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Plan for today

Introduce/recap supervised ML with a focus on tools that were driven by causal
ML and will be important as we proceed

1. What we would like to have

2. OLS based prediction

3. Prediction based on shrinkage methods (OLS 2.0)

4. Botanical prediction

5. Why causal ML is needed
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What we would like to have



Supervised ML

The supervised ML methods that we will consider in this course aim to predict
• an outcome/response/signal/output/... denoted by Y
• using covariates/predictors/features/inputs/... denoted by X

The resulting predictions/fitted values are denoted by Ŷ = m̂(x)

The convenient feature of supervised ML is that we can compare observed
outcomes with their predictions to assess prediction quality (Y − Ŷ)

This is often referred to as ”The ground truth is known” in the prediction setting

This narrative has intuitive appeal and we will revisit when and why it actually
works
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The unreachable goal of supervised ML

As we will do also later in the causal setting, let’s first describe the target in
unobservable population quantities

For predictions, we would like to know the conditional expectation function (CEF):

m(X) := E[Y|X] (1)

Recall from last lecture that the CEF minimizes the expected squared error:

m(X) = argmin
g(X)

E[(Y − g(X))2] (2)

and that
Y = m(X) + ε; E[ε|X] = 0 (3)
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Bad news and good news (1/2)

Problem
The CEF is the best we can do BUT it is unobserved and needs to be
estimated/learned using observable data.

Positive side
The Expected Squared Error (ESE) of an estimated CEF m̂(X) has a direct link to
the squared CEF approximation error (derivation in two slides):

E[(Y − m̂(X))2] = Var[ε]︸ ︷︷ ︸
irreducible

+E[(m(X)− m̂(X))2]︸ ︷︷ ︸
reducible

−2 Cov[m̂(X), ε]︸ ︷︷ ︸
= 0 if out-of-sample

(4)
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Bad news and good news (2/2)

Equation (4) provides three important insights:

The ESE does not become zero for the true CEF because Var[ε] > 0 in the
usual case that the outcome is not a deterministic function of X
⇒ We will never know if we found the true CEF
If we want a representative picture for out-of-sample prediction, we need to
test the model in an independent test set
We know that a function m̂(X) provides a better approximation of the CEF
compared to alternative m̃(X) if in an independent test set

E[(Y − m̂(X))2] < E[(Y − m̃(X))2]

because it implies that

E[(m(X)− m̂(X))2] < E[(m(X)− m̃(X))2]
5



Derivation expected squared error

We suppress (X)

ESE = E[(Y − m̂)2]

= E[(m+ ε− m̂)2]

= E[m2 +mε−mm̂+mε+ ε2 − m̂ε−mm̂− m̂ε+ m̂2]

= E[m2] + E[mε]− E[mm̂] + E[mε] + E[ε2]− E[m̂ε]− E[mm̂]− E[m̂ε] + E[m̂2]

= E[m2] + E[m] E[ε]︸︷︷︸
=0

−2E[mm̂] + E[m] E[ε]︸︷︷︸
=0

+E[ε2]− 2E[m̂ε] + E[m̂2]

= E[m2]− 2E[mm̂] + E[m̂2]︸ ︷︷ ︸
E[(m−m̂)2]

+ E[ε2]︸ ︷︷ ︸
=Var[ε]

−2 E[m̂ε]︸ ︷︷ ︸
=E[m̂]E[ε]+Cov[m̂,ε]

= E[(m− m̂)2] + Var[ε]− 2Cov[m̂, ε]
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Practical value

The previous slides motivate the standard procedure to find the best predictor:

1. Randomly split your sample with N observations into a training set with Ntr
and a test set with Nte observations

2. Estimate different CEF functions in the training sample m̂(X)
3. Calculate and compare their out-of-sample Mean Squared Error (MSE) in
the test sample:

MSEte =
1
Nte

Nte∑
i=1

(Yi − m̂(Xi))2 (5)

4. Pick the function with the lowest MSE

7



Why not in-sample MSE #Overfitting? (1/2)

Intuition by extreme example:

It is easy to fit a function that perfectly fits the outcomes in the training data

This is an extreme form of overfitting and means that m̂o(X) = Y in the training
sample and thus

MSEtr =
1
Ntr

Ntr∑
i=1

(Yi − m̂o(Xi))2 =
1
Ntr

Ntr∑
i=1

(Yi − Yi)2 = 0 (6)

But isn’t it great that we found a perfect fit?

No! We want to perfectly fit the CEF, not the observed outcomes.
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Why not in-sample MSE #Overfitting? (2/2)

Consider the sample analogue of the unobservable CEF approximation error in
the training sample to see why fitting the outcome implies a bad fit of the CEF:

1
Ntr

Ntr∑
i=1

(m(Xi)− m̂o(Xi))2 =
1
Ntr

Ntr∑
i=1

(m(Xi)− Yi)2
(3)
=

1
Ntr

Ntr∑
i=1

ε2i > 0 (7)

⇒ We do a bad job in approximating the CEF⇒ bad out-of-sample predictions

The discrepancy between equation (6) suggesting the perfect fit and equation (7)
illustrates why we should not use in-sample fit to judge prediction quality

The same intuition holds also for estimators that overfit not that extreme

See also this Tweetorial as an excellent illustration/refresher of the related
Bias-Variance trade-off
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https://twitter.com/svpino/status/1584515105374339073?t=rSvedCHJn02nBabHMqzF_Q&s=03


Summary

Supervised ML is so powerful because we can assess unobservable approximation
quality of candidate prediction functions using observed outcomes

Overfitting can result in bad prediction performance (some musical nerd humor)

Independent test sample is required for reliable assessment of prediction quality

Successful predictors need to trade-off bias and variance
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https://www.youtube.com/watch?v=DQWI1kvmwRg&feature=youtu.be


OLS based prediction



OLS as predictor

Standard OLS models the CEF as linear function

mols(Xi) = β0 +

p∑
j=1

Xijβj (8)

where the p covariates are handpicked (potentially including interactions and
polynomials)

OLS estimates the parameters by solving the minimization problem

β̂ols = argmin
β

N∑
i=1

Yi − β0 −
p∑
j=1

Xijβj

2

(9)

⇒ Ŷ = x′β̂ols produces a fitted value for an observation with X = x
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Why OLS is not the ultimate predictor

We learn that OLS is BLUE (Best Linear Unbiased Estimator) following the
Gauss-Markov theorem BUT

- Unbiasedness is important for parameter estimation, but the price to pay in
terms of variance might be too large for prediction #BiasVarianceTradeOff

- OLS tends to overfit
- OLS is not possible if p+ 1 > N and very instable for (p+ 1)/N close to one
(this thinking is most productive for us, for bonus #DoubleDecent)

- The CEF might not be linear and OLS provides ”only” the best linear
prediction of CEF

- It is hard and (at least for me) unpleasant to manually specify an OLS model,
i.e. to select the covariates and their functional form
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https://en.wikipedia.org/wiki/Gauss-Markov_theorem
https://community.alteryx.com/t5/Data-Science/Bias-Versus-Variance/ba-p/351862
https://twitter.com/adad8m/status/1582231644223987712?t=IJ7ryalFGdjmVWDsSuo5zg&s=03


Simulation notebook: Overfitting of OLS and value of training
vs. test sample
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_OLS_in_vs_out_of_sample.nb.html
https://mcknaus.github.io/assets/notebooks/SNB/SNB_OLS_in_vs_out_of_sample.nb.html


Prediction based on shrinkage
methods (OLS 2.0)



Lasso

OLS overfits and does not address the Bias-Variance trade-off

Shrinkage methods address this problem by penalizing the size of the coefficients

The most important method for this course is the Lasso (Tibshirani, 1996):

β̂lasso = argmin
β

N∑
i=1

Yi − β0 −
p∑
j=1

Xijβj

2

+ λ

p∑
j=1

|βj| (10)

λ is the so-called tuning parameter or penalty term

λ = 0 is equivalent to OLS

λ → ∞ results in an empty model including only a constant (β0 is not penalized)
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https://www.jstor.org/stable/2346178?seq=1#metadata_info_tab_contents


Selection property of Lasso

The Lasso is especially popular because it sets some coefficients to zero, which
implies variable selection

Source: glmnet vignette 14

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html


A note of caution

Selection property seems nice because it suggests that we can learn something
about the ”important” variables

BUT recovering the structural model requires strong assumptions like limited
correlation between covariates (see Hastie et al., 2015, Ch. 11.4)

However, predictors are often correlated, especially in social sciences

Example #SocioEconomicStatus
Education of mother and father are usually highly correlated. Most likely Lasso
selects only one. This does not mean that the other is not relevant. Rather,
Lasso leverages the ”omitted variable bias” in the coefficient of the selected
variable to get good predictions with few predictors.

Mullainathan and Spiess (2017) forcefully illustrate this point⇒ next slide
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https://web.stanford.edu/~hastie/StatLearnSparsity/
https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87


(Not) bar code graph of Mullainathan and Spiess (2017)

Sendhil Mullainathan and Jann Spiess     97

the variables are correlated with each other (say the number of rooms of a house and 
its square-footage), then such variables are substitutes in predicting house prices. 
Similar predictions can be produced using very different variables. Which variables 
are actually chosen depends on the specific finite sample. In traditional estimation, 
correlations between observed variables would be reflected in large standard errors 
that express our uncertainty in attributing effects to one variable over the other. 

This problem is ubiquitous in machine learning. The very appeal of these algo-
rithms is that they can fit many different functions. But this creates an Achilles’ 
heel: more functions mean a greater chance that two functions with very different 

Note: We repeated the house-value prediction exercise on 
subsets of our sample from the American Housing Survey. 
First, we randomly cut the sample into ten partitions of 
approximately 5,000 units each. On each partition, we re-
estimate the LASSO predictor, with LASSO regularization 
parameter fixed. The figure shows how the variables that are 
used vary from partition to partition. Each row represents 
one of x variables used. Each column represents a 
different partition. We color each cell black if that variable 
is used by the LASSO model (has a nonzero coefficient) in 
that partition. The figure documents a fundamental 
problem: a variable used in one partition may be unused in 
another. In fact, there are few stable patterns overall. For 
details, see discussion in text and online appendix available 
with this paper at http://e-jep.org.

Figure 2 
Selected Coefficients (Nonzero Estimates) 
across Ten LASSO Regressions 
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https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87


Post-Lasso

Lasso has many extensions like adaptive/relaxed/fused/group/... Lasso

However, Post-Lasso is the most important for our purposes and works as follows
1. Run Lasso as in (10)
2. Identify the s variables with non-zero coefficients Xsel

3. Run an unpenalized OLS using only the selected variables:

β̂post−lasso = argmin
β

N∑
i=1

Yi − β0 −
s∑
j=1

Xselij βj

2

(11)

Caution
We still should not interpret β̂post−lasso like we are used to, though it might be
tempting. They have just predictive purpose, full stop. No structural meaning!
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https://web.stanford.edu/~hastie/StatLearnSparsity/


How to choose the tuning parameter? (1/2)

Cross-validation is the most popular technique:

Source: scikit-learn.org
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https://scikit-learn.org/stable/modules/cross_validation.html


How to choose the tuning parameter? (2/2)

Cross-validation (CV) estimates the out-of-sample MSE by simulating
out-of-sample predictions

Usually we choose the penalty term that minimizes the cross-validated MSE

CV is generic and can be applied for any supervised ML that requires tuning

For Lasso and Post-Lasso Belloni et al. (2012) provide a data-driven alternative
based on theoretical arguments (this is implemented in the hdm R package)
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https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA9626
https://cran.r-project.org/web/packages/hdm/index.html


Simulation notebook: Lasso saves the job of OLS

Application notebook: Lasso
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_Lasso_saves_OLS.nb.html
https://mcknaus.github.io/assets/notebooks/appl401k/ANB_401k_Lasso.nb.html


Botanical prediction



Global vs. local methods

OLS and its penalized descendants are global methods that aim to capture the
whole functional form of the CEF to produce outcome predictions for a given x

Local methods take a different approach and only use observations in the
neighbourhood of x for prediction

Different ways to define the neighbourhood:

• Classic approaches: nearest neighbour or kernel regressions
• Tree-based methods: regression trees, random forest, ...

The latter are a crucial building block for causal ML
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Regression trees - concept

Partition the data based on X into M mutually exclusive regions (R1, ...,RM)

Predict the outcome for X = x as the mean of outcomes falling into the same
region/leaf (local constant):

m̂tree(x) =
M∑
m=1

Ȳm1[x ∈ Rm] (12)

where Ȳm =
1∑

i

1[Xi ∈ Rm]︸ ︷︷ ︸
nm

∑
i

Yi1[Xi ∈ Rm] (13)
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Regression trees - illustration

Illustration with two continuous covariates:

306 9. Additive Models, Trees, and Related Methods

|
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

Tree Partitioning Estimated m(x)

Source: Hastie, Tibshirani & Friedman (2017) (p. 306)
22

https://web.stanford.edu/~hastie/ElemStatLearn/


How to find the splits that define the regions? - verbal

Find partitions that minimize the sum of squared error loss:
N∑
i=1

(Yi − m̂tree(Xi))2 (14)

Finding the optimal partitioning is often computationally too expensive

⇒ Greedy search of binary splits to minimize in-sample MSE:

• We start in the full sample (parent node) and find the MSE minimizing split
and use it to create two daughter nodes

• We repeat this many times using the two daughter nodes as new parent
nodes...

⇒ We grow a
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Splitting criterion

Parent node can be split along variable j at split point s into a left leaf
L(j, s) = {X | Xj ≤ s} and a right leaf R(j, s) = {X | Xj > s}

We seek j and s that minimize the sum of squared errors (SSE)⇒ min MSE:

min
j,s

[ SSE in left partition︷ ︸︸ ︷∑
i:xi∈L(j,s)

(yi − ȳL(j,s))2+

SSE in right partition︷ ︸︸ ︷∑
i:xi∈R(j,s)

(yi − ȳR(j,s))2︸ ︷︷ ︸
SSE for potential split j,s

]
(15)
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Alternative splitting criterion

Note that an alternative but equivalent splitting criterion is to maximize the sum
of squared predictions/the variance of predictions:

min
∑
i

(Yi − m̂tree(Xi))2 = max
∑
i

m̂tree(Xi)2 = max Var(m̂tree(X)) (16)

This is irrelevant for the prediction case, but will be important for causal ML

The advantage will be that this splitting criterion does not require to observe the
outcome, but only an estimate of the leaf mean
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Note that we can write, while ignoring the tree superscript∑
i

(Yi − m̂(Xi))2 =
∑
i

(Y2i − 2Yim̂(Xi) + m̂(Xi)2)

=
∑
i

(Y2i − 2Yim̂(Xi) + m̂(Xi)2) + 2m̂(Xi)2 − 2m̂(Xi)2︸ ︷︷ ︸
principle

=
∑
i

(Y2i + 2m̂(Xi)(m̂(Xi)− Yi) + m̂(Xi)2 − 2m̂(Xi)2)

=
∑
i

(Y2i + 2m̂(Xi)(m̂(Xi)− Yi)− m̂(Xi)2)

The middle term can be decomposed as∑
i

2m̂(Xi)(m̂(Xi)− Yi) = 2
[ ∑
i:Xi∈R1

ȳ1(ȳ1 − Yi) + ...+
∑
i:Xi∈RM

ȳM(ȳM − Yi)
]
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https://www.tivadardanka.com/blog/the-camel-principle


The middle term is zero because for all its components we can write∑
i:Xi∈Rm

ȳm(ȳm − Yi) = ȳm
∑

i:Xi∈Rm

(ȳm − Yi) = ȳm
[ ∑
i:Xi∈Rm

ȳm −
∑

i:Xi∈Rm

Yi
]

︸ ︷︷ ︸
=0

= 0

because
∑

i:Xi∈Rm Ȳm = nmȲm
(13)
= nm 1

nm
∑

i:Xi∈Rm Yi =
∑

i:Xi∈Rm Yi

⇒
∑
i

(Yi − m̂(Xi))2 =
∑
i

(Y2i − m̂(Xi)2)

As the Y2i part is irreducible, min
∑

i(Y2i − m̂(Xi)2) is equivalent to max
∑

i m̂(Xi)2
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We can further show that this boils down to maximizing the variance of the
predictions:

Rewrite
∑
i

m̂(Xi)2 =
∑
i:xi∈R1

ȳ21 + ...+
∑
i:xi∈RM

ȳ2M = n1ȳ21 + ...+ nMȳ2M =
M∑
m=1

nmȳ2m

Denote sample mean as ȳ = 1
N
∑

i yi =
∑

m
nm
N ȳm and expand w/o changing max

1
N
∑
m
nmȳ2m − 2ȳȳ + ȳ2 =

∑
m

nm
N
ȳ2m − 2ȳ

∑
m

nm
N
ȳm + ȳ2

=
∑
m

nm
N
ȳ2m −

∑
m

nm
N
2ȳȳm +

∑
m

nm
N
ȳ2

=
∑
m

nm
N

(ȳ2m − 2ȳȳm + ȳ2) =
∑
m

nm
N

(ȳm − ȳ)2

=
1
N
∑
i

∑
m

(ȳm − ȳ)21[xi ∈ Rm] = Var(m̂(Xi))

⇒ min
∑

i(yi − m̂(Xi))2, max
∑

i m̂(Xi)2, max Var(m̂(Xi)) are equivalent 28



In case of considering only a left and a right leaf we could also proceed
differently on the previous slide (Bonus):

M∑
m=1

nmȳ2m = nLȳ2L + nRȳ2R

Divide by N such that ñL = nL/N and ñR = nR/N and expand w/o changing max:

ñLȳ2L + ñRȳ2R−ȳ2 =ñLȳ2L + ñRȳ2R − (ñLȳL + ñRȳR)2

=ñLȳ2L + ñRȳ2R − ñ2Lȳ2L − 2ñLȳLñRȳR − ñ2Rȳ2R
=ñLȳ2L + ñRȳ2R − ñL(1− ñR)ȳ2L − 2ñLȳLñRȳR − ñR(1− ñL)ȳ2R
=ñLȳ2L + ñRȳ2R − ñLȳ2L + ñLñRȳ2L − 2ñLȳLñRȳR − ñRȳ2R + ñRñLȳ2R
=ñLñRȳ2L − 2ñLñRȳLȳR + ñRñLȳ2R
=ñLñR(ȳ2L − 2ȳLȳR + ȳ2R)
=ñLñR(ȳL − ȳR)2
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In case of considering only a left and a right leaf we could also proceed
differently on the previous slide (Bonus 2):

M∑
m=1

nmȳ2m = nLȳ2L + nRȳ2R

= nL

(
1
nL

∑
i:L

Y
)2

+ nR

(
1
nR

∑
i:R

Y
)2

=
nL
n2L

(∑
i:L

Y
)2

+
nR
n2R

(∑
i:R

Y
)2

=
1
nL

(∑
i:L

Y
)2

+
1
nR

(∑
i:R

Y
)2

This may help to understand equation 9 of Athey, Tibshirani and Wager (2019)
discussed later
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How to prevent overfitting?

If X is continuous, we could split until every observation has its own leaf

The prediction would thus be based only on one observation predicting itself⇒
perfect in-sample fit but bad approximation of CEF like discussed on slide 8

Again cross-validation can be used to find the optimal depth

To this end we grow deep trees and prune them back, i.e. cut-off some leaves

However, Athey and Imbens (2016) note that regression trees always overfit and
propose a solution called honesty
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https://www.pnas.org/content/113/27/7353


Motivation for honesty

Conditional on finding a split, the estimated means in the leaves are too extreme

Source: Athey and Imbens (2016)
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https://www.pnas.org/content/113/27/7353


Honest estimation

Athey and Imbens (2016) propose an ”honest” procedure:

1. Randomly split your sample in two halves
2. Use the first half to learn the tree structure
3. Use the second half to estimate the means in the leaves

This allows to use standard inference for the leaf means in the second half of the
sample

Inference is then valid for this particular sample split
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https://www.pnas.org/content/113/27/7353


Random forest - idea

Regression trees are instable⇒ high variance⇒ high MSE

Small changes in the data can lead to completely different trees, especially with
correlated predictors

Breiman (2001) proposes the Random Forest to reduce variability

Random Forest grows many trees on random subsamples using a random subset
of predictors

Predictions are then formed as average over all tree predictions⇒ ensemble
learning

Prediction uses outcomes from a data adaptive neighbourhood/kernel with
closer outcomes receiving higher weights
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https://link.springer.com/article/10.1023/A:1010933404324


Random forest - illustration

i

see that n
i=1

1
B

∑B
b=1 αbi(x)(Yi − μ̂(x)) = 0 if and only if μ̂(x) = 1

B

FIG. 1.  Illustration of the 
random forest weighting 
function. Each tree starts by 
giving equal (positive) weight 
to the training examples in the 
same leaf as our test point x of 
interest, and zero weight to all 
the other training examples. 
Then the forest averages all 
these tree-based weightings, 
and effectively measures how 
often each training example 
falls into the same leaf as x.

B
b=1 μ̂b(x),

where μ̂b(x) = ∑
{i:Xi∈Lb(x)} Yi/|Lb(x)| is the prediction made by a single CART

regression tree.

2.2. Splitting to maximize heterogeneity. We seek trees that, when combined
into a forest, induce weights αi(x) that lead to good estimates of θ(x). The
main difference between random forests relative to other nonparametric regression
techniques is their use of recursive partitioning on subsamples to generate these
weights αi(x). Motivated by the empirical success of regression forests across
several application areas, our approach mimics the algorithm of Breiman (2001)
as closely as possible, while tailoring our splitting scheme to focus on heterogene-
ity in the target functional θ(x).

Just like in Breiman’s forests, our search for good splits proceeds greedily, that
is, we seek splits that immediately improve the quality of the tree fit as much as
possible. Every split starts with a parent node P ⊆ X ; given a sample of data J ,
we define (θ̂P , ν̂P )(J ) as the solution to the estimating equation, as follows (we
suppress dependence on J when unambiguous):

(4) (θ̂P , ν̂P )(J ) ∈ argmin
θ,ν

{∥∥
{i∈J :Xi∈P }

ψθ,ν(Oi)
2

.

Source: Athey, Tibshirani & Wager (2019)
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https://projecteuclid.org/euclid.aos/1547197251


Much more

Today we had a very selective look at the possibilities to approximate CEFs

See, e.g. Hastie, Tibshirani & Friedman (2017) for a comprehensive and extensive
treatment

Tree-based methods like Random Forest or XGBoost are still very successful and
outperform Deep Learning on ”tabular data” like the approximation of CEFs (see
Grinsztajn et al., 2022)

The ”classic” relatively fast and easy to tune methods suffice for our purposes

⇒ No neural/deep nets required in this course

A computational expensive, but more flexible alternative is to use an ensemble,
stacked, or ”super” learner that combines predictions of different methods in a
data-driven way (see Naimi & Balzer, 2018 for a nice introduction)
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https://web.stanford.edu/~hastie/ElemStatLearn/
https://en.wikipedia.org/wiki/XGBoost
https://en.wikipedia.org/wiki/Deep_learning
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
http://dx.doi.org/10.1007/s10654-018-0390-z


Simulation notebook: Tree-based methods

Application notebook: Tree-based methods
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_Tree_based.nb.html
https://mcknaus.github.io/assets/notebooks/appl401k/ANB_401k_Tree_based.nb.html


Why causal ML is needed



Inference issues for average effect estimation

This variable selection thing seems useful for the selection of control variables,
right?

Yes! BUT not naively. There are subtleties to be aware of and to be addressed:

• Post-model-selection estimators might lead to invalid statistical inference
(Leeb & Pötscher, 2005, 2008)

• Single-equation approaches that use either an outcome or a treatment
model to select control variables are biased (Belloni, Chernozhukov &
Hansen, 2014a, 2014b)

⇒ We need estimators that constructively address these issues
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https://www.jstor.org/stable/3533623
https://doi.org/10.1016/j.jeconom.2007.05.017
https://www.aeaweb.org/articles?id=10.1257/jep.28.2.29
https://doi.org/10.1093/restud/rdt044


No ground truth for effect prediction

Wouldn’t it be great if we could predict causal effects instead of outcomes

Yes! BUT the causal effect of an individual is unobserved (fundamental problem
of causal inference)

⇒ We can not use the standard machinery to predict effects instead of outcomes
because there is no ground truth

We will consider different ways to circumvent this problem
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Simulation notebook: Why naive model selection fails
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_Naive_model_selection.nb.html
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