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Plan for today

This is not the sexy part, but we will need these components at several points of
the lecture

1. Notation

2. Conditional expectation function

3. How to model and estimate CEF?

4. Convergence rates
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Notation



Notation

There is a zoo of different notations between and within fields

I try to consistently use the following notation (please keep me accountable):

• Capital letters describe random variables (RV), e.g. X
• Small letters describe realizations of RVs, e.g. x
• Capital letters with subscript i represent the RV value of observation i, e.g. Xi
• Greek letters are used to denote unknown population parameters, e.g. α
• Hats are used to indicate estimated parameters, e.g. α̂
• := defines a symbol, e.g. µ := E[Y]
• p-dimensional RV are represented as column vectors, e.g. RVs X1 to Xp are
collected into X = (X1, ..., Xp)′
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Example and crucial refresher

The law of iterated/total expectations (LIE) tells us that the unconditional
expectation of RV Y can be obtained as taking the expectation of the conditional
expectations of Y given X:

µ := E[Y] = E[E[Y|X]]

The standard estimator of µ based on a sample of size N is

µ̂ =
1
N

N∑
i=1

Yi

In contrast, for a conditional expectation at a fixed value x, taking the expectation
makes no difference b/c it is a constant

m(x) := E[Y|X = x] = E[E[Y|X = x]]
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Conditional expectation function



Conditional expectation function

We call the function that provides the expected value of Y given X the
Conditional Expectation Function (CEF)

m(X) := E[Y|X] (1)

Any RV can be decomposed into CEF and a mean independent residual

Y = E[Y|X] + ε = m(X) + ε (2)

with
E[ε|X] = E[Y −m(X)|X] = m(X)−m(X) = 0 (3)

Important
This is not an assumption! It follows from probability theory.
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Why conditional expectation functions?

The decomposition allows us to show why we like the CEF

Note that any function g(X) produces an error Y − g(X)

CEF is the function that minimizes the expected squared error (proof on next
slide):

m(X) = argmin
g(X)

E[(Y − g(X))2] (4)

⇒ The CEF delivers the best possible guess for the outcome value in the
population

Remark: While there are other loss function we could care about, the squared
error loss is the most important for our purposes
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Proof that CEF minimizes expected squared error

E[(Y − g(X))2] = E[(Y−m(X) +m(X)− g(X))2]
= E[(Y −m(X))2] + E[2(Y −m(X))(m(X)− g(X))]︸ ︷︷ ︸

=0, shown below

+E[(m(X)− g(X))2]

(2)
= E[(m(X) + ε−m(X))2] + E[(m(X)− g(X))2]
= E[ε2] + E[(m(X)− g(X))2]
= Var[ε] + E[(m(X)− g(X))2]

b/c Var[ε] = E[ε2]− E[ε]2 (3)
= E[ε2]

⇒ expected squared error minimized if g(X) = m(X) b/c 2nd term becomes zero �

E[2(Y −m(X))(m(X)− g(X))] LIE,(2)= 2E[E[(m(X) + ε−m(X))(m(X)− g(X))|X]]
= 2E[E[ε|X]︸ ︷︷ ︸

=0

(m(X)− g(X))] = 0
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How to model and estimate CEF?



Different options

We can choose different ways to model the CEF:

• Parametric model
• Nonparametric model
• Semiparametric model
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Parametric models

Assume m(X) = m(X;β) with m(·) a known function and β ∈ Rp a finite vector of
parameters

Example 1: Linear model
m(X;β) = X′β

⇒ β most often estimated with Ordinary Least Squares (OLS)

Example 2: Probit model for binary Y ∈ {0, 1}

P[Y = 1|X] = E[Y|X] = m(X;β) = Φ(X′β)

where Φ(·) is the normal cdf

⇒ β most often estimated via Maximum Likelihood
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OLS in expectation

OLS identifies the population parameters of the linear CEF model by minimizing
the expected squared error

β = argmin
b

E[(Y − X′b)2]

Important
Even if the CEF is not really linear, OLS provides (in expectation) the best linear
approximation of the CEF (proof e.g. in Angrist & Pischke (2009), Thrm. 3.1.6):

β = argmin
b

E[(E[Y|X]− X′b)2]
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OLS estimation

Assuming a sample of N i.i.d. observations, we can estimate the parameter by
minimizing the sum of / mean squared error:

β̂ = argmin
β

N∑
i=1

(
Yi − X′iβ

)2
= argmin

β

1
N

N∑
i=1

(
Yi − X′iβ

)2
= argmin

β0,...,βp

N∑
i=1

(
Yi − β0 − Xi1β1 + ...+ Xipβp

)2
= (X′X)−1X′Y

I hope at least one of these equivalent representations looks familiar

Punchline: OLS is one way to approximate the unknown and potentially
non-linear CEF
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OLS - illustration
3.2 Linear Regression Models and Least Squares 45
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FIGURE 3.1. Linear least squares fitting with X ∈ IR2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X,Y ). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)? Denote by X the N × (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N -vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(β) = (y −Xβ)T (y −Xβ). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to β we obtain

∂RSS

∂β
= −2XT (y −Xβ)

∂2RSS

∂β∂βT
= 2XTX.

(3.4)

Assuming (for the moment) that X has full column rank, and hence XTX

is positive definite, we set the first derivative to zero

XT (y −Xβ) = 0 (3.5)

to obtain the unique solution

β̂ = (XTX)−1XTy. (3.6)

Hastie, Tibshirani & Friedman (2017) 11
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Nonparametric methods

The linear CEF is a functional form assumption

⇒ OLS will never uncover the CEF in the likely case that the world is not linear

In contrast, nonparametric methods leave the functional form of CEF unspecified
and aim to learn m(X) = E[Y|X] completely from the data

As we do not tell them how the world looks like, they are more data-hungry than
parametric models, but consistently estimate the CEF

Classic nonparametric methods:

• Kernel regression
• Series regression
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Kernel regression - illustration
192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

Hastie, Tibshirani & Friedman (2017) 13
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Semiparametric models: a compromise

Nonparametric CEF models have - as the name suggests - no interpretable
parameters

However, (linear) parameters can serve as useful condensation of information

Assume that we are interested in the linear parameter θ of variable X1, but are not
willing to commit to functional forms of X̃ = (X2, ..., Xp)′ such that X = (X1, X̃′)′

The so-called partially linear model assumes

m(X) = m(X; θ, f ) = X1θ + f (X̃)

The assumed CEF has a parametric and a nonparametric part⇒ semiparametric

These types of models play an important role in Causal ML⇒ they will be back
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Convergence rates



√
n-convergence of OLS

I guess you all have seen something like this in your econometrics education
√
N(β̂N − β)

d→ N (0,Σ)

that the difference between estimated and population parameters blown up by√
N converges to a multivariate normal distribution as N→ ∞

If we would not blow it up, it converges to zero (consistency)

This implies that also the fitted/predicted value for a fixed value of x converges at√
N: √

N(x′β̂N − x′β) d→ N (0, σ2)
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Convergence of OLS predictions

√
N-convergence of predicted values implies that we expect the root mean

squared error (RMSE)

RMSE =

√
1
N
∑
i

(X′i β̂N − X′iβ)2

also to converge at
√
N

⇒ We expect the RMSE to halve if we have access to four times more observations

Important
This means convergence to the best linear prediction of the CEF and does not
imply convergence to the CEF unless it is actually linear.
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Convergence of OLS predictions

The squared error needs to be blown up by N to converge to a distribution:

[
√
N(x′β̂N − x′β)]2 d→ [N (0, σ2)]2

N(x′β̂N − x′β)2 d→ [N (0, σ2)]2

d→ Γ(1/2, 2σ2)

⇒ We expect MSE to converge at rate N

Finally, the square root of the squared error converges with
√
N:√

N(x′β̂N − x′β)2 =
√
N[(x′β̂N − x′β)2]1/2 d→ Nakagami(1/2, σ2)

⇒ We expect RMSE to converge at rate
√
N
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https://en.wikipedia.org/wiki/Gamma_distribution
https://math.stackexchange.com/questions/3293232/square-root-of-a-gamma-distribution
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No structure, slower convergence

Non-parametric estimators have substantially slower convergence rates

For example, an optimal Kernel Regression with one X variable can achieve
N2/5 < N1/2 convergence (see e.g. Cameron & Trivedi, Ch. 9.5 or Li & Racine Ch. 2)

This means that we need ∼ 6 times the sample size to halve RMSE

This becomes worse with higher dimensions of X ⇒ curse of dimensionality

OLS Kernel regression
dim(X) < N 1 2 3 4 6 8 10
Convergence rates N1/2 N2/5 N1/3 N2/7 N1/4 N1/5 N1/6 N1/8

Sample size for 1/2 RMSE 4 ∼6 8 ∼11 16 32 64 128
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How to make sense of convergence rates?

There are probably different ways, but this is the one that works for me

We want to find the value α such that the ”blow up factor” doubles, which means
in turn that the thing that is blown up halves

For any convergence rate Nδ we can therefore write
(αN)δ

Nδ
= 2

αδNδ = 2Nδ

αδ
��Nδ = 2��Nδ

α = 21/δ

For example for N1/4 ⇒ δ = 1/4⇒ α = 21/(1/4) = 24 = 16⇒ we need 16 times
more observations to halve RMSE
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Simulation Notebook: Basics: Convergence rates
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_Convergence_rates.nb
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