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I ask you for one more week of patience

Without causal inference, the outputs of causal ML methods are just numbers
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Plan for today

Crash course/recap in causal inference
1. Correlation vs. causation

2. We need a framework ... or two

3. Potential outcomes

4. Randomized Controlled Trials

5. Structural causal models

6. Single world intervention graphs

7. Outlook
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Correlation vs. causation



We are the guys on the left

What’s the deal?
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Intuition by pictures

Source 4

https://twitter.com/WhitesPhD/status/1308094245669081089


Intuition by pictures

Source 5

https://twitter.com/Benchimolium/status/1471745991246327812?t=9_9AP44aNJJcqh8YftM87g&s=03


Intuition by pictures

Source 6

https://twitter.com/odedrechavi/status/1401863182365474822?lang=en


A bit more serious looking

Source
An admittedly very naive policy conclusion from this data analysis would be to
abolish Internet Explorer to further decrease murder rates 7

https://twitter.com/NimaRoohiS/status/1314563003581452288


More for potential entertainment

My favourite clip

Spurious correlations

More birds

Plane
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https://twitter.com/bioluisinho/status/1224404802693668864
http://tylervigen.com/spurious-correlations
https://twitter.com/fnthawar/status/1447980272599945217?t=nNUCq5EgZvWuH1mPc3uEeA&s=09
https://twitter.com/JuanLuis_JG/status/1519329123058999296?t=cPplpxZ5V18yOyEB-BjqWA&s=03


Recall from first week

I told you we will focus on extending the menu of parameters and estimators

Target parameter Estimate

Data

Assumptions

Estimator

Input OutputResearch question

Target parameter Estimate

Data

Assumptions

Estimator

Input OutputResearch question

BUT, we still need to understand the assumptions that are required for credible
parameter estimates such that we can critically assess them in analyses

Only pushing buttons to produce numbers and stories around these numbers can
be dangerous
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Bad or no news for me?

Source

Fortunately, serious data analysts know that we should not build decisions on
such analyses

And so should you
10

hhttps://twitter.com/drewconway/status/1270369300692508673


We need a framework ... or two



Frameworks

There are two prominent frameworks for causal inference and a bridge between
them:

• Potential Outcomes (POs): Prevalent in economics and statistics
• Structural Causal Models (SCM) often represented as Directed Acyclic
Graphs (DAGs): Prevalent in computer science and industry

• Single World Intervention Graphs (SWIGs): A (for me) very useful bridge
between the two

In this course we focus on the (for economists currently) more familiar POs, but
also introduce basic ideas of SCMs and SWIGs along the way
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Causal inference pipeline on a high level

Regardless of the framework, three steps lead to an estimate of a causal effect:

1. Definition: Define the target parameter
2. Identification: Impose assumptions to express target parameter in terms of
observable distributions

3. Estimation: Select and apply a suitable estimator to estimate target
parameter in a sample of the observable distribution

For more nuanced pipelines, see e.g. Kate Hoffman or Peter Hull

But the general mantra is that identification always comes before estimation

This holds in general, but is important to emphasize in this course to avoid
tempting traps like ”I use a causal forest, so I am estimating a causal effect”

Be careful! We only estimate a causal effect if we credibly identified it
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https://twitter.com/kat_hoffman_/status/1577279395395342337
https://twitter.com/instrumenthull/status/1578003363869908996?t=WjGtSRyH6ocpf5fl2xs5Zg&s=03


Potential outcomes



Potential outcomes toy example (1/2)

Potential outcomes start with a thought experiment that there are different states
of the world depending on the decisions taken

For the introduction, we focus on the case of

• two individuals i = 1, 2
• having access to two pills of aspirin W ∈ {no,P1,P2}
• where we are interested in the effect of aspirin on headache (Y)

Without additional assumptions the potential outcome of individual i depends on
the treatment status of both individuals and the three possible treatment states

Yi

(
W1

W2

)
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Potential outcomes toy example (2/2)

This results in seven potential outcomes per individual

Yi

(
no
no

)
; Yi

(
no
P1

)
; Yi

(
no
P2

)
; Yi

(
P1
no

)
; Yi

(
P1
P2

)
; Yi

(
P2
no

)
; Yi

(
P2
P1

)

In total we conceive already 14 potential outcomes in this very simple example

The combinatoric explodes if we add more individuals and pills

⇒ We need more structure to make generalizable statements
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Stable Unit Treatment Value Assumption

The Stable Unit Treatment Value Assumption (SUTVA) states that the potential
outcomes do not depend

1. on the treatment status of other individuals (no interference)
2. on the particular treatment received (homogeneous treatments)

Then,

• The treatment can be collapsed into a binary indicator: W ∈ {0, 1}
• The potential outcome only depends on the treatment status of the
individual: Y(W), i.e. in our example Y1(W1) and Y2(W2)
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SUTVA is standard

We need SUTVA to be able to define the standard target parameters

⇒ It is fundamental for what we do

The literature most of the time operates under the assumption that it holds

⇒ Most of the resources you’ll find take it as given

We will do so as well from now on

However, be aware that it might be violated, e.g. if LinkedIn runs experiments to
boost private messages
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https://www.youtube.com/watch?v=OoKsLAvyIYA&ab_channel=OnlineCausalInferenceSeminar
https://www.youtube.com/watch?v=OoKsLAvyIYA&ab_channel=OnlineCausalInferenceSeminar


Potential outcomes (dream) world under SUTVA

• Binary treatment: W ∈ {0, 1}
• Potential outcome under treatment w: Y(w)
• Individual Treatment Effect (ITE): ∆ = Y(1)− Y(0)

i Yi(1) Yi(0) ∆i

1 0 1 -1
2 3 2 1
3 1 1 0
4 2 1 1
...

...
...

...

⇒ Under SUTVA, each individual has as many POs as there are treatment states
(two in our case)⇒ it buys us a relatively simple dream world

17



Target parameters

Imposing SUTVA enables us to define parameter classics as (un-)conditional
expectations of (differences) of POs

• Average potential outcome (APO): γw := E[Y(w)]
• What is the expected outcome if everybody receives treatment w?

• Average Treatment Effect (ATE): τATE := E[Y(1)− Y(0)] = γ1 − γ0

• What is the expected treatment effect in the population?
• Average Treatment Effect on the Treated (ATT): τATT := E[Y(1)− Y(0) | W = 1]

• What is the expected treatment effect in the subpopulation actually receiving
the treatment?

• Conditional Average Treatment Effect (CATE): τ(x) := E[Y(1)− Y(0) | X = x]
• What is the expected treatment effect for somebody with characteristics X = x?
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Reality check

The parameters are defined with respect to hypothetical potential outcome
distributions that exist in our imagination (or do they really exist? )

In reality, we only observe Y ⇒ no (w)⇒ no potential outcome (yet)

So, how can the observed outcomes help us to learn something about the
unobservable causal effects?

The consistency assumption links potential outcomes and observable world

Under consistency, we can write

Y = Y(W) or Y = (1−W)Y(0) +WY(1) (1)

⇒ We observe at least one potential outcome

⇒ Offers a glimpse into the dream world
19



(Hard) Reality

Only one potential outcome is observable:

Partly observed Unobserved Observed
i Yi(1) Yi(0) ∆i Wi Yi
1 0 1 -1 0 1
2 3 2 1 1 3
3 1 1 0 0 1
4 2 1 1 1 2
...

...
...

...
...

...

⇒ The counterfactual potential outcome is missing⇒ ITE is never observed⇒
”fundamental problem of causal inference” (Holland, 1986)

20

 https://www.jstor.org/stable/2289064?seq=1#metadata_info_tab_contents


Debunk (Naive) Group Comparisons

POs help us, e.g., to unpack why comparing means of two groups might not
provide a causal effect (correlation vs. causation reloaded/formal):

First see how SUTVA and consistency allow us to link observed and hypothetical
distributions

E[Y | W = 1]− E[Y | W = 0]

(1)
= E[

=0︷ ︸︸ ︷
(1−W) Y(0) +

=1︷︸︸︷
W Y(1) | W = 1]− E[

=1︷ ︸︸ ︷
(1−W) Y(0) +

=0︷︸︸︷
W Y(1) | W = 0]

= E[Y(1) | W = 1]− E[Y(0) | W = 0]
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Debunk (Naive) Group Comparisons

Without further assumptions, we can decompose the mean comparison as

E[Y | W = 1]− E[Y | W = 0]
= E[Y(1) | W = 1]− E[Y(0) | W = 0]
= E[Y(1)− Y(0)]︸ ︷︷ ︸

ATE

+ E[Y(0) | W = 1]− E[Y(0) | W = 0]︸ ︷︷ ︸
confounding bias

+ (1− E[W])(E[Y(1)− Y(0) | W = 1]− E[Y(1)− Y(0) | W = 0])︸ ︷︷ ︸
heterogeneous effect bias

where τATU := E[Y(1)− Y(0) | W = 0] is the ATe on the Untreated (ATU)
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For compactness, we switch below to µww = E[Y(w) | W = w], e.g. µ10 = E[Y(1) | W = 0]

Note that by the law of iterated expectations

ATE = E[Y(1)−Y(0)] = pE[Y(1)−Y(0) | W = 1]+(1−p)E[Y(1)−Y(0) | W = 0] = pµ11−pµ01+(1−p)µ10−(1−p)µ00
(2)

Then,

E[Y | W = 1]− E[Y | W = 0] (1)= E[(1−W)︸ ︷︷ ︸
=0

Y(0) + W︸︷︷︸
=1

Y(1) | W = 1]− E[(1−W)︸ ︷︷ ︸
=1

Y(0) + W︸︷︷︸
=0

Y(1) | W = 0]

= E[Y(1) | W = 1]− E[Y(0) | W = 0]+ATE − ATE
(2)
= ATE + µ11 − µ00 − pµ11 + pµ01+(1− p)µ01︸ ︷︷ ︸

=µ01

−(1− p)µ10 + (1− p)µ00−(1− p)µ01

= ATE + µ01 − µ00 + µ11 − pµ11︸ ︷︷ ︸
(1−p)µ11

−(1− p)µ10 + (1− p)µ00 − (1− p)µ01

= ATE + µ01 − µ00 + (1− p)[µ11 − µ01︸ ︷︷ ︸
=ATT

−µ10 + µ00︸ ︷︷ ︸
−ATU

]
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Example: Covid vaccinations

Beginning of Covid vaccination campaigns where old and vulnerable are treated
= 1, while young and healthy remained untreated = 0

E[ | = 1]− E[ | = 0]
= E[ (1)− (0)]︸ ︷︷ ︸

<0

+ E[ (0) | = 1]− E[ (0) | = 0]︸ ︷︷ ︸
>0

+ (1− E[ ])(E[ (1)− (0) | = 1]− E[ (1)− (0) | = 0])︸ ︷︷ ︸
>0

> 0 or at least > E[ (1)− (0)]

24



Randomized Controlled Trials



Randomized Controlled Trials

Whether you call it randomized controlled trial (RCT) or A/B testing, randomizing
the treatment is arguably the cleanest way to obtain causal effect estimates

Why does randomization work so well?

Randomness does not care about anything⇒ W can not be predicted

⇒ E[W | X] = E[W] for any variables X that are not affected by the treatment are
uninformative about the treatment assignment

We say W is independent of other variables
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Experiments

Most important for us, randomization of W implies that it is independent of
potential outcomes

Y(w) ⊥⊥ W for all w ∈ {0, 1} (3)

Then,

• E[Y(0) | W = 0] = E[Y(0) | W = 1] = E[Y(0)] and
• E[Y(1) | W = 0] = E[Y(1) | W = 1] = E[Y(1)]

In words: whether we condition on the factual, the counterfactual treatment, or
on nothing does not change the expected potential outcome

26



Simulation Notebook: Basics: (Conditional) independence
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_Conditional_Independence.nb.html


Identification of average effect in experiments

Under randomization of W, the mean comparison of slide 22 identifies the ATE:

E[Y | W = 1]− E[Y | W = 0] (1)= E[Y(1) | W = 1]− E[Y(0) | W = 0]
(3)
= E[Y(1)]− E[Y(0)]︸ ︷︷ ︸

=τATE

We have expressed the inherently unobservable ATE in terms of observable
quantities⇒ identification of target parameter

⇒ We need to make assumptions to remove confounding and heterogeneity bias

Remark: In an experiment τATE = τATT = τATU because (3) implies that
E[Y(1)− Y(0)] = E[Y(1)− Y(0) | W = 1] = E[Y(1)− Y(0) | W = 0]

27



Estimation of average effect

The next step after identification where we need to argue that randomization was
successful and that SUTVA holds is to estimate the target parameter

The easiest way is to apply a simple mean comparison:

τ̂ATE =
1∑
iWi

∑
i

WiYi −
1∑

i(1−Wi)

∑
i

(1−Wi)Yi

or equivalently an OLS regression of the form

Y = α+ τW + UY∼W

28



Identification of heterogeneous effects in experiments

Also conditional independence holds in a proper randomized experiment

Y(w) ⊥⊥ W | X for all W ∈ {0, 1} (4)

such that the Conditional Average Treatment Effect (CATE) is also identified

τ(x) := E[Y(1)− Y(0) | X = x] = E[Y | W = 1, X = x]− E[Y | W = 0, X = x]

Note that we condition on variables that are not affected by the treatment

This is implied by writing X and not X(w)

We will learn about estimators that target CATEs later in this course
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Structural causal models



Start with a model

As the name suggest, we start with a model that is expressed as a system of
equations

In the case of an RCT, the model reads like this:

W =fW(UW)
Y =fY(W,UY)

W is a function of random noise that is, e.g., generated by a flip

Y is a function of the treatment and unobservables that are independent of the
coin flip UY

Note that SUTVA is already encoded in this structure if we assume that W ∈ {0, 1}
(homogeneous treatment) and Y is not a function of others (no interference)

30



Graphical representation

The Directed Acyclic Graph (DAG) of an RCT looks like this

W Y

where the independent noise components are usually surpressed, but for
completeness you could draw them also explicitly

W Y

UW UY

See Hünermund & Barenboim (2023) for an introduction targeting economists

31

https://academic.oup.com/ectj/advance-article/doi/10.1093/ectj/utad008/7075871


Single world intervention graphs



A synthesis

Richardson & Robins (2013) provide a tool to find the potential outcomes that are
implied by a structural causal model (see also their primer for an introduction)

A SWIG splits the treatment node and sets the treatment to a particular value

All outgoing arrows become now potential outcomes

W w Y(w)

Most importantly we can plug in the machinery of d-separation developed for
DAGs to find the implied (conditional) independences

See identification notebook ”DAG and SWIG for RCTs” for an illustration

32

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=89bd91b714f35759968555a87da06ce773a77f2f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07bbcb458109d2663acc0d098e8913892389a2a7
https://mcknaus.github.io/assets/notebooks/ci/CI_RCT_DAG_SWIG.nb.html


I like SWIGs

A thorough introduction of SWIGs is beyond the scope of this course

However, I encourage you to have a look if you (like me) think in POs and are
confused by claims that DAGs encode the (conditional) independences we are
familiar with in the PO framework

I never saw them because DAGs do not contain POs

SWIGs make POs living in DAGs visible and allow to plug-in their powerful
machinery to find (conditional) independences with respect to POs also in
settings that are not as easy as an RCT

33



Outlook



Outlook

We will focus on two more research designs in the following:

• Conditional independence / selection-on-observables / unconfoundedness
/ exogeneity /...

• Instrumental variables

For them a bunch of causal ML are available

We will not look into difference-in-differences and regression discontinuity
designs as causal ML methods for them are still in their infancies

However, they build on the same principles that we will establish in the following

If causal inference is new for you (and even if not), I highly recommend to read
Chapters 3 & 4 of Causal Inference - The Mixtape by Scott Cunningham

You find also the slides of the Causal Inference course last semester on ILIAS 34

https://mixtape.scunning.com/


Ceterum censeo a fancy method alone is not a credible
identification strategy

⇒ separate identification and estimation
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