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Current state of affairs

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning

Double ML is a generic recipe and can be used for other target
parameters/research designs 1



Plan of this morning

Understand the generic recipe of Double ML

1. The Double ML recipe

2. Average treatment effect on the treated

3. Instrumental variables

4. Standard errors with influence functions

5. More Double ML
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The Double ML recipe



Some definitions

Let

• O be a collection of observable variables, e.g. O = (W, X, Y)
• θ be the target parameter
• η be the collection of nuisance parameters, e.g. η = (m(X), e(X))

Double ML uses score functions ψ(O; θ̃, η̃) that satisfy

1.
moment condition︷ ︸︸ ︷

E[ψ(O; θ, η)] = 0, i.e. with expectation zero if evaluated at true parameters
2. ∂r E[ψ(O; θ, η + r(η̃ − η))]|r=0 = 0, i.e. Neyman-orthogonality
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Examples

Recall that the moment condition of the residual-on-residual regression with
m(X) := E[Y | X] and e(X) := E[W | X] reads:

E
[(
Y −m(X)− τ(W − e(X))

)
(W − e(X))

]
= 0

⇒ O = (W, X, Y), θ = τ, η = (m(X), e(X))

AIPW for ATE moment condition with m(w, X) := E[Y | W = w, X]:

E
[
m(1, X)−m(0, X) + W(Y −m(1, X))

e(X)
− (1−W)(Y −m(0, X))

1− e(X)
− τATE

]
= 0

⇒ O = (W, X, Y), θ = τATE, η = (m(1, X),m(0, X), e(X))
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Linear score functions

We will focus on linear score functions that can be represented as

ψ(O; θ̃, η̃) = θ̃ψa(O; η̃) + ψb(O; η̃)

such that the moment condition can be written as

E[ψ(O; θ, η)] = θE[ψa(O; η)] + E[ψb(O; η)] = 0

and the solution is

θ = −E[ψb(O; η)]
E[ψa(O; η)]
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Example residual-on-residual regression

Moment condition:

E
[(
Y −m(X)− τ(W − e(X))

)
(W − e(X))

]
= 0

E [(Y −m(X))(W − e(X))− τ(W − e(X))(W − e(X))] = 0
τ E[(−1)(W − e(X))2︸ ︷︷ ︸

ψa

] + E[(Y −m(X))(W − e(X))︸ ︷︷ ︸
ψb

] = 0

⇒ τ = −E[ψb(O; η)]
E[ψa(O; η)]

=
E [(Y −m(X))(W − e(X))]

E [(W − e(X))2]
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Example AIPW

AIPW for ATE moment condition:

E
[
m(1, X)−m(0, X) + W(Y −m(1, X))

e(X)
− (1−W)(Y −m(0, X))

1− e(X)
− τATE

]
= 0

τATE (−1)︸︷︷︸
ψa

+E

[
m(1, X)−m(0, X) + W(Y −m(1, X))

e(X)
− (1−W)(Y −m(0, X))

1− e(X)︸ ︷︷ ︸
ψb

]
= 0

⇒ τATE = −E[ψb(O; η)]
E[ψa(O; η)]

= E

[
m(1, X)−m(0, X)+W(Y −m(1, X))

e(X)
−(1−W)(Y −m(0, X))

1− e(X)

]

This is a very complicated way to say that we take the expectation of the
pseudo-outcome we called ỸATE last week, but it illustrates the recipe
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Double ML recipe

1. Find Neyman-orthogonal score for your target parameter (they can be
constructed, see Sec. 2 of Chernozhukov et al., 2018)

2. Predict nuisance parameters η̂ with cross-fitted high-quality ML
3. Solve empirical moment condition to estimate the target parameter

θ̂ = −
∑

i ψb(Oi; η̂i)∑
i ψa(Oi; η̂i)

4. Calculate standard error

σ̂2 =
N−1∑

i ψ(Oi; θ̂, η̂i)2

[N−1∑
i ψa(Oi; η̂i)]2

⇒ se(θ̂) =
√
σ̂2

N

Don’t panic, we will unpack this later, but first some use cases
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Average treatment effect on the
treated



Average treatment effect on the treated

Recall that we defined also the

Average Treatment Effect on the Treated (ATT): τATT := E[Y(1)− Y(0) | W = 1]

• What is the expected treatment effect in the subpopulation actually receiving
the treatment?

Why is this an interesting parameter?

It helps us to evaluate the quality of treatment assignment if we compare it to the
ATE (assuming higher outcomes are better):

• ATT > ATE: Treatment assignment better than random
• ATT = ATE: Treatment assignment as good as random
• ATT < ATE: Treatment assignment worse than random
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ATT AIPW moment condition

This is the Neyman-orthogonal moment condition for ATT

E

[ ỸATT︷ ︸︸ ︷
W
e
(Y −m(0, X))︸ ︷︷ ︸

regression adjustment

− (1−W)e(X)
e(1− e(X))

(Y −m(0, X))︸ ︷︷ ︸
IPW weighted residual

−τATT
W
e

]
= 0 (1)

where e := E[W]

⇒ O = (W, X, Y), θ = τATT , η = (m(0, X), e(X))1, ψa = (−1)We , ψb = ỸATT

1e is a constant and not a nuisance parameter
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Instrumental variables



The framework: graph unconditional

A very popular research design (at least in economics) for identifying causal
effects is to assume access to an instrumental variable

Instrument (Z)

Treatment (W)

Outcome (Y)

A valid instrument affects the outcome only through the treatment and we can
use this exogenous treatment variation to identify its effect

Nice refresher
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The framework: graph conditional

If Z is not , we still need to adjust for confounders

Instrument (Z)

Treatment (W)

Outcome (Y)

Confounder (X)

Current workhorse for estimation is 2SLS, but same model selection issues like for
OLS
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What if partially linear model identification is not credible

Problem:

If identifying assumption 1 is not fulfilled, we expect

E[Y | W, X] = τW + g(X) + E[UY(W) | W, X]︸ ︷︷ ︸
6=0

Identification

⇒ Plain partially linear estimator would be biased

If we are lucky, we can leverage the exogenous variation induced by instrumental
variable Z
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Partially linear IV model

Under modelling assumption 2 that the potential outcome is partially linear and

Identifying Assumption 3 (conditionally exogenous instrument)
The potential outcomes specific error term is conditionally independent of Z:

Y(w) = τw + g(X) + UY(w); E[UY(w) | Z, X] = 0; ∀ w ∈ W

we can identify τ as follows, where h(X) := E[Z | X]

τ =
E[(Z − h(X))(Y −m(X))]
E[(Z − h(X))(W − e(X))]

=
Cov[Z − h(X), Y −m(X)]
Cov[Z − h(X),W − e(X)]

⇒ using residuals of predicted instrument as instrument for the
residual-on-residual regression
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Identification in partially linear IV model

Recall that Y = τW + g(X) + UY(W) and m(X) = τe(X) + g(X) and suppress dependencies of nuisance
parameters on X

τ =
Cov[Z − h, Y −m]

Cov[Z − h,W − e]
=
Cov[Z − h, τW + �g+ UY(W) − τe− �g]

Cov[Z − h,W − e]

=
Cov[Z − h, τ(W − e) + UY(W)]

Cov[Z − h,W − e]

= τ
Cov[Z − h,W − e]
Cov[Z − h,W − e]

+
Cov[Z − h,UY(W)]

Cov[Z − h,W − e]

= τ +
Cov[Z,UY(W)]

Cov[Z − h,W − e]
−

Cov[h,UY(W)]

Cov[Z − h,W − e]
IA3
= τ

b/c Cov[Z,UY(W)] = E[ZUY(W)]− E[Z]E[UY(W)]︸ ︷︷ ︸
=0

LIE
= E[E[ZUY(W) | Z, X]] = E[Z E[UY(W) | Z, X]︸ ︷︷ ︸

IA3
=0

] = 0, same for

Cov[h(X),UY(W)] = 0

Note that replacing Z by W in all equations and IA3 recovers identification of the partially linear model w/o IV 15



Partially linear IV moment condition

Robinson/partialling out style moment condition with Neyman-orthogonal score:2

E

[( outcome residual︷ ︸︸ ︷
Y −m(X) −τ

treatment residual︷ ︸︸ ︷
(W − e(X))

) instrument residual︷ ︸︸ ︷
(Z − h(X))

]
= 0

E
[(
Y −m(X)

)
(Z − h(X))

)
− τ(W − e(X))(Z − h(X))

]
= 0

τ E[(−1)(W − e(X))(Z − h(X))︸ ︷︷ ︸
ψa

] + E[(Y −m(X))(Z − h(X))︸ ︷︷ ︸
ψb

] = 0

⇒ O = (W, X, Y, Z), θ = τ, η = (m(X), e(X),h(X))

The standard recipe applies (implemented in DoubleML)
2You find alternative Neyman-orthogonal scores in Section 4.2 of Chernozhukov et al. (2018).
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Nobel price alert

What if effects are not homogeneous?

Angrist explanation

Imbens explanation 17

https://www.youtube.com/watch?v=vEBUER-l0yQ&t=825s&ab_channel=NobelPrize
https://www.youtube.com/watch?v=yTrVg-t8O8A&t=772s&ab_channel=NobelPrize


Local Average Treatment Effects (1/3)

In the case of randomized binary instrument Z and binary treatment W with
potential treatments W(Z), Imbens & Angrist (1994) show that the Wald estimator

reduced form / intention to treat︷ ︸︸ ︷
E[Y | Z = 1]− E[Y | Z = 0]
E[W | Z = 1]− E[W | Z = 0]︸ ︷︷ ︸

first stage / complier share

= E[Y(1)− Y(0) | W(1)−W(0) = 1︸ ︷︷ ︸
complier

] := τLATE

identifies a Local Average Treatment Effect (LATE) under monotonicity that
nobody is moved out of the treatment by the instrument (no defiers)

The LATE describes the effect of the compliers who change their treatment status
due to the instrument (may or may not be an interesting target parameter)
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Local Average Treatment Effects (2/3)

What if Z is not randomly assigned, but we assume we observe all confounders?
(see Frölich (2007) for identification details)

Double ML uses the following moment condition with a Neyman-orthogonal score

E

[ ψb︷ ︸︸ ︷
mz(1, X)−mz(0, X) +

Z(Y −mz(1, X))
h(X)

− (1− Z)(Y −mz(0, X))
1− h(X)

]
(2)

+ E

[
(−1)

[
e(1, X)− e(0, X) + Z(W − e(1, X))

h(X)
− (1− Z)(W − e(0, X))

1− h(X)

]
︸ ︷︷ ︸

ψa

]
× τLATE = 0

where mz(z, X) = E[Y | Z = z, X], h(X) = P(Z = 1 | X) is the probability to be
”instrumented” and e(Z, X) = P(W = 1 | Z, X) the probability to be treated given
the instrument
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Local Average Treatment Effects (3/3)

Equation (2) looks terrifying but leads to a familiar structure

τLATE =

reduced form / intention to treat︷ ︸︸ ︷
E

[
mz(1, X)−mz(0, X) +

Z(Y −mz(1, X))
h(X)

− (1− Z)(Y −mz(0, X))
1− h(X)

]

E

[
e(1, X)− e(0, X) + Z(W − e(1, X))

h(X)
− (1− Z)(W − e(0, X))

1− h(X)

]
︸ ︷︷ ︸

first stage / complier share

(3)

It generalizes the Wald estimator to the case with confounders

It just divides the ATE of the instrument on the outcome (reduced form) by the
ATE of the instrument on the treatment (first stage)
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Standard errors with influence
functions



How to do statistical inference for Double ML

I told you to estimate the standard error like this

σ̂2 =
N−1∑

i ψ(Oi; θ̂, η̂i)2

[N−1∑
i ψa(Oi; η̂i)]2

⇒ se(θ̂) =
√
σ̂2

N

But why?

For better understanding, we need to introduce the concept of influence
functions

Influence functions are powerful tools beyond Double ML, but we will focus on its
use for our special case with linear scores and do not go into the technical details

For more general introductions see Kahn (2022), Jann (2019, 2020) or this
tweetorial for a short intro
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https://j-kahn.com/files/influencefunctions.pdf
https://boris.unibe.ch/130362/1/jann-2019-influencefunctions.pdf
https://boris.unibe.ch/142529/1/jann-2020-IF.pdf
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Influence function

How is it defined?

Ψ(O; θ, η) := −E
[
∂ψ

∂θ

]−1
ψ(O; θ, η) = −E[ψa(O; η)]−1ψ(O; θ, η)

⇒ It is a scaled version of the score evaluated at the true parameter values

Important features:

• E[Ψ(O; θ, η)] = E[−E[ψa(O; η)]−1ψ(O; θ, η)] = −E[ψa(O; η)]−1 E[ψ(O; θ, η)]︸ ︷︷ ︸
=0

= 0

• Ψ(Oi; θ, ηi)/N approximates the influence of observation i on the estimate of
the target parameter
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Influence function for inference (1/2)

What makes it so valuable for statistical inference?
√
N(θ̂ − θ) =

1√
N

∑
i

Ψ(Oi; θ, ηi) + op(1)
d→ N(0, Var[Ψ(O; θ, η)]︸ ︷︷ ︸

σ2

)

⇒ The estimator distribution and the influence function are closely linked

Note that (suppressing the arguments)

σ2 = Var[Ψ] = E[Ψ2]− E[Ψ]2︸ ︷︷ ︸
=0

= E[Ψ2] = E[(−E[ψa]−1ψ)2] = E[ψa]−2 E[ψ2] =
E[ψ2]
E[ψa]2
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Influence function for inference (2/2)

The sample equivalent is therefore

σ̂2 =
N−1∑

i ψ(Oi; θ̂, η̂i)2

[N−1∑
i ψa(Oi; η̂i)]2

and the standard error is calculated as se(θ̂) =
√

σ̂2

N

se(θ̂) can then be used to calculate t−values, confidence intervals etc.
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Example ATE

Start with the ATE score where we denote m(W, X) = mW and e(X) = e

ψATE =

ỸATE︷ ︸︸ ︷
m1 −m0 +

(D− e)(Y −mW)

e(1− e)︸ ︷︷ ︸
ψb

+(−1)︸︷︷︸
ψa

τATE

⇒ ∂ψATE
∂τATE

= ψa = −1

⇒ ΨATE = −E[(−1)]−1[ỸATE − τATE] = ỸATE − τATE

In the special case where E[ψa] = −1, score and influence function coincide
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Influence function for inference: Chain rule

A cool/convenient feature of influence functions is that they obey the chain rule

Imagine that the target parameter is a function of k other parameters, i.e.
θ = f (θ1, ..., θK)

Then the influence function of θ is

Ψθ =
K∑
k=1

∂f
∂θk

Ψθk

⇒ we can use existing influence functions to create new ones
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Example ATT − ATE

We may want to test whether the ATT = ATE

For this purpose, we create the new parameter ∆(τATT , τATE) = τATT − τATE

The new influence function is

Ψ∆ =

=1︷ ︸︸ ︷
∂∆

∂τATT
ΨτATT +

=−1︷ ︸︸ ︷
∂∆

∂τATE
ΨτATE

= ΨτATT −ΨτATE

= ỸATT − τATTW/e− ỸATE + τATE

and can be used to get se(∆̂)
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Two ways to get the LATE influence function: (1) direct way

The direct way starts with the score implied by (2) where we denote m(z, X) = mz ,
e(z, X) = ez , h(X) = h, and rewrite the weighted residuals for compactness

ψLATE =

ỸZ→Y︷ ︸︸ ︷
m1 −m0 +

(Z − h)(Y −mZ)

h(1− h)︸ ︷︷ ︸
ψb

−

[ ỸZ→W︷ ︸︸ ︷
e1 − e0 +

(Z − h)(Y − eZ)
h(1− h)

]
︸ ︷︷ ︸

ψa

×τLATE

⇒ ∂ψLATE
∂τLATE

= ψa = −ỸZ→W

⇒ ΨLATE = −E[−ỸZ→W]
−1[ỸZ→Y − ỸZ→W × τLATE]

= E[ỸZ→W]
−1[ỸZ→Y − ỸZ→W × τLATE]
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Two ways to get the LATE influence function: (2) chain rule

Denote by τZ→W and τZ→Y the ATEs of Z on W and Y , respectively

We start by noting that
τLATE(τZ→Y , τZ→W) =

τZ→Y

τZ→W

The chain rule tells us that

ΨLATE =
∂τLATE
∂τZ→Y

ΨτZ→Y +
∂τLATE
∂τZ→W

ΨτZ→W =
1

τZ→W
ΨτZ→Y −

τZ→Y

τ 2Z→W
ΨτZ→W

=
1

τZ→W
(ỸZ→Y − τZ→Y)−

τZ→Y

τ 2Z→W
(ỸZ→W − τZ→W)

=
1

τZ→W

[
ỸZ→Y −���τZ→Y −

τZ→Y

τZ→W︸ ︷︷ ︸
τLATE

ỸZ→W +
���

��τZ→Y

τZ→W
τZ→W

]

= E[ỸZ→W]
−1[ỸZ→Y − ỸZ→W × τLATE]

b/c τZ→W = E[ỸZ→W] 29



Simulation notebook: Influence functions explained using
OLS

Application notebook: Double ML as generic recipe
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_Influence_Function_OLS.nb.html
https://mcknaus.github.io/assets/notebooks/SNB/SNB_Influence_Function_OLS.nb.html
https://mcknaus.github.io/assets/notebooks/appl401k/ANB_401k_Generic_DML.nb.html


More Double ML



The generic concept is applied to many other scenarios

2x2 Difference-in-differences: Chang (2020), Zimmert (2020), and Sant’Anna and
Zhao (2020) (see DoubleML for an implementation)

Estimators for the more general DiD case are still in their infancies but build on
familiar principles, e.g. Nie, Lu and Wager (2019) or Hatamyar et al. (2023) build on
the partially linear model

Mediation: Farbmacher et al. (2022)

Dynamic treatments: Bodory et al. (2022)

Quantile treatment effects: Belloni et al. (2017) and Kallus, Mao & Uehara (2019)

and many more (to come)

Important for you is that they build on the same/similar principles
30

https://doi.org/10.1093/ectj/utaa001
https://arxiv.org/abs/1809.01643
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https://doi.org/10.1093/ectj/utac003
https://doi.org/10.1093/ectj/utac018
https://doi.org/10.3982/ECTA12723
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Ceterum censeo a fancy method alone is not a credible
identification strategy

⇒ separate identification and estimation
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