!pip install git+git://github.com/mkrphys/ipython-tikzmagic.git
%load_ext tikzmagic
#%%tikz -f svg
#%tikz \draw (0,0) rectangle (1,1);
from ipypublish.scripts.ipynb_latex_setup import *
topological-axis.
A list:
A numbered list
This is a long section of text, which we only want in a document (not a presentation) some text some more text some more text some more text some more text some more text some more text some more text some more text
This is an abbreviated section of the document text, which we only want in a presentation
References to \cref{fig:example}, \cref{tbl:example}, \cref{eqn:example_sympy} and \cref{code:example_mpl}.
Referencing multiple items: \cref{fig:example,fig:example_h,fig:example_v}.
A latex citation.\cite{Back_to_Cosmos_2019}
A html citation.(Back to Cosmos, Sanchez et Al. Progress in Physics, 2019)
\todo[inline]{an inline todo}
Some text.\todo{a todo in the margins}
print("""
The topological axis follows the law $$exp(2^{d/4})$$,
""")
The topological axis follow the law $$exp(2^{d/4})$$,
A matplotlib figure, with the caption set in the markdowncell above the figure.
The plotting code for a matplotlib figure (\cref{fig:example_mpl}).
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = True
plt.ion()
fig, ax = plt.subplots()
ax.text(1.25, .25, "$ {T^2}={L^3}={M^5}={F^7}$", fontsize=30, horizontalalignment='center')
ax.text(.5, .5, "$ {2 \hbar^2}/{Gm_em_pm_n}$", fontsize=30, horizontalalignment='center')
ax.set_axis_off()
The plotting code for a pandas Dataframe table (\cref{tbl:example}).
import pandas as pd
import numpy as np
URL= 'https://raw.githubusercontent.com/LaGuer/topological-axis/master/crpso.csv'
from urllib.request import urlretrieve
urlretrieve (URL, 'crpso.csv')
df = pd.read_csv("crpso.csv", dtype = {"Gly" : "float64","m" : "float64"}, skiprows = [50,51], sep = ",")
display = pd.options.display
display.max_columns = 13
display.max_rows = 5
display.max_colwidth = 17
display.width = None
#print(df)
df.iloc[:,[0,1,2,3,4,5,6,7,8,9,10,11,12,13]]
E(d) | $$E^0$$ | $$E^1$$ | $$E^2$$ | $$E^3$$ | $$E^4$$ | ... | $$E^7$$ | $$E^8$$ | $$E^9$$ | $$E^{10}$$ | $$E^{11}$$ | $$E^{12}$$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | $$K_{d+}$$ | 1 | 1 | 5 | 5 | 19 | ... | 59 | 165 | 165 | 419 | 419 | 1001 |
1 | $$K_{d-}$$ | - | 1 | 1 | 5 | 5 | ... | 59 | 59 | 165 | 165 | 419 | 419 |
2 | $$K_{d+}+K_{d... | - | 1 | 3 | 5 | 12 | ... | 59 | 112 | 165 | 292 | 419 | 710 |
3 | $$\sum{K_{d}}$$ | - | 1 | 4 | 9 | 21 | ... | 138 | 250 | 415 | 707 | 1126 | 1836 |
4 | $$K(d−1)+ + K... | - | 7 | 11 | 29 | 43 | ... | 283 | 389 | 749 | 1003 | 1839 | 2421 |
5 rows × 14 columns
Latex('$$ 2\hbar^2 / Gm_em_pm_n $$')
The plotting code for a sympy equation (\cref{eqn:example_sympy}).
f = sym.Function('f')
y,n = sym.symbols(r'y \alpha')
f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)
sym.rsolve(f,y(n),[1,4])
Interactive HTML was created using ipyvolume and will render below in .html type outputs:
!pip install ipyvolume
#import numpy as np
import ipyvolume.pylab as p3
p3.figure()
p3.figure()
#%%time
#%matplotlib inline
#%matplotlib notebook
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
w = 6
h = 7
d = 140
plt.figure(figsize=(w, h), dpi=d)
# x Periodicity
x = [10, 14, 18, 22, 23.333, 25.178, 26]
y = [1.72515, 2.426, 3.12, 3.755, 4.078, 4.363, 4.506]
plt.scatter(x, y, color="red", lw=1, marker='x', label=r"Macro-physics, $y = \ln\ln\frac{\lambdabar_{Macro}}{\lambdabar_e}$")
# + Periodicity
x2 = [10, 14, 22, 23.333, 25.178, 30]
y2 = [1.72155, 2.428, 3.78446, 4.048, 4.368, 5.253]
plt.scatter(x2, y2, color="black", lw=2, marker='+', label=r"Micro-physics, $y = \ln\ln\frac{\lambdabar_e}{\lambdabar_{micro}}$")
# Green Periodicity
x3 = [14, 30, 31.556]
y3 = [2.51872, 5.199, 5.4321]
plt.scatter(x3, y3, color="green", lw=2, marker='.', label=r"Holophysics")
# Slope
x4 = [0, 32]
y4 = [0, 5.5452]
plt.plot(x4, y4, color="grey", lw=1, linestyle=':', label=r"Slope ln2/4")
# Slope
# Atiyah
x5 = [-1, 0, 1, 2, 3, 4, 5, 5.3, 5.7, 6, 7, 7.38, 8]
#x5 = np.arange[0.3 , 7.38, 0.3]
x6 = [5.33, 7.38, 8.]
new_tick_location = [2, 6, 10, 14, 18, 22, 26, 30]
#offset = -40
#new_fixed_axis = par2.get_grid_helper().new_fixed_axis
#par2.axis["bottom"] = new_fixed_axis(loc="bottom",
# axes=par2,
# offset=(0, offset))
#y5 = [0, 5.5452]
#plt.plot(x4, y4, color="grey", lw=1, linestyle=':', label=r"Slope ln2/4")
#plt.yscale('log')
#plt.loglog(y, y2, y3)
plt.text(18, 1.00, r' MicroPhysics', fontsize=18, color="black")
plt.text(0, 0., r' STRING=2', fontsize=8, color="grey")
plt.text(6, 1., r' Gluons', fontsize=8, color="black")
plt.text(10, 1.55, r' Mean Pion', fontsize=8, color="black")
plt.text(0, 1.70, r' Bohr Atom Diameter', fontsize=8, color="red")
plt.text(-1, 2.35, r' Rydberg Reduced Wavelength/pi', fontsize=8, color="red")
plt.text(14, 2.20, r' Half Mean Weak Boson', fontsize=8, color="black")
plt.text(14, 2.52, r'Higgs Boson', fontsize=8, color="green")
plt.text(1, 3.09, r' Cosmic Wavelength hc/2kT T=2.73 K', fontsize=8, color="red")
plt.text(12, 3.78, r' White Dwarf Diameter', fontsize=8, color="red")
plt.text(22, 3.6, r' X Boson GUT', fontsize=8, color="black")
plt.text(24, 4.00, r' Photon', fontsize=8, color="black")
plt.text(11, 4.00, r' Kotov cycle: Stellar System', fontsize=8, color="red")
plt.text(26, 4.30, r' Graviton/a', fontsize=8, color="black")
plt.text(13, 4.30, r' Milankovitch cycle: Galaxy', fontsize=8, color="red")
plt.text(16.7, 4.6, r' Hubble Diameter x pi', fontsize=8, color="red")
plt.text(28, 5.00, r'Large Cycle', fontsize=8, color="green")
plt.text(28, 5.25, r'HOL', fontsize=8, color="black")
plt.text(27, 5.55, r'GrandCosmos', fontsize=8, color="green")
plt.text(-1, 3.50, r' MacroPhysics', fontsize=18, color="red")
plt.grid(True)
plt.legend(loc=2) # upper left corner
plt.xlabel('Number of peculiar dimensions in the bosonic string theory: n = 4k+2')
plt.ylabel(r'Macro: lnln$\frac{\lambdabar_{Macro}}{\lambdabar_e}$', fontsize=10, color="red")
plt.title('Topological Axis')
plt.arrow(1,30,0,0, head_width=0.05, head_length=0.1, fc='k', ec='k')
ax2 = plt.twinx()
#ax2.plot(x, exp(2)**x, lw=1, color="m")
#T=arange(len(x))+0.5
#ax.set_yticks(T)
ax2.set_ylabel(r"Micro: $\ln\ln\frac{\lambdabar_e}{\lambda_{micro}}$", fontsize=10, color="black")
#for label in ax2.get_yticklabels():
# label.set_color("red")
ax3 = plt.twiny()
#ax3.plot(x4, y4, lw=1, color="b")
ax3.set_xlabel(r"Characteristic lengths of physics and cosmology follow the law: $exp(2^{{n}/{4}})$", fontsize=6, color="blue")
for label in ax2.get_xticklabels():
label.set_color("pink")
plt.xticks(x5,x5)
ax2.xaxis.set_label_position('top')
ax2.yaxis.set_label_position('right')
ax2.tick_params(axis='x', colors="C1")
ax2.tick_params(axis='y', colors="C1")
ax2.set_ylim(10e-5,10e105)
ax2.set_yscale('log',basey=10)
ax2.spines['right'].set_position(('outward', 40))
ax2.spines['bottom'].set_position(('outward', 40))
my_xticks = ['-1', '0', '1', '2','$\pi$', '4', '5', '$16/3$', '$e^{\pi}/{4}$', '6', '7', '$e^2$', '']
plt.xticks(x5, my_xticks, fontsize=6)
# Turn on the frame for the twin axis, but then hide all
# but the bottom spine
ax2.set_frame_on(True)
ax2.patch.set_visible(False)
#for sp in ax2.spines.itervalues():
# sp.set_visible(False)
#ax2.spines["bottom"].set_visible(True)
ax2.set_xticks(new_tick_location)
ax2.set_xticklabels(new_tick_location)
#ax2.axis["bottom"].label.set_color(p1.get_color())
#ax2.axis["bottom"].label.set_color(p3.get_color())
#ax2.set_xlabel(r"Modified x-axis: $1/(1+X)$")
#my_x1ticks = ['-1', '0', '1', '2','3', '4', '5', '$16/3$', '$e^{\pi}/{4}$', '6', '7', '$e^2$','']
#plt.xticks(x5, my_x1ticks, fontsize=6)
#plt.arrow(-1, -1010, 4, 10e10, head_width=0.06, head_length=0.1, fc='k', ec='k');
#par2.axis["top"].toggle(all=False)
#par2.set_xlabel("Velocity")
#p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
#p3, = par2.plot([50, 30, 15], [0, 1, 2], label="Velocity")
#par2.set_xlim(1, 65)
#host.legend()
#host.axis["bottom"].label.set_color(p1.get_color())
#par2.axis["bottom"].label.set_color(p3.get_color())
ax2.grid()
ax3.grid()
plt.show()
p3.ylim(-3,3)
p3.show()
p3.save('embed.html')
VBox(children=(Figure(camera=PerspectiveCamera(fov=46.0, position=(0.0, 0.0, 2.0), quaternion=(0.0, 0.0, 0.0, …
%reload_ext tikzmagic
%%tikz -s 400,400 -sc 1. -f svg
\draw [style=help lines, step=2] (-31,-31) grid (+31,+31);
%%%\draw (-31.0,-31.0){A}
\draw [->] (-31.0,-31.0) node[left]{} -- (-31.,31.) node[right]{}; % scale Y
\draw [->] (31.0,-31.0) node[left]{} -- (31.,31.) node[right]{}; %
\draw [->] (-31.0,-31.0) node[left]{} -- (31.8,-31.0) node[right]{}; % scale d
\draw [->] (-31.0,-34.) node[left]{} -- (31.8,-34.) node[right]{}; % scale k
\draw [->] (-34.0,-31.) node[left]{} -- (-34.,34.) node[right]{}; % scale Y'
\draw [-,color=blue] (-31.0,-31.8) node[left]{} -- (30.8,30.8) node[right]{}; % Diagonal line (Slope)
\draw [-,color=blue,dashed] (-34.0,-2.8) node[left]{} -- (-2.8,-2.8) node[right]{}; % Scalar Boson horizontal line
\draw [-,color=green,dashed] (-34.0,0.) node[left]{} -- (0.,0.) node[right]{}; % bicodon horizontal line
\draw [-,color=red,dashed] (-34.0,31.) node[left]{} -- (31.,31.) node[right]{}; % Cosmos horizontal line
\draw [-,color=blue,dashed] (-28.0,-32.) node[left]{} -- (-28.,-28.) node[right]{}; % String vertical line
\draw [-,color=blue,dashed] (-20.0,-32.) node[left]{} -- (-20.,-20.) node[right]{}; % Gluon vertical line
\draw [-,color=blue,dashed] (-12.0,-32.) node[left]{} -- (-12.,-12.) node[right]{}; % ATOM DIAMETER vertical line
\draw [-,color=blue,dashed] (-10.0,-32.) node[left]{} -- (-10.,-10.) node[right]{}; % Kaon vertical line
\draw [-,color=blue,dashed] (-4.0,-32.) node[left]{} -- (-4.,-4.) node[right]{}; % Half Mean Weak Boson vertical line
\draw [-,color=blue,dashed] (-3.0,-32.) node[left]{} -- (-3.,-3.) node[right]{}; % Scalar Boson vertical line
\draw [-,color=blue,dashed] (0.,-32.) node[left]{} -- (0.,0.) node[right]{}; % Bicodon vertical line
\draw [-,color=blue,dashed] (4.1,-32.) node[left]{} -- (4.1,4.1) node[right]{}; % Thermal Photon vertical line
\draw [-,color=blue,dashed] (12.1,-32.) node[left]{} -- (12.1,12.1) node[right]{}; % Boson X GUT vertical line
\draw [-,color=blue,dashed] (16.,-32.) node[left]{} -- (16.,16.) node[right]{}; % Photon vertical line
\draw [-,color=blue,dashed] (18.25,-32.) node[left]{} -- (18.25,18.25) node[right]{}; % Galaxy group vertical line
\draw [-,color=blue,dashed] (20.0,-32.) node[left]{} -- (20.0,20.) node[right]{}; % Gravitonde vertical line
\draw [-,color=blue,dashed] (28.0,-32.) node[left]{} -- (28.0,28.0) node[right]{}; % Super Period vertical line
\draw [-,color=blue,dashed] (29.,-32.) node[left]{} -- (29.,29.0) node[right]{}; % Topon vertical line
\draw [-,color=red,dashed] (31.0,-36.) node[left]{} -- (31.,31.) node[right]{}; % Cosmos vertical line
\draw [red] ( 31.0, 31.0) node[anchor=south east] {\Huge{COSMOS}};
\draw [black!40!green] ( 0.0, 0.0) node[anchor=south east] {\Huge{DNA BI-CODON}};
\draw [black] ( -2.0, -2.0) node[anchor=south east] {\Huge{HIGGS BOSON}};
\draw [red] ( -8.0, 26.0) node[anchor=south east] {\Huge{MACRO-PHYSICS}};
\draw [black] ( 24.0, -24.0) node[anchor=south east] {\Huge{MACRO-PHYSICS}};
\filldraw [color=gray] (0.,0.) circle (.1);
\filldraw [color=gray] (-2.,-2.) circle (.1);
%%tikz -p pgfplots -f svg
\begin{axis}[
xlabel=$x$,
ylabel={$f(x) = \exp(2^{x/4})$}
]
%%%\addplot [green,domain=0:34, samples=60]{ln(2^(x /4))};
%%%\addplot [blue,domain=0:34, samples=60]{ln(ln(2^(x /4)))};
%%%\addplot [blue,domain=-30:30, samples=60]{log2(x^(x/4))};
\addplot [red, domain=1:30, samples=2]{exp(2^(x/4))};
%%%\addplot [cyan, domain=1:30, samples=2]{exp(2)^(x/4)};
\end{axis}
%%tikz -p pgfplots -f svg
\begin{axis}[
xlabel=$x$,
ylabel={$f(x) = \exp(2^{x/4})$}
]
%%%\addplot [green,domain=0:34, samples=60]{ln(2^(x /4))};
%%%\addplot [blue,domain=0:34, samples=60]{ln(ln(2^(x /4)))};
%%%\addplot [blue,domain=-30:30, samples=60]{log2(x^(x/4))};
\addplot [red, domain=1:30, samples=3]{exp(2^(x/4))};
%%%\addplot [cyan, domain=1:30, samples=2]{exp(2)^(x/4)};
\end{axis}
%%tikz -p pgfplots -f svg
\begin{axis}[
xlabel=$x$,
ylabel={$f(x) = \ln(2^{x/4})$}
]
\addplot [green,domain=0:34, samples=60]{ln(2)^(x /4)};
\addplot [blue,domain=0:34, samples=60]{ln(2^(x /4))};
%%%\addplot [blue,domain=-30:30, samples=60]{log2(x^(x/4))};
%%%\addplot [red, domain=1:30, samples=2]{exp(2^(x/4))};
\end{axis}
!jupyter-nbconvert topological-axis.ipynb --to latex ## produce tex file and folder of png/pdf files
!nbpublish topological-axis.ipynb # produce tex file
# Use any of the following command and run it in terminal
lualatex --shell-escape topological-axis.tex
xelatex --shell-escape topological-axis.tex
pdflatex --shell-escape topological-axis.tex
%%tikz -s 400,400 -sc 1. -f svg
%%%#\begin{tikzpicture}[scale=0.9, line cap=round,line join=round,>=triangle
%%%#45,x=0.25cm,y=0.25cm]
\draw[step=1cm,gray,very thin] (-31,-31) grid (31,31);
\draw [->] (-31.0,-31.0) node[left]{} -- (-31.,31.) node[right]{}; % scale Y
\draw [->] (31.0,-31.0) node[left]{} -- (31.,31.) node[right]{}; %
\draw [->] (-31.0,-31.0) node[left]{} -- (31.8,-31.0) node[right]{}; % scale d
\draw [->] (-31.0,-34.) node[left]{} -- (31.8,-34.) node[right]{}; % scale k
\draw [->] (-34.0,-31.) node[left]{} -- (-34.,34.) node[right]{}; % scale Y'
%%%# Blue Dashed Horizontal lines
\draw [-,color=blue,dashed] (-34.0,-2.8) node[left]{} -- (-2.8,-2.8) node[right]{}; % Scalar Boson horizontal line
\draw [-,color=green,dashed] (-34.0,0.) node[left]{} -- (0.,0.) node[right]{}; % bicodon horizontal line
\draw [-,color=red,dashed] (-34.0,31.) node[left]{} -- (31.,31.) node[right]{}; % Cosmos horizontal line
%%%# Blue Dashed Vertical lines
\draw [-,color=blue,dashed] (-28.0,-32.) node[left]{} -- (-28.,-28.) node[right]{}; % String vertical line
\draw [-,color=blue,dashed] (-20.0,-32.) node[left]{} -- (-20.,-20.) node[right]{}; % Gluon vertical line
\draw [-,color=blue,dashed] (-12.0,-32.) node[left]{} -- (-12.,-12.) node[right]{}; % ATOM DIAMETER vertical line
\draw [-,color=blue,dashed] (-10.0,-32.) node[left]{} -- (-10.,-10.) node[right]{}; % Kaon vertical line
\draw [-,color=blue,dashed] (-4.0,-32.) node[left]{} -- (-4.,-4.) node[right]{}; % Half Mean Weak Boson vertical line
\draw [-,color=blue,dashed] (-3.0,-32.) node[left]{} -- (-3.,-3.) node[right]{}; % Scalar Boson vertical line
\draw [-,color=blue,dashed] (0.,-32.) node[left]{} -- (0.,0.) node[right]{}; % Bicodon vertical line
\draw [-,color=blue,dashed] (4.1,-32.) node[left]{} -- (4.1,4.1) node[right]{}; % Thermal Photon vertical line
\draw [-,color=blue,dashed] (12.1,-32.) node[left]{} -- (12.1,12.1) node[right]{}; % Boson X GUT vertical line
\draw [-,color=blue,dashed] (16.,-32.) node[left]{} -- (16.,16.) node[right]{}; % Photon vertical line
\draw [-,color=blue,dashed] (18.25,-32.) node[left]{} -- (18.25,18.25) node[right]{}; % Galaxy group vertical line
\draw [-,color=blue,dashed] (20.0,-32.) node[left]{} -- (20.0,20.) node[right]{}; % Gravitonde vertical line
\draw [-,color=blue,dashed] (28.0,-32.) node[left]{} -- (28.0,28.0) node[right]{}; % Super Period vertical line
\draw [-,color=blue,dashed] (29.,-32.) node[left]{} -- (29.,29.0) node[right]{}; % Topon vertical line
\draw [-,color=red,dashed] (31.0,-36.) node[left]{} -- (31.,31.) node[right]{}; % Cosmos vertical line
\draw[color=blue] (A) -- (Y);
\node [anchor = text=blue] at (-8.,35.75) {\Large{TOPOLOGICAL AXIS}};
\node [anchor = text=black] at (-6.,33.75) {\tiny{Caracteristics length follow the law: $exp(2^{d/4})$}};
\node [anchor = text=black] at (-10.,32.75) {\tiny{Unit length: electron Compton reduced wavelength $\hbar m_e c=\lambdabar_e$}};
\node [anchor = text=black] at (-12.,31.75) {\tiny{Super Period unit: $\lambdabar_e/c$. Photonde and Gravitonde masses unit: $2\pi m_N$}};
\node [anchor = east,text=red] at (31.75,31.75) {\Large{COSMOS}};
\node [anchor = south] at (-28.,-33.0) {$2$};
\node [anchor = south] at (-28.,-36.0) {$0$};
\node [anchor = north] at (-28.,-28.0) {$STRING$};
\node [anchor = south] at (-20.,-33.0) {$6$};
\node [anchor = south] at (-20.,-36.0) {$1$};
\node [anchor = east] at (-20.,-20.0) {$GLUON$};
\node [anchor = south] at (-12.,-33.0) {$10$};
\node [anchor = south] at (-10.,-33.0) {$11$};
\node [anchor = south] at (-12.,-36.0) {$2$};
\node [anchor = east] at (-12.,-12.) {MEAN BOSON PI};
\node [anchor = west,color=red] at (-12.,-12.) {ATOM DIAMETER};
\node [anchor = east] at (-10.,-10.) {KAON};
\node [anchor = south] at (-4.25,-33.0) {$14$};
\node [anchor = south] at (-4.25,-36.0) {$3$};
\node [anchor = east] at (-4.5,-4.5) {HALF MEAN WEAK BOSON};
\node [anchor = west,color=red] at (-4.5,-4.5){HALF RYDBERG WAVELENGTH};
\node [anchor = south] at (-2.75,-31.0) {$\gamma\Gamma$};
\node [anchor = east,color=black] at (-3.0,-3.0){SCALAR BOSON};
\node [anchor = west,color=black] at (-3.0,-3.0){$125GeV$};
\node [anchor = south,color=black!40!green] at (0.,-33.0) {\textbf{16}};
\node [anchor = east,color=black!40!green] at (0.,0.0) {DNA BI-CODON};
\node [anchor = west,color=black!40!green] at (0.,0.0) {$\times$ $\phi_9^2$};
\node [anchor = south] at (4.25,-33.0) {$18$};
\node [anchor = south] at (4.25,-36.0) {$4$};
\node [cross,anchor = west,color=red] at (4.25,4.25){THERMAL PHOTON: $\hbar c/2k$};
\node [cross,anchor = west,color=red] at (3.25,3.25){T=2.73 Kelvin $\approx T_{mam}/j$};
\node [anchor = south] at (12.25,-33.0) {$22$};
\node [anchor = south] at (12.25,-36.0) {$5$};
\node [anchor = east,color=black] at (12.25,12.250){BOSON $X_{GUT}:2.3 \times 10^{16}$GeV};
\node [anchor = east,color=black!40!green] at (16.,16.){$PHOTONDE$};
\node [anchor = west,color=red] at (16.,16.){Kotov Length $\times$ $2\pi$a};
\node [anchor = west,color=red] at (18.25,18.250){Galaxy group};
\node [anchor = south,color=red] at (18.25,-31.0) {$\Gamma$};
\node [anchor = east,color=black!40!green] at (20.,20.0){$GRAVITONDE$};
\node [anchor = west,color=red] at (20.,20.0){Hubble Radius $\times$ 6};
\node [anchor = south] at (16.25,-33.0) {\textbf{24}};
\node [anchor = east,color=black!40!green] at (28.25,28.250){$Super Period$};
\node [anchor = east,color=black] at (29.25,29.250){$TOPON$\tiny{:Visible universe wavelength}};
\node [anchor = east,color=black] at (-8.25,24.250){\LARGE{MICROPHYSICS}};
\node [anchor = east,color=black] at (-8.25,22.250){$Y=\ln\ln(\lambdabar_e(n)/\lambdabar_{MICRO})$};
\node [anchor = east,color=red] at (22.25,-20.250){\LARGE{MACROPHYSICS}};
\node [anchor = east,color=red] at (22.25,-22.250){$Y=\ln\ln(\lambdabar_{MACRO}(n)/\lambdabar_{e})$};
\node [anchor = south] at (20.25,-33.0) {$26$};
\node [anchor = south] at (20.25,-36.0) {$6$};
\node [anchor = south] at (28.25,-33.0) {$30$};
\node [anchor = south] at (28.25,-36.0) {$7$};
\node [anchor = south] at (31.25,-36.0) {$e^2$};
\node [anchor = south] at (29.25,-31.0) {$2e^e$};
\node [anchor = south] at (32.6,-33.00) {$d$};
\node [anchor = south] at (32.6,-36.00) {$k$};
%%%# Y AXIS
\node [anchor = north] at (-31.55,-31.0) {$0$};
\node [anchor = north] at (-31.55,-19.0) {$1$};
\node [anchor = north] at (-31.55,-7.0) {$2$};
\node [anchor = north] at (-31.55, 5.0) {$3$};
\node [anchor = north] at (-28.55, 1.0) {$\pi-1/e$};
\node [anchor = north] at (-31.55, 16.0) {$4$};
\node [anchor = north] at (-31.55, 26.0) {$5$};
\node [anchor = north] at (-31.55, 32.4) {$2e$};
%%%## Y' AXIS
\node [anchor = north] at (-34.25,-31.0) {$e$};
\node [anchor = north] at (-34.25,-20.0) {$10$};
\node [anchor = north] at (-34.25,-12.0) {$100$};
\node [anchor = north] at (-34.25,-2.0) {$495^2$};
\node [anchor = north] at (-34.25,4.0) {$10^{10}$};
\node [anchor = north] at (-34.25,12.0) {$10^{20}$};
\node [anchor = north] at (-34.25,20.0) {$10^{40}$};
\node [anchor = north] at (-34.25,28.0) {$10^{80}$};
\node [anchor = north] at (-34.25,36.0) {$Y=\ln\ln(y)$};
%%%# SLOPE