This notebook attempts to replicate the following paper with the PPMI dataset:
This study recruited 72 patients with progressive PD and 72 patients with stable PD matched by age, sex and category of HYS. The objective of the study is to develop and validate a radiomics model to predict the progression of Parkinson disease. This following population from PPMI was used:
Shu et al. report an AUC of 0.795 for their radiomics model. This suggests that the a radiomics signature model from whole-brain white matter can be a useful tool for the assessment and monitoring of PD progression.
The remainder of this notebook is an attempt to replicate this result using the PPMI dataset.
Let's initialize the notebook dependencies:
import livingpark_utils
utils = livingpark_utils.LivingParkUtils('shu-etal')
utils.notebook_init()
removing link inputs removing link outputs This notebook was run on 2023-02-08 01:09:09 UTC +0000
We will build a PPMI cohort that matches the one used in the original study (Table 1) as much as possible. As in other LivingPark replications, we will use the same sample size as the original study. Our cohort will be built directly from PPMI Study Data files so that it can be replicated and updated whenever necessary.
We will start by downloading the PPMI Study Data files required to build our cohort:
We will use the LivingPark utils library to download these files from the notebook. If files are already present in the notebook cache, they won't be downloaded again. Otherwise, you will need to enter your PPMI username and password. In case you don't have a PPMI account, you can request one here.
required_files = [
'Age_at_visit.csv',
'Demographics.csv',
'Participant_Status.csv'
]
utils.download_ppmi_metadata(required_files)
Download skipped: No missing files!
We will also need the MRI_info.csv
(available here) and MDS_UPDRS_Part_III_clean.csv
(available here) that are produced by another LivingPark notebook available.
The MRI_info.csv
file contains a list usable T1-weighted MRIs. This is important since the original study uses T1-weighted MRIs from PPMI. Therefore, we need to filter out all other scanners. The MDS_UPDRS_Part_III_clean.csv
file is a refined version of PPMI's UPDRS III data.
from livingpark_utils.scripts import run
run.mri_metadata()
run.pd_status()
We will use the MDS_UPDRS_Part_III_clean.csv
study file to get patients that are ON or OFF functional state.
import os
import pandas as pd
# Define data directory for additional data
data_dir = "data"
# Load PPMI UPDRS III data (modified)
df_hy = pd.read_csv(
os.path.join(data_dir, 'MDS_UPDRS_Part_III_clean.csv')
)
# Drop unnecessary columns
keep_cols = ['EVENT_ID', 'PATNO', 'NHY', 'PDSTATE', 'PDTRTMNT']
df_hy = df_hy.drop([x for x in df_hy.columns if x not in keep_cols], axis=1)
# Display number of patients
df_hy.groupby('PDSTATE').count()
PATNO | EVENT_ID | NHY | PDTRTMNT | |
---|---|---|---|---|
PDSTATE | ||||
OFF | 12979 | 12979 | 12972 | 12979 |
ON | 5666 | 5666 | 5663 | 5666 |
We observe that about 70% of patients' functional state is in the OFF state.
Needed for sex. (0: Female, 1: Male)
# Load PPMI Demographics data
demo = pd.read_csv(
os.path.join(utils.study_files_dir, 'Demographics.csv')
)
# Drop useless columns
keep = ['PATNO', 'SEX']
demo = demo.drop([x for x in demo.columns if x not in keep], axis=1)
# Convert data to 0/1 values
demo['SEX'] = demo['SEX'].astype(int)
# Show sex stats (0: Female, 1: Male)
demo.groupby('SEX').count()
PATNO | |
---|---|
SEX | |
0 | 993 |
1 | 1350 |
There is a fair balance between the number of males and females.
Needed for age.
import matplotlib.pyplot as plt
# Load PPMI age data
df_age = pd.read_csv(
os.path.join(utils.study_files_dir, 'Age_at_visit.csv')
)
# Show histogram
df_age['AGE_AT_VISIT'].hist()
# Histogram settings
plt.title('Age at visit')
plt.xlabel('Age')
plt.ylabel('Patient ID');
plt.axvline(df_age['AGE_AT_VISIT'].mean(), color='k', linestyle='dashed', linewidth=1);
min_ylim, max_ylim = plt.ylim()
plt.text(df_age['AGE_AT_VISIT'].mean()*0.75, max_ylim*0.94, 'Mean: {:.2f}'.format(df_age['AGE_AT_VISIT'].mean()));
Our histogram suggests that the majority of patients are between the ages of 60 and 72 with the mean sitting around 64 years old.
We will build three cohorts in total. Below is a description of each. Make sure you select the cohort you'd like to use for the rest of the notebook.
Cohort Type | Description |
---|---|
Verio Replication Cohort | Patients in this cohort have a 3T T1-weighted MRI image scanned with a Siemens Verio MRI machine. |
Siemens Replication Cohort | Patients in this cohort have a 3T T1-weighted MRI image scanned with a Siemens MRI machine. |
Multiple Scanner Replication Cohort | Patients in this cohort have a 3D T1-weighted MRI image scanned with any MRI machine. |
Function state cohort | Patients in this cohort have a 3D T1-weighted MRI image scanned with any MRI machine and PDSTATUS matched across visits. |
No Filter Cohort | Patients in this cohort have a 3D MRI image scanned with any MRI machine with slice thickess between 1mm and 1.2mm. |
NOTE: If this step is not completed, we will built the Reference Cohort by default
import ipywidgets as widgets
from IPython.display import display
questions=widgets.RadioButtons(
options=['Verio Replication Cohort', 'Reference Cohort', 'Multiple Scanner Cohort', 'PD-state Cohort', 'No Filter Cohort'],
value=None,
description='Select cohort:',
disabled=False)
def cohort_prompt(sender):
COHORT_TYPE = questions.value
print('Selected cohort: ' + COHORT_TYPE)
questions.observe(cohort_prompt, names=['value'])
questions
RadioButtons(description='Select cohort:', options=('Verio Replication Cohort', 'Reference Cohort', 'Multiple …
Shu et al.'s cohort concists of patients evaluted over the course of 3 years and classifies the patients into progressive and stable groups. The MRI_info.csv
has clinical data on every patient and every single visit. We will keep patients that
import numpy as np
# Set cohort type
COHORT_TYPE = "Reference Cohort" if questions.value is None else questions.value
# Read MRI_Info
mri_df = pd.read_csv(
os.path.join(utils.study_files_dir, 'MRI_info.csv')
)
# Pair of visits to keep
visits = {'BL': 'V08',
'V04': 'V10',
'V06': 'V12',
'V08': 'V13',
'V10': 'V14'}
# Split string into columns
mri_df[['Acquisition Plane', 'Field Strength', 'Manufacturer', 'Mfg Model', 'Slice Thickness']] = mri_df["Imaging Protocol"].apply(lambda x: pd.Series(str(x).split(";")))
# Keep columns needed + filter for MRI scan measurements
if COHORT_TYPE=="Verio Replication Cohort" or COHORT_TYPE=="Reference Cohort" or COHORT_TYPE=="Multiple Scanner Cohort" or "PD-state Cohort":
mri_df=mri_df[
(mri_df["Field Strength"]=="Field Strength=3.0")
& (mri_df["Slice Thickness"]=="Slice Thickness=1.0")
][["Subject ID", "Sex", "Visit code", "Age", "Description", "Manufacturer", "Slice Thickness", "Mfg Model", "Field Strength"]]
elif COHORT_TYPE=="No Filter Cohort":
mri_df=mri_df[
((mri_df["Slice Thickness"]=="Slice Thickness=1.0") |(mri_df["Slice Thickness"]=="Slice Thickness=1.2"))
][["Subject ID", "Sex", "Visit code", "Age", "Description", "Manufacturer", "Slice Thickness", "Mfg Model", "Field Strength"]]
# Keep visit pairs
mri_df.rename(columns={'Subject ID': 'PATNO', 'Visit code': 'EVENT_ID', "Manufacturer": "Imaging Protocol"}, inplace=True)
mri_df = mri_df[mri_df['EVENT_ID'].isin(visits)]
# Replace string values
mri_df["Imaging Protocol"] = mri_df["Imaging Protocol"].map(lambda x: x[13:])
mri_df["Mfg Model"] = mri_df["Mfg Model"].map(lambda x: x[10:])
mri_df["Slice Thickness"] = mri_df["Slice Thickness"].map(lambda x: float(x[16:]))
mri_df["Field Strength"] = mri_df["Field Strength"].map(lambda x: float(x[15:]))
mri_df.groupby("EVENT_ID").count()
PATNO | Sex | Age | Description | Imaging Protocol | Slice Thickness | Mfg Model | Field Strength | |
---|---|---|---|---|---|---|---|---|
EVENT_ID | ||||||||
BL | 659 | 659 | 659 | 659 | 659 | 659 | 659 | 659 |
V04 | 273 | 273 | 273 | 273 | 273 | 273 | 273 | 273 |
V06 | 256 | 256 | 256 | 256 | 256 | 256 | 256 | 256 |
V08 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
V10 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
Keep patients with PD.
# Read CSV | 1: PD, 2: Cohort
participant_df = pd.read_csv(
os.path.join(utils.study_files_dir, 'Participant_Status.csv')
)
# Keep useful columns
participant_df = participant_df[["PATNO", "COHORT_DEFINITION"]]
participant_df = participant_df[participant_df["COHORT_DEFINITION"]=="Parkinson's Disease"]
# Display stats
participant_df.groupby('COHORT_DEFINITION').count()
PATNO | |
---|---|
COHORT_DEFINITION | |
Parkinson's Disease | 1153 |
Before performing cohort matching, we need to build one final dataframe that consists of all the data we just extracted.
df_mri_age = df_age.merge(mri_df, how='right')
df_mri_age['AGE_AT_VISIT'].fillna(df_mri_age['Age'])
df_mri_age = df_mri_age.merge(participant_df, on="PATNO")
df = df_hy.merge(df_mri_age, how='inner')
if COHORT_TYPE == "Reference Cohort":
df = df[
(df["Imaging Protocol"] == "SIEMENS") |
(df["Imaging Protocol"] == "Siemens")
]
elif COHORT_TYPE == "Verio Replication Cohort":
df = df[
(((df["Imaging Protocol"] == "SIEMENS") | (df["Imaging Protocol"] == "Siemens")) &
(df["Mfg Model"] == "Verio"))
]
# Display patients per HY stage
df.groupby('NHY').count()
PATNO | EVENT_ID | PDSTATE | PDTRTMNT | AGE_AT_VISIT | Sex | Age | Description | Imaging Protocol | Slice Thickness | Mfg Model | Field Strength | COHORT_DEFINITION | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NHY | |||||||||||||
0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
1 | 227 | 227 | 227 | 227 | 227 | 227 | 227 | 227 | 227 | 227 | 227 | 227 | 227 |
2 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 |
3 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 |
4 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Finally, we form the data such that each row contains a patients' data from both visits.
def next_visit(x):
'''
Returns the next visit (3y) after baseline visit.
'''
return visits[x]
def save_exclusions(exclude):
'''
Saves the patients to exclude in case errors occur.
exclude: list
List of subject IDs to exclude
'''
with open('exclusions.csv', 'w') as f:
for index, subId in enumerate(exclude):
f.write(str(subId))
if index!=len(exclude)-1:
f.write('\n')
def open_exclusions() -> list:
'''
Opens the list of exclusions in a set.
'''
exclude = []
if os.path.exists('exclusions.csv'):
with open('exclusions.csv', 'r') as f:
for sub in f:
exclude.append(sub)
return exclude
def build_visit_df():
visits_df = df
# Exclude patients (if applicable)
exclude_patients = open_exclusions()
if len(exclude_patients) > 0:
for patient in exclude_patients:
patient = patient.replace("\n", "")
subId = int(patient.split("|")[0])
visitId = patient.split("|")[1]
indexes = visits_df[(visits_df["PATNO"]==subId) & (visits_df["EVENT_ID"]==visitId)].index
visits_df = visits_df.drop(indexes)
# Set id of second visit in pair
visits_df['next_visit'] = visits_df['EVENT_ID'].apply(next_visit)
# Retrieve H&Y score of next visit
visits_df = visits_df.merge(df_hy, how='left', left_on=['PATNO', 'next_visit'], right_on=['PATNO', 'EVENT_ID'])
# Add patient sex to visit pairs
visits_df = visits_df.merge(demo, on=['PATNO'])
# Define visit as stable if NHY (first visit)
visits_df['stable'] = (visits_df['NHY_x'] == visits_df['NHY_y'])
if COHORT_TYPE == "PD-state Cohort":
# Keep visit pairs with same PDSTATUS
visits_df = visits_df[visits_df["PDSTATE_x"]==visits_df["PDSTATE_y"]]
# Display data pairs
visits_df.groupby(['stable', 'NHY_x'], dropna=False).count()
return visits_df
visits_df = build_visit_df()
visits_df.groupby(['stable', 'NHY_x'], dropna=False).count()
PATNO | EVENT_ID_x | PDSTATE_x | PDTRTMNT_x | AGE_AT_VISIT | Sex | Age | Description | Imaging Protocol | Slice Thickness | Mfg Model | Field Strength | COHORT_DEFINITION | next_visit | EVENT_ID_y | PDSTATE_y | NHY_y | PDTRTMNT_y | SEX | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
stable | NHY_x | |||||||||||||||||||
False | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 3 |
1 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 210 | 210 | 210 | 210 | 243 | |
2 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 321 | 125 | 125 | 125 | 125 | 321 | |
3 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 15 | 15 | 15 | 15 | 41 | |
4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | |
True | 1 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
2 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | |
3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
df = visits_df
to_normalize = ['AGE_AT_VISIT']
for var in to_normalize:
df[f'{var}_norm'] = (df[var] - df[var].mean())/df[var].std()
df.describe()
PATNO | PDTRTMNT_x | AGE_AT_VISIT | Age | Slice Thickness | Field Strength | PDTRTMNT_y | SEX | AGE_AT_VISIT_norm | |
---|---|---|---|---|---|---|---|---|---|
count | 1332.000000 | 1332.000000 | 1332.000000 | 1332.000000 | 1332.0 | 1332.0 | 1072.000000 | 1332.000000 | 1.332000e+03 |
mean | 15740.828078 | 0.726727 | 63.004655 | 63.011036 | 1.0 | 3.0 | 0.979478 | 0.662162 | -2.526574e-14 |
std | 25830.336324 | 0.445807 | 9.437353 | 9.428725 | 0.0 | 0.0 | 0.141845 | 0.473151 | 1.000000e+00 |
min | 3102.000000 | 0.000000 | 38.000000 | 38.000000 | 1.0 | 3.0 | 0.000000 | 0.000000 | -2.649541e+00 |
25% | 3325.000000 | 0.000000 | 55.575000 | 55.575000 | 1.0 | 3.0 | 1.000000 | 0.000000 | -7.872604e-01 |
50% | 3776.000000 | 1.000000 | 64.100000 | 64.200000 | 1.0 | 3.0 | 1.000000 | 1.000000 | 1.160649e-01 |
75% | 4081.000000 | 1.000000 | 70.525000 | 70.600000 | 1.0 | 3.0 | 1.000000 | 1.000000 | 7.968702e-01 |
max | 158117.000000 | 1.000000 | 86.300000 | 86.300000 | 1.0 | 3.0 | 1.000000 | 1.000000 | 2.468419e+00 |
Nearest neighbor matching loop applied for each H&Y value to extract stable and progressive populations with matched sex and age.
def nn(x, df, matched_vars):
'''
Find index of nearest neighbor of x in df
'''
# Select only the subjects with the same H&Y score
df_hy_match = df[df['NHY_x'] == x['NHY_x'].values[0]]
# Compute squared distance between x and all elements in df, using normalized variables
df_hy_match['dist'] = sum((df_hy_match[f'{var}']-x[f'{var}'].values[0])**2 for var in matched_vars)
# Return the element in df with the smallest distance
df_hy_match.sort_values('dist', inplace=True)
return df_hy_match.head(1) ## there's probably a better way to do it but it should work
def match(n, group1_df, group2_df, matched_vars):
'''
Randomly pick n elements in group1_df, then find n matching elements in group2_df.
Ensure that each group only contains 1 or less element from each patient and that
no patient has elements in both groups.
'''
from numpy.random import choice, seed
# Select n random patients in group1
group1_patnos = sorted(pd.unique(group1_df['PATNO']))
seed(0) # change this to bootstrap population
group1_patnos_sample = choice(group1_patnos, n, replace=False)
# Remove the selected patients from group2
for p in group1_patnos_sample:
group2_df = group2_df[group2_df['PATNO']!=p]
group1_matched = pd.DataFrame(columns=group1_df.columns)
group2_matched = pd.DataFrame(columns=group1_df.columns)
for p in group1_patnos_sample: # for each patient in sampled list
# Pick a random element from this patient in group1
s = group1_df[group1_df['PATNO'] == p].sample(1)
# Find the best match in group2
t = nn(s, group2_df, matched_vars)
# Add s and t to matched groups
group1_matched = group1_matched.append(s)
group2_matched = group2_matched.append(t)
# Remove t's patient from group 2 so that it doesn't get selected again
group2_df = group2_df[group2_df['PATNO']!=t['PATNO'].values[0]]
return group1_matched, group2_matched
matched_vars = ['AGE_AT_VISIT_norm', 'SEX']
# Apply matching to get 47 patients with H&Y=1
stable1, progr1 = match(32,
df[(df['stable'] == True) & (df['NHY_x'] == "1")],
df[(df['stable'] == False) & (df['NHY_x'] == "1")],
matched_vars)
patids = pd.unique(pd.concat([stable1, progr1], axis=0)["PATNO"])
df_filtered = df[~df['PATNO'].isin(patids)]
# Apply matching to get 25 patients with H&Y=2
stable2, progr2 = match(40,
df_filtered[(df_filtered['stable'] == True) & (df_filtered['NHY_x'] == "2")],
df_filtered[(df_filtered['stable'] == False) & (df_filtered['NHY_x'] == "2")],
matched_vars)
stable = stable1.append(stable2)
progr = progr1.append(progr2)
In order to ensure that the cohort built meets the requirements, we ensure that:
Both groups have equal size
No patient is present more than once in each group
Patients in group A aren't in group B and vice versa
def sanityCheck(stable1, progr1, stable2, progr2):
for (a, b) in [(stable1, progr1), (stable2, progr2)]:
# Both groups have equal size
assert(len(a) == len(b))
# No patient is present more than once in each group
for x in [a, b]:
patnos_x = pd.unique(x['PATNO'])
assert(len(patnos_x)==len(x)), x
# Patients in a aren't in b
patnos_a = pd.unique(a['PATNO'])
patnos_b = pd.unique(b['PATNO'])
for p in patnos_a:
assert(p not in patnos_b), f'PATNO {p} appears in a and b'
# Patients in each cohort do not replicate
assert len(set(pd.unique(progr["PATNO"])) & (set(pd.unique(stable["PATNO"]))))==0, "Patients occur in both groups"
print('All good!')
sanityCheck(stable1, progr1, stable2, progr2)
All good!
from scipy import stats
def summary(stable, progr):
cohort_stats = pd.DataFrame(columns=[f"Stable", f"Progression", "P-Value"])
cohort_stats.loc["Subjects, No."] = [len(stable), len(progr), "N/a"]
cohort_stats.loc["F/M, No."] = [
f"{len(stable[stable['SEX']==0])}/{len(stable[stable['SEX']==1])}",
f"{len(progr[progr['SEX']==0])}/{len(progr[progr['SEX']==1])}",
f"{stats.ttest_ind(list(stable['SEX']), list(progr['SEX'])).pvalue}"
]
cohort_stats.loc["Age, mean +/- SD"] = [
f"{round(stable['Age'].mean(),1)} +/- {round(stable['Age'].std(),1)}",
f"{round(progr['Age'].mean(),1)} +/- {round(progr['Age'].std(),1)}",
f"{stats.ttest_ind(list(stable['Age']), list(progr['Age'])).pvalue}"
]
cohort_stats.loc["Hoehn & Yahr Stage 1 (n)"] = [
f"{len(stable[stable['NHY_x']=='1'])}",
f"{len(progr[progr['NHY_x']=='1'])}",
"1.0"
]
cohort_stats.loc["Hoehn & Yahr Stage 2 (n)"] = [
f"{len(stable[stable['NHY_x']=='2'])}",
f"{len(progr[progr['NHY_x']=='2'])}",
"1.0"
]
return cohort_stats
summary(stable, progr)
Stable | Progression | P-Value | |
---|---|---|---|
Subjects, No. | 72 | 72 | N/a |
F/M, No. | 29/43 | 29/43 | 1.0 |
Age, mean +/- SD | 61.0 +/- 8.8 | 61.1 +/- 8.6 | 0.9291174059607847 |
Hoehn & Yahr Stage 1 (n) | 32 | 32 | 1.0 |
Hoehn & Yahr Stage 2 (n) | 40 | 40 | 1.0 |
The above cohort is the closest we could build according to the filters used in Shu et al. We are able to construct a cohort of n=144, however, the distribution of patients with baseline H&Y=1 and 2 are not the same. Shu et al. has 47 patients with H&Y stage 1 and 25 patients with H&Y stage 2.
We believe we could not exactly replicate the cohort used by Shu et al. since there could be patients in their cohort that withdrew from the study.
In this section, we will use our cohort to extract two sets of features: radiomics features & ROI features.
First, we will build the cohort
dataframe that contains the patient ID, visit code and image description.
# Create a joint dataframe
cohort = pd.concat([stable, progr])
# Keep columns required
cohort = cohort[["PATNO", "EVENT_ID_x", "Description"]].rename(columns={"EVENT_ID_x": "EVENT_ID"})
utils.download_missing_nifti_files(cohort, link_in_outputs=True)
Number of available subjects: 144 Number of missing subjects: 0
LivingPark-utils|DEBUG|ppmi_downloader.py:106 in __init__() self.tempdir: <TemporaryDirectory '/tmp/tmp23_vdu6i'> LivingPark-utils|DEBUG|ppmi_downloader.py:117 in __init__() self.config_file: '.ppmi_config' config_file: '.ppmi_config'
Downloading image data of 0 subjects
Execute SPM12 using a Docker image to compute segmented masks.
utils.spm_compute_missing_segmentations(cohort)
Missing segmentations: 0
Before extracting radiomic features, we would like to ensure the white matter segmentations went correctly.
utils.qc_spm_segmentations(cohort, mni_space=False, show_wm=True, show_gm=False, cut_coords=None)
Folder qc_2595761848129950662 already exists, skipping image export (remove folder or use --force to force). Wrote qc_2595761848129950662/animation.gif
In order that the brain mask was well computed, we need to ensure that:
1 - Review slices per plane
1.1 - Is there white matter that is not segmented?
1.2 - Is there gray matter segmented inside the white matter mask?
2 - Does the MRI have any common artifacts? (e.g. inhomogeneity, etc...)
3 - Does the MRI have low SNR?
Each MRI scan was analyzed with 3D Slicer v.5.0.3
.
SPM12 generates multiple tissue probability maps. Our interest is the c2
mask which is the segmented white matter. Using NiBabel, we will convert all the maps to NumPy arrays and construct binary masks for white matter. From there, we will compute the radiomics feaatures using PyRadiomics.
import glob, json, csv, logging
from radiomics import featureextractor
import nibabel as nib
from IPython.display import display, Markdown
from tqdm.notebook import tqdm
def save_radiomics_to_json(data):
'''
Saves the radiomic features in a JSON file
data: OrderedDict
Output of radiomic features stored in an OrderedDict.
'''
def default(obj):
if type(obj).__module__ == np.__name__:
if isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj.item()
raise TypeError('Unknown type:', type(obj))
dumped = json.dumps(data, default=default)
with open(os.path.join("outputs", "radiomics", COHORT_TYPE, "radiomicsOutput.json"), 'w') as f:
json.dump(dumped, f)
def get_radiomics_json() -> dict:
'''
Return a dictionary containing the radiomics features original output.
'''
with open(os.path.join("outputs", "radiomics", COHORT_TYPE, "radiomicsOutput.json"), 'r') as f:
return json.loads(json.load(f))
def compute_radiomics(cohort, force=False):
'''
Runs PyRadiomics to compute radiomic features.
cohort: pd.DataFrame
Cohort containing patients IDs and MRI file paths
force: bool, optional
'''
# Instantiate the extractor
extractor = featureextractor.RadiomicsFeatureExtractor()
extractor.disableAllFeatures()
extractor.enableFeatureClassByName("glcm")
extractor.enableFeatureClassByName("glszm")
extractor.enableFeatureClassByName("glrlm")
# Ignore non-error logs
logger = logging.getLogger("radiomics")
logger.setLevel(logging.ERROR)
# Initiate results dictionary
radiomicsResults = {}
# If a subject fails, add to "exclusion" array
exclude = set() if not os.path.exists("exclusions.csv") else open_exclusions()
# Create directory to save results
folder = os.path.join("outputs", "radiomics", COHORT_TYPE)
if not os.path.exists(folder):
os.makedirs(os.path.join("outputs", "radiomics", COHORT_TYPE), exist_ok=True)
file_exists = os.path.exists(os.path.join("outputs", "radiomics", COHORT_TYPE, "radiomicsOutput.json"))
if file_exists and not force:
return display(Markdown('Skipping computation of radiomics, use force=True to run anyway.'))
else:
# Loop through every subject
for inputMask in tqdm(cohort["File name"]):
masks = []
affines = []
subjectId = inputMask.split("/")[2]
subId = int(subjectId.split("-")[1])
visitId = inputMask.split("/")[3].split("-")[-1]
exclusionId = f"{subId}|{visitId}"
segmentationDirectory = os.path.join(
*inputMask.replace("inputs", "outputs/pre_processing", 1).split("/")[1:-1]
)
# Get every mask per subject (c0 to c5)
for segmentation in sorted(glob.glob(f"{segmentationDirectory}/c*PPMI*")):
mask = nib.load(segmentation)
affines.append(mask.affine)
masks.append(mask.get_fdata())
# Combine all masks in one array
maskArray = np.array(masks)
if len(maskArray)==0:
continue
# Get all indices (0 to 5)
indices = np.argmax(maskArray, axis=0)
# Replace classes that are not WM to 0
indices[indices!=1] = 0.0
indices = indices.astype(np.float64)
# Save as NifTi
new_mask = nib.Nifti1Image(indices, affine=affines[1])
mask_path = os.path.join(segmentationDirectory, "wm.nii")
nib.save(new_mask, os.path.join(segmentationDirectory, "wm.nii"))
# Compute radiomic features and save to dict
try:
radiomicsResults[subjectId] = extractor.execute(inputMask, mask_path)
except:
subId = int(subjectId.split("-")[1])
if subId not in exclude:
exclude.append(exclusionId)
print(f"Error for subject, adding to exclusions list...")
continue
# Delete WM segmentation
os.system(f"rm -rf {mask_path}")
# Save exclusion file
save_exclusions(exclude)
# Save as JSON
save_radiomics_to_json(radiomicsResults)
# If radiomics errors occur, run back from cell reference
if len(radiomicsResults) != len(cohort):
return display(Markdown('[Due to radiomic computation errors, please run the notebook again from this cell (click me)](#Merge-all-dataframes-together)'))
The PyRadiomics library may fail due to errors found in the MRI scan. If that is the case, the code will prompt you to run back the notebook from this cell. Additionally, if the radiomic features already exist, you may need to use force=True
to run the following cell again.
compute_radiomics(cohort, force=True)
0%| | 0/144 [00:00<?, ?it/s]
TODO: Use Boutiques
to automate this process.
# Read CSV
roi_df = pd.read_csv(
os.path.join("freesurfer", COHORT_TYPE, "volumes.csv")
)
# Keep ROIs
def combine_left_right_vol(df):
'''
Combines the Left and Right volumes into one column
Parameters
----------
df: ROI dataframe
'''
for column in df.columns:
if "Left" in column:
area = "-".join(column.split("-")[1:])
left_area = f"Left-{area}"
right_area = f"Right-{area}"
df[area] = df[left_area] + df[right_area]
df = df.drop(columns = [left_area, right_area])
return df
ROI = [
"PATNO",
"Left-Putamen", "Right-Putamen",
"Right-Caudate", "Left-Caudate",
"Right-Thalamus-Proper", "Left-Thalamus-Proper",
"Left-Pallidum", "Right-Pallidum",
"Left-Cerebellum-White-Matter", "Right-Cerebellum-White-Matter",
"Left-Cerebellum-Cortex", "Right-Cerebellum-Cortex",
"3rd-Ventricle",
"4th-Ventricle",
"Insula",
"Precentral Cortex",
"Pons", "SCP", "Midbrain"
]
# Keep ROIs and merge volumes
roi_df = combine_left_right_vol(roi_df[ROI])
# Append output (stable/progr)
output_df = progr[["PATNO", "stable"]].append(stable[["PATNO", "stable"]])
output_df["stable"] = output_df["stable"].astype(int)
roi_df = roi_df.merge(output_df, on="PATNO").rename(columns={"stable":"output"})
We will use two sets of features. The first set of features will be the top radiomic features using rMRMe with k=7
. The second set of features will be Shu et al.'s original 7 features.
subjectIds = []
frames = []
output = []
radiomicsResults = get_radiomics_json()
# Collect subject IDs and radiomic features
for sub in radiomicsResults.keys():
subjectIds.append(sub)
frames.append(pd.DataFrame.from_dict(radiomicsResults[sub], orient='index').T)
radiomics_df = pd.concat(frames, keys=subjectIds)
radiomics_df = radiomics_df.loc[:, ~radiomics_df.columns.str.startswith('diagnostics')].reset_index()
# Append output to dataframe
for k in radiomics_df["level_0"]:
subId = k.split("-")[1]
output.append(1 if int(subId) in progr["PATNO"].values else 0)
# Add output column
radiomics_df["output"] = output
# Save to CSV
radiomics_df.drop(['level_0','level_1'], axis=1).to_csv(os.path.join('outputs', 'radiomics', COHORT_TYPE, 'features.csv'))
The R script takes as input the number of top features to select, it can be executed in the following manner:
Rscript featureReduction.r [numberOfFeatures]
numberOfFeatures: integer
The number of top features to select in the mRMR algorithm (K).
if COHORT_TYPE == "Reference Cohort":
!(Rscript code/scripts/featureReduction.r 7 reference)
elif COHORT_TYPE == "Multiple Scanner Cohort":
!(Rscript code/scripts/featureReduction.r 7 multiple)
elif COHORT_TYPE == "PD-state Cohort":
!(Rscript code/scripts/featureReduction.r 7 pdstate)
elif COHORT_TYPE == "No Filter Cohort":
!(Rscript code/scripts/featureReduction.r 7 nofilter)
Loading required package: mRMRe
Loading required package: survival
Loading required package: igraph
Attaching package: ‘igraph’
The following objects are masked from ‘package:stats’:
decompose, spectrum
The following object is masked from ‘package:base’:
union
Loading required package: crayon
Succesfully computed top features, index available in: outputs/radiomics/Reference Cohort/featureIndex.csv
# Get index of column features
index_df = pd.read_csv(os.path.join('outputs', 'radiomics', COHORT_TYPE, 'featureIndex.csv'))
# Keep important columns
columns = radiomics_df.drop(['level_0','level_1'], axis=1).columns
features = ["level_0"]
# Save features
for index in index_df.iloc[:,-1:].values.flatten():
features.append(columns[index-1])
features.append("output")
# Save to DF
rmrme_df = radiomics_df[features]
rmrme_df = rmrme_df.rename(columns={"level_0":"PATNO"})
rmrme_df["PATNO"] = rmrme_df["PATNO"].map(lambda x: int(x.replace("sub-", "")))
rmrme_df.groupby("output").count()
PATNO | original_glrlm_LongRunLowGrayLevelEmphasis | original_glcm_Idn | original_glcm_ClusterShade | original_glrlm_GrayLevelNonUniformity | original_glszm_SizeZoneNonUniformityNormalized | original_glcm_ClusterProminence | original_glcm_Imc2 | |
---|---|---|---|---|---|---|---|---|
output | ||||||||
0 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 |
1 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 |
In the supplementary material, the authors share the 7 features selected. Since we do not have the A.K software to compute them, we will compute them manually using NumPy operations.
Feature | Formula | Description | PyRadiomics |
---|---|---|---|
Correlation_angle45_offset1 | −∑ij(i−u)(j−u)g(i,j)σ2 |
Correlation measures the similarity of the grey levels in neighboring pixels, tells how correlated a pixel is to its neighbor over the whole image. Range = [-1 1]. Correlation is 1 or -1 for a perfectly positively or negatively correlated image. | Not implemented |
Inertia_AllDirection_offset4 | ∑ij((i−j)2g(i,j)) |
It reflects the clarity of the image and texture groove depth. The contrast is proportional to the texture groove, high values of the groove produces more clarity, in contrast small values of the groove will result in small contrast and fuzzy image. | getContrastFeatureValue |
GLCMEntropy_AllDirection_offset1 | −∑ijg(i,j)log2(i,j) |
Entropy shows the amount of information of the image that is needed for the image compression. Entropy measures the loss of information or message in a transmitted signal and also measures the image information. | getJointEntropyFeatureValue |
RunLengthNonuniformity_angle45_offset7 | 1nrM∑j=1(N∑i=1p(i,j,θ))2 |
The grey level run-length matrix (RLM) Pr(i, j, θ) is defined as the numbers of runs with pixels of gray level i and run length j for a given direction θ. RLMs is generated for each sample image segment having directions (0°,45°,90° &135°) | getRunLengthNonUniformityFeatureValue |
ShortRunEmphasis_angle0_offset7 | 1nrM∑j=1N∑i=1p(i,j,θ)i2j2 |
getShortRunLowGrayLevelEmphasisFeatureValue | |
HaralickCorrelation_angle90_offset4 | −∑ij(i,j)g(i,j)−u2tσ2t |
Measures the degree of similarity of the gray level of the image in the row or column direction. Represents the local grey level correlation, the greater its value, the greater the correlation | getCorrelationFeatureValue |
HaralickCorrelation_angle90_offset7 | −∑ij(i,j)g(i,j)−u2tσ2t |
Measures the degree of similarity of the gray level of the image in the row or column direction. Represents the local grey level correlation, the greater its value, the greater the correlation | getCorrelationFeatureValue |
shu_df = radiomics_df[["level_0", "original_glcm_Correlation", "original_glcm_Contrast", "original_glcm_JointEntropy", "original_glrlm_RunLengthNonUniformity", "original_glrlm_ShortRunLowGrayLevelEmphasis", "output"]]
shu_df = shu_df.rename(columns={"level_0":"PATNO"})
shu_df["PATNO"] = shu_df["PATNO"].map(lambda x: int(x.replace("sub-", "")))
shu_df.groupby("output").count()
PATNO | original_glcm_Correlation | original_glcm_Contrast | original_glcm_JointEntropy | original_glrlm_RunLengthNonUniformity | original_glrlm_ShortRunLowGrayLevelEmphasis | |
---|---|---|---|---|---|---|
output | ||||||
0 | 72 | 72 | 72 | 72 | 72 | 72 |
1 | 72 | 72 | 72 | 72 | 72 | 72 |
We will train the models using two methods: bootstrap
and cross_validation
.
Validation techinque | Description |
---|---|
Bootstrap | Shu et al.'s bootstrapping approach to further validate the stability of the model. The RSD was computed to quantify this stability, where lower RSD values correspond to higher stability. This was done 100 times with a train/test split of 0.5. |
Cross-validation | Chougar et al.'s cross-validation approach that includes two nested loops: an outer loop with repeated stratified random splits with 50 repetitions evaluating the classification performances and an inner loop with 5-fold cross-validation used to optimise the hyperparameters of the algorithms. |
from sklearn.model_selection import RepeatedStratifiedKFold, train_test_split, ParameterGrid, GridSearchCV
from sklearn import metrics
from sklearn.pipeline import Pipeline
from sklearn.utils import resample
from sklearn.base import clone
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
def bootstrap(df, clf, n_iterations = 100, n_size = int(len(df) * 0.50)):
'''
Bootstrapping implementation based on Shu et al.
Parameters
----------
df: DataFrame
Dataframe with features, output and imaging protocol
clf: sklearn.svm._classes.SVC
Classifier (SVM)
n_iterations : int, default 100
Number of iterations, default is 100 as per Shu et al.'s study'
n_size : int, default 0.5
Size of split for each iteration, default is 0.5
->
'''
# Performance array
aucs = []
# Start loop
for i in tqdm(range(n_iterations)):
# Sample training set
train = resample(df, n_samples = 50, replace=True)
# Sample test set
trainPatno = set(train["PATNO"])
testPatno = set(df["PATNO"]).difference(trainPatno)
test = df[df["PATNO"].isin(testPatno)]
# Get features and data split
X_train = train
y_train = train["output"]
X_test = test
y_test = test["output"]
features = df.loc[:, ~df.columns.isin(['PATNO', 'output', 'Imaging Protocol'])].columns
# Normalize data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train[features])
X_test = scaler.transform(X_test[features])
# Train
model = clf.fit(X_train, y_train)
# Evaluate on validation set
y_pred_proba = model.predict(X_test)
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
aucs.append(auc)
return model, scaler, aucs
def cross_validation(df, clf, param_grid, n_splits=5, n_repeats=50):
'''
Cross-validation implementation based on Chougar et al.
Parameters
----------
df: DataFrame
Dataframe with features, output and imaging protocol
clf: sklearn.svm._classes.SVC
Classifier (SVM)
n_splits : int, default 5
Number of folds, default is 5 as per Chougar et al.'s study'
n_repeats : int, default 50
Number of times cross-validator needs to be repeated, default is 50 as per Chougar et al.'s study'
'''
# Get data
features = df_features.loc[:, ~df_features.columns.isin(['PATNO', 'output', 'Imaging Protocol'])].columns
X = df[features]
y = df["output"]
# Define CV
cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats)
# Define pipeline
pipeline = Pipeline([
('scale', StandardScaler()),
('train', clf)
])
# Define grid search
grid = GridSearchCV(pipeline, param_grid, cv=cv, scoring='roc_auc', return_train_score=True, n_jobs=-1)
# Train
grid.fit(X, y)
return grid
def plot_roc(fpr, tpr, auc, title):
'''
Plots the ROC
Parameters:
-----------
fpr: list
False positives
tpr: tpr
True positives
auc: float
AUC value
title: str
Title of the graph
'''
plt.title(title, y=1.10)
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
def display_roc_cv_curves():
'''
Display all CV results in one graph
'''
plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('1-Specificity(False Positive Rate)')
plt.ylabel('Sensitivity(True Positive Rate)')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right", prop={'size': 10})
plt.show()
def splitTrainingTestSets(df):
'''
Split the training and testing set
Parameters:
-----------
df: Features dataframe
'''
stable_hys1_train, stable_hys1_test = train_test_split(stable[stable["NHY_x"]=="1"], train_size=25, test_size=7)
progr_hys1_train, progr_hys1_test = train_test_split(progr[progr["NHY_x"]=="1"], train_size=25, test_size=7)
stable_hys2_train, stable_hys2_test = train_test_split(stable[stable["NHY_x"]=="2"], train_size=25, test_size=15)
progr_hys2_train, progr_hys2_test = train_test_split(progr[progr["NHY_x"]=="2"], train_size=25, test_size=15)
train = pd.concat([stable_hys1_train, progr_hys1_train, stable_hys2_train, progr_hys2_train])
test = pd.concat([stable_hys1_test, progr_hys1_test, stable_hys2_test, progr_hys2_test])
return df[df['PATNO'].isin(train["PATNO"])], df[df['PATNO'].isin(test["PATNO"])]
def modelCombinedWithAllParams(modelType):
'''
Helper function that returns a model with all parameter combinations
Parameters:
-----------
modelType: str
SVM, DecisionTree, kNN or GNB
'''
models = []
baseModel, param_grid = getModel(modelType, isCV=False)
parameters = ParameterGrid(param_grid)
# Iterate over all combinations
for params in parameters:
model = clone(baseModel)
model.set_params(**params)
models.append(model)
return models
def getModel(model, isCV=True):
'''
Helper function that returns a model and its parameters to tune.
Parameters:
-----------
model: str
SVM, DecisionTree, kNN or GNB
isCV: boolean
If the model will be trained using a CV, is passes the prefix to the param grid.
'''
prefix="train__" if isCV else ""
if model=="SVM":
param_grid = {f'{prefix}C': [0.1, 1, 10, 100, 1000],
f'{prefix}gamma': [1, 0.1, 0.01, 0.001, 0.0001],
f'{prefix}kernel': ['linear', 'poly', 'rbf']}
clf = SVC(probability=True)
elif model=="DecisionTree":
param_grid = {f'{prefix}max_depth':[1,2,3,4,5,8,16,32],
f'{prefix}max_leaf_nodes': list(range(2,20,1)),
f'{prefix}min_samples_split': [2,3,4,5,8,12,16,20]}
clf = DecisionTreeClassifier()
elif model=="kNN":
param_grid = {f'{prefix}n_neighbors': list(range(1,30)),
f'{prefix}p': [1, 2],
f'{prefix}weights': ["uniform", "distance"]}
clf = KNeighborsClassifier()
elif model=="GNB":
param_grid = {f'{prefix}var_smoothing': np.logspace(0,-9, num=100)}
clf = GaussianNB()
return clf, param_grid
def getData(feature):
'''
Helper function that returns a dataframe
'''
if feature=="Shu et al. features":
df_features = merge_scanner_to_features_df(shu_df)
elif feature=="rMRMe features":
df_features = merge_scanner_to_features_df(rmrme_df)
elif feature=="ROI features":
df_features = merge_scanner_to_features_df(roi_df)
elif feature=="Experiment features":
df_features = merge_scanner_to_features_df(experiement_df)
# Convert values to float
for column in df_features.columns[1:-2]:
df_features[column] = df_features[column].astype(np.float64)
return df_features
def merge_scanner_to_features_df(df):
'''
Merge scanner used to features dataframe
df: DatFrame
Features dataframe
'''
# Keep important columns
scanner_df = mri_df[["PATNO", "EVENT_ID", "Imaging Protocol"]]
# Merge on PATNO and EVENT_ID
scanner_df=cohort.merge(mri_df, on=["PATNO", "EVENT_ID"])
scanner_df["Imaging Protocol"] = scanner_df["Imaging Protocol"].replace({'Siemens': 'SIEMENS'})
# Drop duplicates
scanner_df = scanner_df.drop_duplicates(subset="PATNO")
# Merge features dataframe to scanner dataframe
df = df.merge(scanner_df[["PATNO", "Imaging Protocol"]], on=["PATNO"])
return df
As mentionned, we will train our model with three sets of features. Select which feature you would like to train the model with:
Feature Type | Description |
---|---|
Shu et al. features | Radiomic features used in Shu et al. via A.K software mapped using PyRadiomics. |
rMRMe features | Top 7 PyRadiomic features selected with the rMRMe R package. |
ROI features | Volumetic features of 13 ROIs measured with FreeSurfer |
NOTE: If this step is not completed, we will use the Shu et al. features by default
question_features=widgets.RadioButtons(
options=['Shu et al. features', 'rMRMe features', 'ROI features'],
value=None,
description='Select features:',
disabled=False)
def feature_prompt(sender):
FEATURE_TYPE = question_features.value
print('Selected features: ' + FEATURE_TYPE)
question_features.observe(feature_prompt, names=['f_value'])
question_features
RadioButtons(description='Select features:', options=('Shu et al. features', 'rMRMe features', 'ROI features')…
All four models will be trained.
Model | Description |
---|---|
SVM | Tunes the C, gamma and kernel type |
Decision Tree | Tunes the max_depth, max_leaf_nodes and min_samples_split |
kNN | Tunes the leaf_size, number of neighbors and p |
Gaussian Naive Bayes | Tunes the var_smooothing |
We will report the AUC and relative standard deviation) RSD of the SVM constructed.
RSD=σAUCμAUCx100where σAUC and µAUC are the standard deviation and mean of the 100 AUC values, respectively.
For the bootstrap approach, we will select the model with the lowest RSD.
For the cross-validation approach, we will select the model with the highest AUC.
FEATURE_TYPE = "Shu et al. features" if question_features.value is None else question_features.value
# Save performance in dictionary
performance = {}
# Define features
df_features = getData(FEATURE_TYPE)
features = df_features.loc[:, ~df_features.columns.isin(['PATNO', 'output', 'Imaging Protocol'])].columns
# Split dataset
train, test = splitTrainingTestSets(df_features)
for MODEL_TYPE in ["SVM", "DecisionTree", "kNN", "GNB"]:
performance[MODEL_TYPE]= []
# Iterate over all models and parameter possible
for model in modelCombinedWithAllParams(MODEL_TYPE):
print(f"Training the following model: {model}")
trainedModel, scaler, aucs = bootstrap(train, model)
mean_auc = np.array(aucs).mean()
rsd = (np.array(aucs).std() / np.array(aucs).mean()) * 100
performance[MODEL_TYPE].append({
"auc": mean_auc,
"rsd": rsd,
"scaler": scaler,
"trainedModel": trainedModel
})
# Determine best model (lowest RSD)
bestConfigsPerModel = []
for MODEL_TYPE in ["SVM", "DecisionTree", "kNN", "GNB"]:
bestConfig = min(performance[MODEL_TYPE], key=lambda x:x['rsd'])
bestConfigsPerModel.append(bestConfig)
bestConfig = min(bestConfigsPerModel, key=lambda x:x['rsd'])
bestModel = bestConfig["trainedModel"]
bestScaler = bestConfig["scaler"]
# Get final test results
y_test = test["output"]
X_test = bestScaler.transform(test[features])
y_pred_proba = bestModel.predict(X_test)
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plot_roc(fpr, tpr, auc, f"{COHORT_TYPE} | {FEATURE_TYPE} | {bestConfig['trainedModel']}")
Training the following model: SVC(C=0.1, gamma=1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.01, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.01, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.01, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.0001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.0001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=0.1, gamma=0.0001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.01, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.01, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.01, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.0001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.0001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1, gamma=0.0001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.01, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.01, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.01, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.0001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.0001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=10, gamma=0.0001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.01, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.01, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.01, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.0001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.0001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=100, gamma=0.0001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.1, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.1, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.1, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.01, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.01, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.01, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.0001, kernel='linear', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.0001, kernel='poly', probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: SVC(C=1000, gamma=0.0001, probability=True)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=1, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=2, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=3, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=4, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=5, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=8, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=16, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=2, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=3, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=4, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=5, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=6, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=7, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=8, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=9, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=10, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=11, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=12, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=13, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=14, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=15, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=16, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=17, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=18, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19, min_samples_split=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19, min_samples_split=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19, min_samples_split=5)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19, min_samples_split=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19, min_samples_split=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19, min_samples_split=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: DecisionTreeClassifier(max_depth=32, max_leaf_nodes=19, min_samples_split=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=1, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=1, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=2, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=2, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=2)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=2, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=3, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=3, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=3)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=3, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=4, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=4, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=4)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=4, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier()
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=6, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=6, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=6)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=6, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=7, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=7, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=7)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=7, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=8, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=8, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=8)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=8, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=9, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=9, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=9)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=9, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=10, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=10, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=10)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=10, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=11, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=11, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=11)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=11, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=12, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=12, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=12)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=12, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=13, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=13, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=13)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=13, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=14, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=14, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=14)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=14, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=15, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=15, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=15)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=15, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=16, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=16, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=16)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=16, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=17, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=17, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=17)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=17, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=18, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=18, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=18)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=18, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=19, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=19, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=19)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=19, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=20, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=20, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=20)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=20, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=21, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=21, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=21)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=21, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=22, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=22, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=22)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=22, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=23, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=23, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=23)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=23, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=24, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=24, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=24)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=24, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=25, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=25, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=25)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=25, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=26, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=26, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=26)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=26, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=27, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=27, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=27)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=27, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=28, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=28, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=28)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=28, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=29, p=1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=29, p=1, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=29)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: KNeighborsClassifier(n_neighbors=29, weights='distance')
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.0)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.8111308307896871)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.657933224657568)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.533669923120631)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.43287612810830584)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.3511191734215131)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.2848035868435802)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.23101297000831597)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.1873817422860384)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.15199110829529336)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.12328467394420659)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.1)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.08111308307896872)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0657933224657568)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0533669923120631)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.04328761281083057)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.03511191734215131)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.02848035868435802)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.02310129700083159)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.01873817422860384)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.01519911082952933)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.012328467394420659)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.01)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.008111308307896872)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.006579332246575682)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.005336699231206307)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.004328761281083057)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.003511191734215131)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.002848035868435802)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0023101297000831605)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.001873817422860383)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0015199110829529332)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0012328467394420659)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.001)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0008111308307896872)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0006579332246575676)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0005336699231206307)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0004328761281083057)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0003511191734215131)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0002848035868435802)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0002310129700083158)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0001873817422860383)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0001519911082952933)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0001232846739442066)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=0.0001)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=8.111308307896872e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=6.579332246575683e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=5.3366992312063123e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=4.328761281083062e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=3.511191734215127e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.848035868435799e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.310129700083158e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.873817422860383e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.5199110829529332e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.2328467394420658e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1e-05)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=8.111308307896873e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=6.579332246575683e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=5.336699231206313e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=4.328761281083053e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=3.5111917342151275e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.848035868435799e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.310129700083158e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.873817422860383e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.519911082952933e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.232846739442066e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1e-06)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=8.111308307896872e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=6.579332246575682e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=5.336699231206313e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=4.3287612810830526e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=3.5111917342151277e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.848035868435799e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.310129700083158e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.873817422860383e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.519911082952933e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.232846739442066e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1e-07)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=8.111308307896873e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=6.579332246575682e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=5.336699231206302e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=4.3287612810830526e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=3.5111917342151277e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.848035868435799e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.310129700083158e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.873817422860383e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.519911082952933e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.232846739442066e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1e-08)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=8.111308307896856e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=6.579332246575682e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=5.336699231206302e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=4.328761281083061e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=3.5111917342151273e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.848035868435805e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=2.310129700083158e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.873817422860387e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.519911082952933e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB(var_smoothing=1.2328467394420635e-09)
0%| | 0/100 [00:00<?, ?it/s]
Training the following model: GaussianNB()
0%| | 0/100 [00:00<?, ?it/s]
FEATURE_TYPE = "Shu et al. features" if question_features.value is None else question_features.value
# Save performance in dictionary
modelPerformance = []
# Define features
df_features = getData(FEATURE_TYPE)
features = df_features.loc[:, ~df_features.columns.isin(['PATNO', 'output', 'Imaging Protocol'])].columns
# Split dataset
train, test = train_test_split(df_features, test_size=0.3)
for MODEL_TYPE in ["SVM", "DecisionTree", "kNN", "GNB"]:
print(f"Training the following model: {MODEL_TYPE}")
# Define classifier
clf, param_grid = getModel(MODEL_TYPE, isCV=True)
# Train
trainedClf = cross_validation(train, clf, param_grid)
# Save performance
auc_validation = trainedClf.cv_results_["mean_test_score"].mean()
modelPerformance.append({
"auc": auc_validation,
"trainedModel": trainedClf
})
# Display ROC of all curves
plt.figure(figsize=(10,8))
for model in modelPerformance:
X_test = test[features]
y_test = test["output"]
bestModel = model["trainedModel"]
y_pred_proba = bestModel.predict(X_test)
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr, tpr, label=f'{type(bestModel.best_estimator_["train"]).__name__} AUC = {round(auc, 3)}')
display_roc_cv_curves()
Training the following model: SVM Training the following model: DecisionTree Training the following model: kNN Training the following model: GNB