In [ ]:
import sys
sys.path.insert(0, "..") # this is necessary if flexrilog (https://github.com/Legersky/flexrilog)
from flexrilog import BracedPframework


## Rectangular grid¶

We try the functionality on a normal grid with some braced rectangles.

First we construct a braced grid with a parallelogram placement.

In [ ]:
grid = BracedPframework(edges=[[0, 1], [0, 5], [1, 2], [1, 6], [2, 3], [2, 7], [3, 4], [3, 8], [4, 9], [5, 6],
[5, 10], [6, 7], [6, 11], [7, 8], [7, 12], [8, 9], [8, 13], [9, 14], [10, 11],
[10, 15], [11, 12], [11, 16], [12, 13], [12, 17], [13, 14], [13, 18], [14, 19],
[15, 16], [15, 20], [16, 17], [16, 21], [17, 18], [17, 22], [18, 19], [18, 23],
[19, 24], [20, 21], [20, 25], [21, 22], [21, 26], [22, 23], [22, 27], [23, 24],
[23, 28], [24, 29], [25, 26], [26, 27], [27, 28], [28, 29]],
placement={0: (0, 0), 1: (1, 0), 2: (3, 0), 3: (11/2, 0), 4: (7, 0), 5: (0, 1), 6: (1, 1),
7: (3, 1), 8: (11/2, 1), 9: (7, 1), 10: (0, 5/2), 11: (1, 5/2), 12: (3, 5/2),
13: (11/2, 5/2), 14: (7, 5/2), 15: (0, 4), 16: (1, 4), 17: (3, 4), 18: (11/2, 4),
19: (7, 4), 20: (0, 6), 21: (1, 6), 22: (3, 6), 23: (11/2, 6), 24: (7, 6),
25: (0, 7), 26: (1, 7), 27: (3, 7), 28: (11/2, 7), 29: (7, 7)},
braces=[[10, 6], [16, 12], [12, 8], [18, 14], [23, 19], [27, 23], [6, 2]])
grid.plot()


We construct the ribbon graph of grid. An edge from each ribbon is used a name instead of full ribbon.

In [ ]:
grid.ribbon_graph()


Now, we construct the bracing graph of grid. It is disconnected. Hence, the braced P-framework is flexible.

In [ ]:
grid.bracing_graph()


We find the cartesian NAC-colorings of the graph.

In [ ]:
print('# NACs: ', len(grid.cartesian_NAC_colorings()))
delta = grid.cartesian_NAC_colorings()[0].conjugated()
show(delta.plot())


We use the unique NAC-coloring to construct a flex of the framework.

In [ ]:
grid_motion = grid.flex_from_cartesian_NAC(delta)
grid_motion.animation_SVG(edge_partition='NAC', vertex_labels=False)


## Braced P-framework¶

Now we construct a P-framework using the constructions Add4-cycle and Close4-cycle. Notice that contrary to the paper, we construct a parallelogram placement for the graph at the same time (hence parallelogram in the names of the methods instead of 4-cycle).

In [ ]:
G = BracedPframework([[0,1]], placement={0: (0,0),1: (1,0)})

# the first two parameters specify the vertices of an existing edge,
# the last two a distance and angle at which the new edge is placed
G.close_parallelogram(5,3,9)
# the three parameters specify the vertices of two incident edges
G.close_parallelogram(8,9,10)
G.close_parallelogram(6,7,8)
G.close_parallelogram(0,1,6)
G.close_parallelogram(12,6,16)
G.close_parallelogram(17,16,18)
G.close_parallelogram(11,8,21)
G.close_parallelogram(18,12,20)
G.close_parallelogram(23,20,21)
G.close_parallelogram(19,18,23)
G.close_parallelogram(24,21,22)
G.close_parallelogram(25,23,24)
G.close_parallelogram(27,24,26)
G.close_parallelogram(25,27,28)

show(G.plot())


We brace the P-framework:

In [ ]:
G.add_braces([[3, 4], [5, 9], [8, 10], [18, 20], [19, 23], [23, 27]])

In [ ]:
G.plot()

In [ ]:
G.bracing_graph()


The bracing graph is disconnected, hence, the braced P-framework is flexible.

In [ ]:
print('# NACs: ', len(G.cartesian_NAC_colorings()))
delta = G.cartesian_NAC_colorings()[0].conjugated()
show(delta.plot())

In [ ]:
G_flex = G.flex_from_cartesian_NAC(delta)
G_flex.fix_edge([0,1])
G_flex.animation_SVG(edge_partition='NAC', vertex_labels=False)

In [ ]: