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Welcome!

Welcome to the Causal Machine Learning course

What is Causal Machine Learning?

I honestly have no definition and different fields think differently about it

In this course you will learn an econometric perspective

We will cover recent advances in the effort to combine the powerful toolbox
developed in Machine Learning (one mature literature) for conducting Causal
Inference (another mature literature)

⇒ Creates a new strand of literature: Causal Machine Learning
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Combining two mature literatures

Causal Inference
(focus on identification)

Supervised ML
(focus on prediction)

Causal ML
(focus on estimation)
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Double ML
Targeted MLE
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Statistical inference
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TARNet

Causal forest

Desparsified Lasso
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Plan for today

1. What this course is about

2. Method journey of the semester
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What this course is about



Machine Learning + Econometrics

The integration of ML into econometrics is arguably one of two methodological
megatrends relevant for empirical economists (next to the better understanding
of ”Dif-in-Difs”, see e.g. de Chaisemartin & D’Haultfœuille, 2022; Roth et al., 2022)

Three faces are representative for this development (accessed Oct 2022):
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https://doi.org/10.1093/ectj/utac017
https://arxiv.org/abs/2201.01194


Machine Learning + Economics + Research

Source: Currie, Kleven, Zwiers (2020) 5

https://www.henrikkleven.com/uploads/3/7/3/1/37310663/currie-kleven-zwiers_aea-pp_dec2019.pdf


Machine Learning + Economics + Industry (1/3)

Big Tech firms, especially Amazon, but also Google, Meta, Uber, ... started to hire
Economists on a large scale

Why?

”[...] economists offer skills that computer scientists and engineers often lack.
They tend to have a good grasp of statistics, as well as a knack for understanding
how incentives affect human behaviour. Most important, economists are adept at
designing experiments to identify causal relationships between variables.
Machine-learning engineers usually think in terms of prediction problems [...].
Economists can nail down the causal parameters [...].” The Economist Sep 7th
2022
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https://www.economist.com/business/2022/09/07/why-economists-are-flocking-to-silicon-valley
https://www.economist.com/business/2022/09/07/why-economists-are-flocking-to-silicon-valley


Machine Learning + Economics + Industry (2/3)
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Machine Learning + Economics + Industry (3/3)

Good for you: The skills you acquire in this course and your studies in general are
highly valuable

On a critical note:
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Very stylized workflow of empirical economics

The big question is how to come from an (often causal) target parameter to a
credible estimate of this parameter

Target parameter Estimate
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Stylized workflow of empirical economics

Target parameter Estimate

Data

Assumptions

Estimator

Input OutputResearch question

Target parameter Estimate

Data

Assumptions

Estimator

Input OutputResearch question

Machine Learning/Data Science are currently used to improve all three inputs in
different dimensions
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This course

Target parameter Estimate

Data

Assumptions

Estimator

Input OutputResearch question

Target parameter Estimate

Data

Assumptions

Estimator

Input OutputResearch question

We focus on extending the menu of target parameters and estimators in your
empirical toolbox
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What to expect? (1/2)

You will learn recent Causal ML methods for estimation of average and
personalized effects of

• an intervention/policy/treatment W
• on an outcome Y
• while adjusting for confounding variables X (optional)
• using exogeneous variation of an instrument Z (optional)

and how to recommend assignment of W in a data-driven way

To this end, we first need to recap/learn the Causal Inference and ML basics

Important: The methods we cover do NOT provide more credible identification
BUT more clever/data-driven and comprehensive estimation
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What to expect? (2/2)

The literature is moving very fast and there are no established textbooks that
could serve as basis for such a course, yet

There are open questions regarding basically everything that I show you

⇒ No best practices that I could teach, yet

My goal is to introduce key ideas underlying popular Causal ML methods and to
connect dots between them and concepts from econometrics 101

This enables you to apply the basic methods we discuss and allows you to faster
understand more complex methods building on the same ideas

However, do not expect that you will only learn settled recipes that just require
pushing buttons as you are used to with more mature methods
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Method journey of the semester



Journey

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning

14



Example use case of the full pipeline

Evaluation of training programmes for job-seekers

Some shameless self-promotion

Econometrics Journal (2022), volume 25, pp. 602–627.
https://doi.org/10.1093/ectj/utac015

Double machine learning-based programme evaluation under

unconfoundedness

MICHAEL C. KNAUS

Swiss Institute for Empirical Economic Research, University of St. Gallen, Varnbüelstrasse 14,
9000 St. Gallen, Switzerland.

Email: michael.knaus@unisg.ch

First version received: 31 March 2021; final version accepted: 19 October 2021.

Summary: This paper reviews, applies, and extends recently proposed methods based on dou-
ble machine learning (DML) with a focus on programme evaluation under unconfoundedness.
DML-based methods leverage flexible prediction models to adjust for confounding variables
in the estimation of (a) standard average effects, (b) different forms of heterogeneous effects,
and (c) optimal treatment assignment rules. An evaluation of multiple programmes of the
Swiss Active Labour Market Policy illustrates how DML-based methods enable a comprehen-
sive programme evaluation. Motivated by extreme individualised treatment effect estimates of
the DR-learner, we propose the normalised DR-learner (NDR-learner) to address this issue.
The NDR-learner acknowledges that individualised effect estimates can be stabilised by an
individualised normalisation of inverse probability weights.

Keywords: Causal machine learning, conditional average treatment effects, DR-learner, in-
dividualised treatment rules, multiple treatments, policy learning.

JEL codes: C21.

1. INTRODUCTION

The adaptation of so-called machine learning to causal inference has been a productive area of
methodological research in recent years. The resulting new methods complement the existing
econometric toolbox for programme evaluation along at least two dimensions (see, for recent
overviews, Athey and Imbens, 2017, 2019; Abadie and Cattaneo, 2018). On the one hand, they
provide flexible methods to estimate standard average effects. In particular, they provide a data-
driven approach to variable and model selection in studies that rely on an unconfoundedness
assumption1 for identification. On the other hand, they enable a more comprehensive evaluation
by providing new methods for the flexible estimation of heterogeneous effects and of treatment
assignment rules.

This paper considers double machine learning (DML) (Chernozhukov et al., 2018) as a frame-
work for flexible and comprehensive programme evaluation. The DML framework seems at-
tractive because (a) it can be combined with a variety of standard supervised machine learning
methods; (b) it covers average effects for binary (e.g., Belloni et al., 2014; Belloni et al., 2017;
Chernozhukov et al., 2018), multiple (e.g., Farrell, 2015) as well as continuous treatments (e.g.,
Kennedy et al., 2017; Colangelo and Lee, 2019; Semenova and Chernozhukov, 2021); (c) it

1 Also known as exogeneity, selection on observables, ignorability, or conditional independence assumption.
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Ceterum censeo a fancy method alone is not a credible
identification strategy
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