26 |
8 | $$(βFP^{3/2}(n/p)^{7/2}/2\pi).ƛ_e$$ | beta*F*P**(3/2)*(n/p)**(7/2)/(2*np.pi)*lambda... | 1.381198e+10 | 1.306716e+26 |
import pandas as pd
#from StringIO import StringIO
#df = pd.read_csv('hubble-table.csv')
df = pd.read_csv("hubble-table.csv", dtype = {"gly_value" : "float64","m_value" : "float64"}, skiprows = [10], sep = ",")
#df = pd.read_csv("hubble-table.csv", dtype = {"gly_value" : "float64","m_value" : "float64"}, usecols=range(1), skiprows = [10], sep = ",")
#df1 = pd.read_csv("constant-table.csv", dtype = {" c_value" : "float64"}, skiprows = [1], sep = ",")
#df = pd.to_csv('hubble-table.csv', float_format='%.3f')
#df.tail ()
df.head ()
Formula in Latex | Formula in plain | gly_value | m_value | |
---|---|---|---|---|
0 | $$2hbar^2/(G.m_e.m_p.m_n)$$ | 2*hbar**2/(G_s*m_e*m_p*m_n) | 1.380048e+01 | 1.305626e+26 |
1 | $$ƛ_e.exp((e{^4e-1/a}-ln2(P^4/a^3 ))/2)^{1/2}$$ | \t(lambdabare**2/l_P)*((j/16)**16)*( e**e )**... | 1.381000e+10 | 1.306719e+26 |
2 | $$((a/\sqrt(137)(4\pi.F)^2)ƛ_e^4l{ph}^3(ƛ_{CMB... | ((a/(np.sqrt(137)*(4*np.pi*F)**2))*(lambdabar... | 1.381170e+10 | 1.306242e+26 |
3 | $$ƛ_eF_e(Pe^e)^2/√(pn)$$ | lambdabare*F_e*(P*e**e)**2/np.sqrt(pn) | 1.381260e+10 | 1.306715e+26 |
4 | $$(ƛ_e^2/l_P)(j/16)^16( e^e )^2.d_e√2$$ | (lambdabare**2/l_P)(j/16)**16( e**e )**2*d_e*... | 1.381200e+10 | 1.306715e+26 |
df1 = pd.read_csv("constant-table.csv", dtype = {"value" : "float64"}, skiprows = [2], sep = ",")
#df = pd.to_csv('hubble-table.csv', float_format='%.3f')
#df1.head ()
df1.tail ()
symbol | value | |
---|---|---|
32 | G_s | 6.67545372e-11 |
33 | Lucas | 170141183460469231731687303715884105727 |
34 | OM | 8080174247945128758864599049617107570057543680... |
35 | OB | 4154781481226426191177580544000000 |
36 | OP | 2663849798329448283764291471531459318169741293... |
df.dtypes
Formula in Latex object Formula in plain object gly_value float64 m_value float64 dtype: object
# 3**210
# Using G_s the Newtonian constant of gravitation estimate by Francis M. Sanchez (Jan 2020)
G_s=6.67545372*10**-11
print(G_s)
6.67545372e-11
=========================================================================================================================
R_U=2*constants.hbar**2/(G_s*constants.m_e*constants.m_p*constants.m_n)
print(R_U)
1.3056258355517771e+26
R_U/(constants.light_year*10**9)
13.80047597102314
=========================================================================================================================