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Plan of this morning

How can we leverage supervised ML to adjust for confounding?

1. Helpful and familiar concepts

2. The identification strategy with many names

3. Causal inference in linear models

4. Double Selection

5. Double ML: Partially linear model
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Helpful and familiar concepts



Focus on what we want to know (1/2)

Causal ML methods force us to distinguish between two types of parameters:

1. Target parameter is motivated by the research question and defined under
modelling assumption, usually it is only one- or at least low-dimensional
(e.g. effect of policy on sth.)

2. Nuisance parameters are inputs that are required to get our hands on the
target parameter, but are not relevant for our research question

I think this is really healthy as we commit to the target parameter and are not
tempted to interpret every single coefficient in a regression output #Table2Fallacy
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Focus on what we want to know (2/2)

You know this concept from instrumental variables

We use instrumental variables if we are concerned about endogeneity with regard
to a particular variable of interest (omitted variables or reverse causality)

The parameter of this variable is our target parameter and the fitted values of the
first stage in 2SLS is the nuisance parameter

Usually nobody is interested in the fitted values of the first stage

However, we need them to consistently estimate the target parameter in the
second stage
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Rewriting stuff

You will see that Causal ML is mostly about rewriting stuff such that we are
allowed to leverage supervised ML to estimate the nuisance parameters

Importantly, the parameters of interest remain the same although the rewritten
form can look quite different to the original/familiar model

The methods usually boil down to running multiple supervised ML regressions
and combining their predictions into a final OLS regression

The crucial point is that the statistical inference in this final stage is valid if we
follow a particular recipe

⇒ You will learn how to split the estimation of causal effects into prediction tasks
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Frisch-Waugh-Theorem

This may sound familiar from the Frisch-Waugh-Theorem (FWT)

The FWT tells us that we can estimate θ in a standard linear regression
Y = Wθ + X′β + U in a three-stage procedure:

1. Run a regression of the form Y = αy + X′π + UY∼X and extract the estimated
residuals ÛY∼X

2. Run a regression of the form W = αw + X′δ + UW∼X and extract the estimated
residuals ÛW∼X

3. Run a residual-on-residual regression of the form ÛY∼X = θÛW∼X + ε

The resulting estimate θ̂ is numerically identical to the estimate we would get if
we just run the full OLS model
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Simulation Notebook: Basics: OLS and Frisch-Waugh
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https://mcknaus.github.io/assets/notebooks/appl401k/ANB_401k_OLS_Frisch_Waugh.nb.html


Panel methods

Also in panel settings it is common to transform the problem without altering the
target parameter

Fixed-effects regression
Consider a linear panel model with unobserved individual fixed-effect:

Yit = Witθ + Xitβ + αi + εit

Demeaning transformation:

Yit − Ȳi︸ ︷︷ ︸
pseudo-outcome

= (Wit − W̄i)︸ ︷︷ ︸
pseudo-treatment

θ + (Xit − X̄i)︸ ︷︷ ︸
pseudo-covariates

β + (εit − ε̄i)

⇒ The problem is transformed and boils down to running OLS with
pseudo-outcomes/-treatments/-covariates, but the θ is unaffected 6



The identification strategy with many
names



Adjusting for confounding factors

Especially in Social Science, randomization of treatments is often not possible

⇒ We need ways to work with so-called observational data

The strategy where causal ML has the most obvious benefit aims to adjust for all
confounding factors and is known under many different names:

• Backdoor adjustment
• Conditional independence assumption
• Exchangeability
• Exogeneity
• Ignorability
• Measured confounding
• No unmeasured confounding
• Selection-on-observables
• Unconfoundedness
• ... 7



Measured confounding - SCM and DAG

For now I will go with measured confounding because it is a direct and short
description of what is required

We assume the structural causal model

X =fX(UX)
W =fW(X,UW)
Y =fY(W, X,UY)

represented as the following DAG

W Y

X
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Measured confounding - SWIG

The SWIG that produces potential outcomes looks like this

W w Y(w)

X

and implies

Identifying Assumption 1 (measured confounding)

Y(w) ⊥⊥ W | X for all w ∈ W ⊂ R (1)

where we allow in this slide deck that the treatment is continuous

See identification notebook ”DAG and SWIG for measured confounding” for an R
assisted derivation 9

https://mcknaus.github.io/assets/notebooks/ci/CI_MC_DAG_SWIG.nb.html


Measured confounding - confounder selection

Credible identification demands to define the set of variables that make
assumption (1) credible to hold

This requires good knowledge about the treatment assignment mechanism and
can be guided by the machinery developed around DAGs

In particular, they provide a principled framework to disentangle good and bad
controls (see, e.g. Cinelly, Forley and Pearl, 2022, for a crash course)

However, our focus is on estimation

This means we start after we obtained a set of variables X that allow credible
identification and innovate in the estimation part
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Causal inference in linear models



Starting with linear model

Probably the first contact you had with such settings is within linear models that
are estimated via OLS⇒ we also start there

To identify effects in a linear model, we impose a functional form assumption

Modelling Assumption 1 (Linear potential outcomes)
Potential outcomes are linear functions of confounding variables X:

Y(w) = τw + X′β + UY(w); E[UY(w) | X] = 0; ∀ w ∈ W

⇒ The CEF of the potential outcome is E[Y(w) | X] = τw + X′β
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Parameters

This model implies relatively boring effects of a one-unit increase in W:

ITE = Y(w + 1)− Y(w) = τ(w + 1) + X′β + UY(w+1) − τw − X′β − UY(w)
= τ + UY(w+1) − UY(w)

CATE(X) = E[τ + UY(w+1) − UY(w) | X] = τ + E[UY(w+1) | X]− E[UY(w) | X]
MA1
= τ

ATE = E[E[τ | X]] = τ

⇒ MA1 implies constant CATEs⇒ constant average effects

⇒ We assume effect homogeneity

⇒ τ is our target parameter (definition ), but not yet identified
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Identification under linear model (1/2)

IA1 implies that E[Y(w) | X] = E[Y(w) | W, X], i.e. that the potential outcome is
conditionally mean independent of the treatment

Plugging in MA1 we observe that

τw + X′β + E[UY(w) | X] = τw + X′β + E[UY(w) | W, X]

⇒ IA1 in combination with MA1 implies

E[UY(w) | X] = E[UY(w) | W, X] = 0 (2)
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Identification under linear model (2/2)

Under consistency, the observed outcome is

Y = Y(W) = τW + X′β + UY(W)

The CEF of the observed outcome is therefore

E[Y | W, X] = τW + X′β + E[UY(W) | W, X]
(2)
= τW + X′β

⇒ The unknown parameters τ, β can be obtained as solution of a least squares
problem using only observable variables:

(τ, β) = argmin
τ̆ ,β̆

E[(Y − τ̆W − X′β̆)2] (3)

⇒ The effect τ is a function of observable variables⇒ identified
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Bonus: Potential confusions

I always got confused by unobservables, error terms and residuals in linear models and
OLS because they often receive the same letter to discuss identification and estimation

Note that writing an outcome model like Y = θW + X′β + ε; E[ε | W, X] = 0 only implies
that the CEF is linear and does not guarantee that θ coincides with the causal parameter τ

It does not rule out, e.g., that E[UY(W) | W, X] = βuW such that CEF of observed outcome
could indeed be linear but would ”identify” a non-causal parameter even under MA1:

E[Y(W) | W, X] Cons.= E[Y | W, X] MA1= τW + X′β + E[UY(W) | W, X]
= τW + X′β + βuW = (τ + βu)︸ ︷︷ ︸

=θ

W + X′β

βu 6= 0 means that W correlates with unobserved factors⇒ omitted variable bias

This is not ruled out by simply writing E[ε | W, X] = 0 on the observed outcome level⇒
We need to assume conditional independence on the potential outcomes level

See this little note for further discussion
15
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Double Selection



From identification to estimation via OLS

The identification result motivates the estimation via OLS as the sample analog of
population problem (3):

(
τ̂ , β̂

)
= argmin

τ̆ ,β̆

1
N

N∑
i=1

(
Yi − τ̆Wi − X′i β̆

)2
(4)

⇒ τ̂ is our estimated homogeneous treatment effect...

... but wait ...

we have committed ourselves to a set of variables that make IA1 plausible to hold,
but how exactly should they enter the estimation process?

16



Challenge: model selection

A classic: Age
Often we want to adjust for age. But then it begins, ”should it enter linearly, with
a quadratic term, or even a cubic, ..., or WAIT, maybe we should discretize age
and include it as categorical variables, hmm, but should we use then age groups
of 4 or 5 years, ..., and should we interact them with the female dummy, ...”

These are painful decisions

The final model is then often the result of a more or less principled process
based on t-tests, F-tests, (adjusted) R2 or other magic tools

Remark: We do not even need high-dimensional controls to run into these issues,
one continuous variable suffices
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The journey begins

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning

18



Double Selection: Procedure

Belloni et al. (2014) propose the Double Selection procedure:

1. Assume approximate sparsity (discussed below)
2. Select variables that predict outcome via Post-Lasso (w/o treatment variable)
3. Select variables that predict treatment via Post-Lasso
4. Use union of selected variables w/ treatment variable in OLS

This procedure constructively addresses the impossibility results of valid
inference after model selection if we are committed to a target parameter
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Double Selection: motivation

Why is Double Selection necessary and single selection problematic?

We can use our well trained understanding of Omitted Variable Bias (OVB)

OVB occurs if

(i) the OV has a non-zero coefficient in the outcome model
AND

(ii) the OV is correlated with the treatment variable W

Variable selection based on outcome model does not incorporate (ii) because it
cares about prediction MSE and is not aware that we care about unbiasedness of
one particular parameter

⇒ Variables with relatively small coefficient in the outcome model might be
ignored although they are highly predictive for the treatment⇒ OVB
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A taxonomy of (potential) control variables

Consider the two regression equations underlying Double Selection:

Y = αy + πX + UY∼X (5)
W = αw + δX + UW∼X (6)

To make the point without unnecessary notation assume that X is standardized

Then, we can categorize the variables in X according to their coefficients:

π

Zero Small Large

δ

Zero Irrelevant Irrelevant Irrelevant
Small Irrelevant Greyzone Important
Large Irrelevant Important Essential

Single selection with outcome equation could miss the small π, large δ group 21



Derivation of Y model

Y = τW + βX + UY∼W+X = τ(αw + δX + UW∼X) + βX + UY∼W+X

= ταw︸︷︷︸
αy

+(β + τδ)︸ ︷︷ ︸
=π

X + τUW∼X + UY∼W+X︸ ︷︷ ︸
=UY∼X

= αy + πX + UY∼X
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Approximate sparsity

Approximate sparsity
The number of controls with non-zero coefficients in (5) and (6) is small relative
to the sample size (for technical definition, see Sec 2.1 of Belloni et al., 2014).

Resembles practice to specify relatively sparse models

But allows to remain agnostic about the model and to ”let the data speak”

Most importantly standard robust OLS standard errors are valid even after model
selection

For me this is such a large benefit at basically no costs (fast implementation hdm)
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Discussion Double Selection

Advantages:
• Easy to implement, statistically valid and transparent way of model selection
• Easy to explain to an OLS focused audience
• Works for binary and continuous treatments

Disadvantages:
• We still have to commit to a set of potential controls
⇒ which transformations of age reloaded

• Effect homogeneity often implausible
• Requires a linear potential outcome model and rules out non-linearities
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Simulation notebook: Double selection

Application notebook: Double Selection and Partially Linear
Double ML (part 1)

24
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Double ML: Partially linear model



The journey continues

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning

25



Relaxing the modelling assumption

The partially linear model relaxes the linearity assumption

Modelling Assumption 2 (Partially linear potential outcomes)
Potential outcomes are a partially linear function of confounding variables X:

Y(w) = τw + g(X) + UY(w); E[UY(w) | X] = 0; ∀ w ∈ W

⇒ The CEF of the potential outcome is E[Y(w) | X] = τw + g(X)
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Parameters

Same as in the linear model but allowing for more flexible underlying POs

ITE = Y(w + 1)− Y(w) = τ(w + 1) + g(X) + UY(w+1) − τw − g(X)− UY(w)
= τ + UY(w+1) − UY(w)

CATE(X) = E[τ + UY(w+1) − UY(w) | X] = τ + E[UY(w+1) | X]− E[UY(w) | X]
MA2
= τ

ATE = E[E[τ | X]] = τ

⇒ MA2 implies constant CATEs⇒ constant average effects

⇒ We assume effect homogeneity

⇒ τ is our target parameter (definition )

27



Identification under partial linearity (1/2)

Similar to the linear model the combination of IA1 and MA2 ensures that

E[Y | W, X] = τW + g(X) + E[UY(W) | W, X] = τW + g(X)

and the observed outcome is

Y = τW + g(X) + UY(W) (7)
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Identification under partial linearity (2/2)

Following Robinson (1988), we can rewrite (7) as

Y −

m(X)︷ ︸︸ ︷
E[Y | X]︸ ︷︷ ︸

outcome residual

= τ (W −

e(X)︷ ︸︸ ︷
E[W | X])︸ ︷︷ ︸

treatment residual

+UY(W) (8)

⇒ τ is identified by a residual-on-residual regression w/o constant:

τ = argmin
τ̆

E[( Y −m(X)︸ ︷︷ ︸
pseudo-outcome

−τ̆ (W − e(X))︸ ︷︷ ︸
single regressor

)2] =
Cov[W − e(X), Y −m(X)]

Var[W − e(X)]
(9)

You can think of this as a generalization of Frisch-Waugh
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Derivation of residualized representation

Note that the CEF of the outcome given X is

m(X) := E[Y | X] = E[τW + g(X) + UY(W) | X]
= τe(X) + g(X) + E[UY(W) | X]︸ ︷︷ ︸

MA2
=0

= τe(X) + g(X) (10)

Then, rewrite (7) as

Y = τW + g(X) + UY(W) | −m(X)
Y −m(X) = τW + g(X) + UY(W) − (τe(X) + g(X))
Y −m(X) = τ(W − e(X)) + UY(W)
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Identification in partially linear model

Suppressing dependencies of functions on X and using results from the previous slide, we can show

Cov[W − e, Y −m]

Var[W − e]
(7),(10)
=

Cov[W − e, τW + �g+ UY(W) − τe− �g]
Var[W − e]

=
Cov[W − e, τ(W − e) + UY(W)]

Var[W − e]

= τ(((((((Cov[W − e,W − e]

�����Var[W − e]
+
Cov[W − e,UY(W)]

Var[W − e]

= τ +
Cov[W,UY(W)]

Var[W − e]
−
Cov[e,UY(W)]

Var[W − e]
IA1
= τ

b/c Cov[W,UY(W)] = E[WUY(W)]− E[W]E[UY(W)]︸ ︷︷ ︸
=0

LIE
= E[E[WUY(W) | W, X]] = E[W E[UY(W) | W, X]︸ ︷︷ ︸

IA1
=0

] = 0, same for

Cov[e,UY(W)] = 0
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From identification to estimation via Double ML

The identification result (9) would motivate the following estimator:

τ̂oracle = argmin
τ̆

1
N

N∑
i=1

(
Yi −m(Xi)− τ̆(Wi − e(Xi))

)2 (11)

where m(X) := E[Y | X] and e(X) := E[W | X] are outcome and treatment CEFs, the
so-called nuisance parameters

BUT we usually do not know the outcome CEF and the treatment CEF

⇒ (11) is not feasible

⇒ We need to approximate m(X) and e(X)

⇒ The ML toolbox might be helpful
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Double ML for partially linear model: procedure

Chernozhukov et al. (2018) propose a three step procedure:

1. Form prediction model for the treatment: ê(X)
2. Form prediction model for the outcome: m̂(X)
3. Run feasible residual-on-residual regression:

τ̂ = argmin
τ̆

1
N

N∑
i=1

(
Yi − m̂(Xi)− τ̆(Wi − ê(Xi))

)2 (12)

⇒ τ̂ is our estimated homogeneous treatment effect⇒ Estimation

But there is a catch, right?
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Double ML for partially linear model: conditions

Nothing too serious, but the predictions of nuisance parameters ê(X) and m̂(X)
have to fulfill two conditions:

1. High-quality: Predictors must be consistent and have convergence rates of
faster than N1/4

2. Out-of-sample: Predictions of individual observation formed without the
observation itself

Standard (robust) OLS inference for (12) is valid under these conditions
(Chernozhukov et al. (2018), Theorem 4.1)

But what do these conditions mean?

34

https://doi.org/10.1111/ectj.12097


High-quality predictions (1/2)

Consistency:

The ML methods converge to the true CEFs as N→ ∞

Convergence rate: (check R Notebook ”Convergence rates” as a refresher)

Parametric models like OLS converge at the rate N1/2 if the model of the CEF is
correct

Their RMSE
(
E
[√

(m̂(X)−m(X))2
])

is expected to halve if we increase sample
size by factor four

ML methods usually do not converge as quickly because they can not leverage
the structural information of a parametric model

For Double ML to work, it suffices that the RMSE more than halves if we increase
sample size by factor 16 (N1/4 convergence)
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High-quality predictions (2/2)

Several popular ML methods can achieve the required convergence rates, e.g.:

• (Post-)Lasso (Belloni & Chernozukov, 2013)
• Random Forests (Wager & Walther, 2015; Syrgkanis & Zampetakis, 2020)
• Neural Networks (Farrell et al., 2021)

Each method requires different assumptions (mostly some form of sparsity),
which (at least so far) can not be tested

⇒ Some structure needed, but less structure than imposed by parametric models
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Cross-fitting

The second condition is easily satisfied by using K-fold cross-fitting

Example 2-fold cross-fitting:

• Randomly split the sample in two parts S1 and S2

• Learn prediction models m̂1(x) and ê1(x) in S1 and predict in S2

• Learn prediction models m̂2(x) and ê2(x) in S2 and predict in S1

• Use the cross-fitted predictions in residual-on-residual regression (12)

This ensures that the nuisance parameters induce no bias by overfitting
(Chernozhukov et al. (2018), Section 1.1)

and that we waste no information
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Why does it work?

The residual-on-residual regression has a so-called Neyman-orthogonal score

The score defines the solution of the minimization problem (12) (derivation wrt τ ):

1
N

N∑
i=1

(
Yi − m̂(Xi)− τ̂(Wi − ê(Xi))

)
(Wi − ê(Xi))︸ ︷︷ ︸

ψ(Yi,Wi,τ̂ ,m̂(Xi),ê(Xi))

= 0 (13)

⇒ τ̂ =
1
N
∑N

i=1(Yi − m̂(Xi))(Wi − ê(Xi))
1
N
∑N

i=1(Wi − ê(Xi))2
(14)

Neyman-orthogonality of score ψ(Y,W, τ,m(X), e(X)) ensures that the estimated τ̂
is immunized against small errors in the estimation of nuisance parameters

Remark: Using (7) directly would not be Neyman-orthogonal
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Neyman-orthogonality of residual-on-residual regression

Neyman-orthogonality means that the Gateaux derivative with respect to the
nuisance parameters is zero in expectation at the true nuisance parameters (NP)

∂r E[ψ(...,m+ r(m̃−m), e+ r(ẽ− e))]|r=0 = 0 (15)

where we suppress the dependence of NP on X and denote by, e.g., m̃ a value of
the outcome nuisance that is different from the true value m

This looks very scary, but we only need to know how to setup the problem and
then take standard derivatives (you passed Microeconomics, right)

For simplictly, we get rid of the brackets and write the score with true target and
nuisance parameters as

ψ(Y,W, τ,m(X), e(X)) =
(
Y −m− θ(W − e)

)
(W − e)
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First, add perturbations to the true nuisance parameters in the score

ψ(...,m+ r(m̃−m), e+ r(ẽ− e))
=

(
Y − [m+ r(m̃−m)]− θ(W − [e+ r(ẽ− e)]

)
(W − [e+ r(ẽ− e)])

= (Y − [m+ r(m̃−m)])(W − [e+ r(ẽ− e)])− θ(W − [e+ r(ẽ− e)])2

Second, take the derivative wrt r (we can interchange differentiation and expectation due
to the Leibniz integral rule)

∂rψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))
= ∂r

[
(Y − [m+ r(m̃−m)])(W − [e+ r(ẽ− e)])− θ(W − [e+ r(ẽ− e)])2

]
= ∂r

[
YW − Y[e+ r(ẽ− e)]− [m+ r(m̃−m)]W + [m+ r(m̃−m)][e+ r(ẽ− e)]
− θ(W − [e+ r(ẽ− e)])2

]
= ∂r

[
YW − Y[e+ r(ẽ− e)]− [m+ r(m̃−m)]W +me+mr(ẽ− e) + r(m̃−m)e
+ r2(m̃−m)(ẽ− e)− θ(W − [e+ r(ẽ− e)])2

]
= −Y(ẽ− e)− (m̃−m)W +m(ẽ− e) + (m̃−m)e+ 2r(m̃−m)(ẽ− e)

− 2θ(W − [e+ r(ẽ− e)])(ẽ− e) 40
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Third, evaluate at r = 0

∂rψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))|r=0
= −Y(ẽ− e)− (m̃−m)W +m(ẽ− e) + (m̃−m)e+ 2 · 0(m̃−m)(ẽ− e)
− 2θ(W − [e+ 0(ẽ− e)])(ẽ− e)

= −Y(ẽ− e)− (m̃−m)W +m(ẽ− e) + (m̃−m)e− 2θ(W − e)(ẽ− e)

Fourth, take expectation

∂r E[ψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))]|r=0
= E [−Y(ẽ− e)− (m̃−m)W +m(ẽ− e) + (m̃−m)e− 2θ(W − e)(ẽ− e)]
LIE
= E [E [−Y(ẽ− e)− (m̃−m)W +m(ẽ− e) + (m̃−m)e− 2θ(W − e)(ẽ− e)|X]]
= E[�����−m(ẽ− e)−�����(m̃−m)e+�����m(ẽ− e) +�����(m̃−m)e− 2θ (e− e)︸ ︷︷ ︸

=0

(ẽ− e)] = 0

⇒ The Gateaux derivative wrt to NP is zero⇒ Neyman-orthogonal score
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Discussion partially linear Double ML

Advantages:
• Goes beyond linear models
• Allows to plug-in the supervised ML toolbox for nuisance parameter
estimation

• Works for binary and continuous treatments

Disadvantages:
• Effect homogeneity often implausible
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Simulation notebook: Partially linear Double ML

Application notebook: Double Selection and Partially Linear
Double ML (part 2)
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Next week

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning
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Ceterum censeo a fancy method alone is not a credible
identification strategy

⇒ separate identification and estimation
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