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Current state of affairs

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning
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Plan of this morning

Can we allow for heterogeneous treatment effects?

1. Nonparametric identification

2. Augmented IPW

3. Consolidation
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Nonparametric identification



Beyond effect homogeneity

So far, we assumed that potential outcomes are (partially) linear⇒ effect
heterogeneity restricted to a minimum

This resulted in relatively easy recipes for binary and continuous treatments

This is convenient

However, assuming homogeneous effects is not innocent:

• We might estimate effects for a strange/unintuitive target population if there
is actually effect heterogeneity (e.g. Słoczyński, 2022)

• We might miss that we have no comparable units in treated and control
group and heavily rely on extrapolation

Let’s see how we can relax effect homogeneity for a binary treatment
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https://doi.org/10.1162/rest_a_00953


Recall target parameters

Besides SUTVA, we impose no modelling assumptions

Average target parameters:

• Average potential outcome (APO): γw := E[Y(w)]
• What is the expected outcome if everybody receives treatment w?

• Average Treatment Effect (ATE): τATE := E[Y(1)− Y(0)] = γ1 − γ0

• What is the expected treatment effect in the population?

Definition
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Nonparametric identification (1/4)

Identifying Assumption 2 (Strong Ignorability)
(a) Y(w) ⊥⊥ W | X for all W ∈ {0, 1}

(b) 0 < P[W = 1 | X = x] := e(x) < 1

IA2a is identical to measured confounding (IA1) of last week but here we focus on
binary treatments

IA2b is called common support/overlap/positivity assumption

It is required b/c we do not impose an outcome model that allows to extrapolate
the counterfactual into regions where everybody receives the same treatment

This set of assumptions allows for arbitrary effect heterogeneity
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Non-parametric identification (2/4)

Note that the target parameters are just different aggregations of the Conditional
Average Potential Outcome (CAPO) E[Y(w) | X]:

• γ0 := E[Y(0)] LIE= E[E[Y(0) | X]]
• γ1 := E[Y(1)] LIE= E[E[Y(1) | X]]
• τATE := E[Y(1)− Y(0)] LIE= E[E[Y(1) | X]− E[Y(0) | X]]

⇒ It suffices to show that the CAPO is identified
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Non-parametric identification (3/4)

Three common ways to identify the CAPO under IA2:

E[Y(w) | X = x] = E [Y | W = w, X = x] =: m(w, x) (1)

= E
[
1[W = w]Y
ew(x)

∣∣∣∣X = x
]

(2)

= E
[
m(w, x) + 1[W = w](Y −m(w, x))

ew(x)

∣∣∣∣ X = x
]

(3)

where ew(x) := P[W = w | X = x]

(1) motivates estimation via regression adjustment, (2) motivates inverse
probability weighting (IPW), and (3) motivates the doubly robust/augmented IPW
(AIPW) estimator
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Non-parametric identification (4/4)

From an identification perspective, we can plug-in any of the identified estimands

For example:

γw := E [Y(w)] LIE= E [E[Y(w) | X]] = E [m(w, X)]

= E
[
E
[
1[W = w]Y
ew(X)

∣∣∣∣X]]
= E

[
E
[
m(w, X) + 1[W = w](Y −m(w, X))

ew(X)

∣∣∣∣ X]]

⇒ identification
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Identification of Conditional Average Potential Outcomes - RA

Show for (1)

E[Y(w) | X = x] IA2= E[Y(w) | W = w, X = x]
Consistency

= E[Y | W = w, X = x]

Remark: Note that the common support condition A3b is required, although it
might not be obvious. It ensures that we do not condition on an event with zero
probability density.
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https://en.wikipedia.org/wiki/Conditional_probability#Conditioning_on_an_event_of_probability_zero
https://en.wikipedia.org/wiki/Conditional_probability#Conditioning_on_an_event_of_probability_zero


Identification of Conditional Average Potential Outcomes - IPW

Show for (2) by continuing and defining D(w) := 1[W = w] for compactness

E[Y(w) | X = x] = E[Y | W = w, X = x]

= E[D(w)︸ ︷︷ ︸
=1

Y | W = w, X = x]

= E
[
D(w)Y ew(x)ew(x)

∣∣∣∣W = w, X = x
]
+ (1− ew(x))E[

=0︷ ︸︸ ︷
D(w) Y | W 6= w, X = x]︸ ︷︷ ︸

=0

/ew(x)

=

LIE
=E[D(w)Y|X=x]︷ ︸︸ ︷

ew(x)E [D(w)Y|W = w, X = x] + (1− ew(x))E[D(w)Y | W 6= w, X = x]
ew(x)

=
E [D(w)Y | X = x]

ew(x)
= E

[
D(w)Y
ew(x)

∣∣∣∣X = x
]
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Identification of Conditional Average Potential Outcomes - IPW (Bonus)

A more compact derivation of IPW is to note that

E[D(w)Y | X = x] LIE= ew(x)E[

=1︷ ︸︸ ︷
D(w) Y | W = w, X = x] +(((((((((((((((

(1− ew(x))E[

=0︷ ︸︸ ︷
D(w) Y | W 6= w, X = x]

= ew(x)E[Y | W = w, X = x]

= ew(x)E[Y(w) | W = w, X = x] (SUTVA-C)
IA2a
= ew(x)E[Y(w) | X = x] | ÷ew(x)

E
[
D(w)Y
ew(x)

∣∣∣∣X = x
]
IA2b
= E[Y(w) | X = x]

SUTVA-C imposes SUTVA and consistency at the same step

11



Identification of Conditional Average Potential Outcomes - AIPW (1/2)

Define D(w) := 1[W = w] for compactness and show for (3)

E[Y(w) | X = x] = E
[
m(w, x) + D(w)(Y −m(w, x))

ew(x)

∣∣∣∣X = x
]

= E
[
Y(w)− Y(w) +m(w, x) + D(w)(Y −m(w, x))

ew(x)

∣∣∣∣X = x
]

SUTVA-C
= E

[
Y(w)− Y(w) +m(w, x) + D(w)(Y(w)−m(w, x))

ew(x)

∣∣∣∣X = x
]

= E [Y(w) | X = x] + E
[
(Y(w)−m(w, x))

(
D(w)− ew(x)

ew(x)

)∣∣∣∣X = x
]

︸ ︷︷ ︸
needs to be 0

(4)

Remark: Note that the common support condition IA2b is required for m(w, x) to be defined and to
not divide by zero as it ensures ew(x) > 0
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Identification of Conditional Average Potential Outcomes - AIPW (2/2)

Show that the second part of (4) is zero

E
[
(Y(w)−m(w, x))

(
D(w)− ew(x)

ew(x)

)∣∣∣∣X = x
]

IA2a
= E [(Y(w)−m(w, x))|X = x] E

[(
D(w)− ew(x)

ew(x)

)∣∣∣∣X = x
]

= (E [Y(w) | X = x]−m(w, x))
(
E [D(w) | X = x]− ew(x)

ew(x)

)
IA2,SUTVA-C

= (E [Y | W = w, X = x]−m(w, x))
(
E [D(w) | X = x]− ew(x)

ew(x)

)
= (m(w, x)−m(w, x))︸ ︷︷ ︸

=0

(
ew(x)− ew(x)

ew(x)

)
︸ ︷︷ ︸

=0

= 0

Remark: Note that only one of the nuisance parameters needs to be correct⇒ doubly robust
identification
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Augmented IPW



From identification to estimation

The identification results suggest the following estimators for APO:

Eq. (1): γ̂RAw =
1
N
∑
i

m̂(w, Xi) (5)

Eq. (2): γ̂IPWw =
1
N
∑
i

1[Wi = w]Yi
êw(Xi)

(6)

Eq. (3): γ̂AIPWw =
1
N
∑
i

(
m̂(w, Xi) +

1[Wi = w](Yi − m̂(w, Xi))
êw(Xi)

)
(7)

where we estimated the nuisance parameters m̂(w, x) and êw(x) in a first step
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Only one strategy works with ML

Estimators using parametrically estimated nuisance parameters are common and
work for all three strategies

BUT model selection problem remains

⇒ Supervised ML could be helpful again

However, estimators based on only one nuisance parameter inherit the slow
convergence rates of the ML method⇒ bias⇒ no valid inference

Chernozhukov et al. (2018) show that the estimator in (7) is consistent,
asymptotically normal and semiparametrically efficient if nuisance parameters
are high-quality and cross-fitted predictions (like last week)
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https://doi.org/10.1111/ectj.12097


AIPW Double ML: procedure

AIPW Double ML proceeds as follows:

1. Form cross-fitted predictions of m̂(w, X) and êw(X) using ML methods
2. Create a pseudo-outcome

Ỹγw = m̂(w, X)︸ ︷︷ ︸
outcome prediction

+
1[W = w](Y − m̂(w, X))

êw(X)︸ ︷︷ ︸
weighted residual

(8)

3. Estimate APO as mean of the pseudo-outcome γ̂AIPWw = 1
N
∑

i Ỹi,γw
4. Run t-test on the mean for hypothesis testing (no adjustments needed)

This is known as the Doubly Robust or Augmented Inverse Probability Weighting
(AIPW) estimator (I prefer AIPW b/c there are more doubly robust estimators than
there are more AIPW estimators, but never mind...)
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Why does it work?

The ”magic” feature is again that the underlying score

1
N

N∑
i=1

(
m̂(w, Xi) +

1[Wi = w](Yi − m̂(w, Xi))
êw(Xi)

− γ̂AIPWw

)
︸ ︷︷ ︸

ψ(Yi,Wi,m̂(w,Xi),êw(Xi))

= 0 (9)

⇒ γ̂AIPWw =
1
N

N∑
i=1

(
m̂(w, Xi) +

1[Wi = w](Yi − m̂(w, Xi))
êw(Xi)

)
(10)

is Neyman-orthogonal, i.e. small errors in the estimation of nuisance parameters
do not distort estimation of target parameter

Estimators based on regression adjustment or IPW only are not
Neyman-orthogonal
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Neyman-orthogonality of AIPW (1/5)

Neyman-orthogonality means that the Gateaux derivative with respect to the
nuisance parameters is zero in expectation at the true nuisance parameters (NP):

∂r E[ψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))]|r=0 = 0 (11)

where we suppress the dependencies of NPs and denote by, e.g., m̃ any other
value of the outcome nuisance than the true value m

This looks scary, but we just need to know how to setup the problem and take
standard derivatives (quotient rule)

For simplictly, we get rid of the brackets and the underscore to write the score
with true target and nuisance parameters as

ψ(Y,W, τ,m(w, X), e(X)) = m+
1[W = w]Y

e
− 1[Wi = w]m

e
− γw
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Neyman-orthogonality of AIPW (2/5)

Again we use D(w) := 1[W = w] for brevity

First, add perturbations to the true nuisance parameters in the score

ψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))

= (m+ r(m̃−m)) +
D(w)Y

e+ r(ẽ− e)
− D(w)(m+ r(m̃−m))

e+ r(ẽ− e)
− γw

= (m+ r(m̃−m))︸ ︷︷ ︸
(i)

+
D(w)Y

e+ r(ẽ− e)︸ ︷︷ ︸
(ii)

− D(w)m
e+ r(ẽ− e)︸ ︷︷ ︸

(iii)

− D(w)r(m̃−m)

e+ r(ẽ− e)︸ ︷︷ ︸
(iv)

−γw

Note that with r = 0, we are back to the original score

With r 6= 0 the nuisance parameters are distorted

Next, take the derivative wrt r
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Neyman-orthogonality of AIPW (3/5)

Second, take the derivative wrt r

∂rψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))

= (m̃−m)︸ ︷︷ ︸
∂r(i)

− D(w)Y(ẽ− e)
(e+ r(ẽ− e))2︸ ︷︷ ︸

∂r(ii)

+
D(w)m(ẽ− e)
(e+ r(ẽ− e))2︸ ︷︷ ︸

∂r(iii)

− D(w)(m̃−m)(e+ r(ẽ− e))− D(w)r(m̃−m)(ẽ− e)
(e+ r(ẽ− e))2︸ ︷︷ ︸

∂r(iv)
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Neyman-orthogonality of AIPW (4/5)

Third, evaluate at r = 0

∂rψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))|r=0

= (m̃−m)− D(w)Y(ẽ− e)
(e+ 0(ẽ− e))2

+
D(w)m(ẽ− e)
(e+ 0(ẽ− e))2

− D(w)(m̃−m)(e+ 0(ẽ− e))− D(w)0(m̃−m)(ẽ− e)
(e+ 0(ẽ− e))2

= (m̃−m)− D(w)Y(ẽ− e)
e2

+
D(w)m(ẽ− e)

e2
− D(w)(m̃−m)e

e2
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Neyman-orthogonality of AIPW (5/5)

Fourth, take expectation

∂r E[ψ(. . . ,m+ r(m̃−m), e+ r(ẽ− e))]|r=0

= E
[
(m̃−m)− D(w)Y(ẽ− e)

e2
+
D(w)m(ẽ− e)

e2
− D(w)(m̃−m)e

e2

]
LIE
= E

[
E
[
(m̃−m)− D(w)Y(ẽ− e)

e2
+
D(w)m(ẽ− e)

e2
− D(w)(m̃−m)e

e2

∣∣∣∣X]]
= E

[
(m̃−m)− em(ẽ− e)

e2
+
em(ẽ− e)

e2
− e(m̃−m)e

e2

]
= 0

because

E[D(w)Y | X] LIE= P[D(w) = 0 | X]E[0Y | W 6= w, X] + P[D(w) = 1 | X]E[1Y | W = w, X]
= P[D(w) = 1 | X]E[Y | W = w, X] = em

⇒ The Gateaux derivative wrt NP is zero⇒ Neyman-orthogonal score 22



Average treatment effect (1/2)

Following the same logic we can estimate the ATE as follows:

1. Form cross-fitted predictions of m̂(1, X), m̂(0, X) and ê(X) using ML methods
2. Create a pseudo-outcome

ỸATE = Ỹγ1 − Ỹγ0 (12)

= m̂(1, X)− m̂(0, X)︸ ︷︷ ︸
outcome predictions

+
W(Y − m̂(1, X))

ê(X)
− (1−W)(Y − m̂(0, X))

1− ê(X)︸ ︷︷ ︸
weighted residuals

where we use that 1[W = 1] = W, 1[W = 0] = 1−W, e1(X) = e(X),
e0(X) = 1− e(X)

3. Estimate ATE as mean of the pseudo-outcome τ̂AIPWATE = 1
N
∑

i Ỹi,ATE
4. Run t-test on the mean for hypothesis testing (no adjustments needed)
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Average treatment effect (2/2)

As pseudo-outcome (12) is just the difference of the APO pseudo outcomes it
inherits the Neyman-orthogonality

⇒ τ̂AIPWATE is consistent, asymptotically normal and semiparametrically efficient
when nuisance parameters are high-quality and cross-fitted predictions

Estimation
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Discussion AIPW Double ML

Advantages:
• No need to impose effect homogeneity⇒ differentiate between ATE and ATT
(next lecture)

• Extends naturally to multiple treatments
• Basis for other estimators (see soon)

Disadvantages:
• Looks scary and complicated
• Sensitive to small propensity scores (no/weak overlap)
• Extensions for continuous treatments not trivial (Colangelo & Lee, 2019;
Semenova & Chernozhukov, 2021)
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 https://arxiv.org/abs/2004.03036
 https://doi.org/10.1093/ectj/utaa027


Simulation notebook: AIPW Double ML (ATE)

Application notebook: Double ML for average treatment
effects
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_AIPW_DML.nb.html
https://mcknaus.github.io/assets/notebooks/appl401k/ANB_401k_AIPW_DML.nb.html
https://mcknaus.github.io/assets/notebooks/appl401k/ANB_401k_AIPW_DML.nb.html


Consolidation



Average effects unlocked

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning
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Main take-away

Estimation of average treatment effects can be split into multiple prediction
problems

Combining them in the right way allows to use familiar inference procedures

⇒ We can leverage the powerful supervised ML toolbox

⇒ Moves the academic task from hand crafted regression models to the
specification of suitable prediction methods

⇒ In the best case this increases
• quality and statistical validity of the estimates
• transparency
• time for researchers to do something more interesting

The recipe of Double ML can be generalized⇒ next week
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Ceterum censeo a fancy method alone is not a credible
identification strategy

⇒ separate identification and estimation
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