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Conditional target parameters



Effect heterogeneity

So far we focused either on constant effects or allowed for heterogeneous effects
in broad groups like ATE, ATT or LATE

Such aggregate effect measures are the starting point of most analyses as they
provide an excellent summary of the effectiveness of the treatment

⇒ Causal ML provided flexible tools for standard problems

However, often we want to go beyond average effects and

• estimate the effect in pre-specified subgroups (already standard)
• flexibly estimate heterogeneous effects (only recently via Causal ML)

⇒ Causal ML can increase the scope of our analyses
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Why is this interesting?

More comprehensive evaluation: who wins or loses and by how much?

This is useful along at least two dimensions:

• Informs action: More efficient allocation of public and private resources via
targeting in the future
⇒ Personalized policies, ads, medicine, ...

• Understanding: Heterogeneous effects can be suggestive for underlying
mechanisms

Beyond that I think it is just exciting to think about how we can predict
individualized effects, though we cannot observe them
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Definition and identification



There are plenty of heterogeneous effects

Recall that we defined the Conditional Average Treatment Effect (CATE):

τ(x) := E[Y(1)− Y(0) | X = x] = E[∆ | X = x]

• Expected treatment effect in the subpopulation with characteristics X?

So far we did not think about where X comes from but there are numerous
options to define the ”target subpopulation”

To fix ideas it is useful to define X = H ∪ C, i.e. as the union of

• H: Variables for which we want to understand effect heterogeneity
• Usually motivated by the research question

• C: Confounders that are required in the anticipated identification step
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Special cases

RCTs: Life is relatively simple

• There are no confounders⇒ X = H⇒ CATE defined with respect to
considered heterogeneity variables

Measured confounding: It is useful to distinguish two types of CATEs:

• Group ATE (GATE) for some groups G that are defined using H
⇒ τ(g) := E[Y(1)− Y(0) | G = g]

• Individualized ATE (IATE)
⇒ τ(x) := E[Y(1)− Y(0) | X = x]

We will see in the following that the estimation step is affected by whether we are
interested in GATEs or IATEs
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Recycling identification

From an identification point of view, we do not have to establish new results

In what follows all target parameters can be thought of as special cases of
conditioning ITE on some function f (X) such that by the tower property

E[Y(1)− Y(0) | f (X) = f (x)] = E[E[Y(1)− Y(0) | X = x, f (X) = f (x)] | f (X) = f (x)]
= E[E[Y(1)− Y(0) | X = x] | f (X) = f (x)]

As X = H ∪ C is assumed to contain all confounders, we know how to identify the
inner expectation E[Y(1)− Y(0) | X = x] in RCTs or under measured confounding

⇒ All aggregations with respect to a function of X are also identified
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Group Average Treatment Effects



Examples of GATEs

First, focus on estimation and inference for Group ATE (GATE)

τ(g) = E[Y(1)− Y(0) | G = g]

Examples for subgroups of interest:

• Classic mutually exclusive subgroups, like G = {female,male, ...},
G = {age < 50,age ≥ 50}, G = {age < 50 & female,age < 50 & male,age ≥
50 & female,age ≥ 50 & male, ...}, ...

• Single or low-dimensional continuous variable, like G = age, G = income, ...
• Or other functions or small subsets of X

These groups should be pre-determined or at least out-of-sample and not be the
result of data snooping
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Current practice (1/2)

Such GATEs are the focus of numerous ”heterogeneous effects” sections of
empirical papers

There are basically two common strategies:

1. Stratify the data and rerun the analysis for female vs. male, young vs. old,
native vs. foreign, ...

2. Specify an interaction term in a regression model of the general form
Y = α+ θW + ρ0G+ ρ1W ∗ G+ Xβ + ε

where ρ0 represents the ”main effect” of the heterogeneity variable and ρ1

the ”interaction effect”
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Current practice (2/2)

Both strategies have their drawbacks:

1. Rerunning the analysis several times might be computationally intensive if
you use methods beyond OLS

2. OLS with interaction relies on correct model specification with all the
consequences we discussed in the previous part
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Elegant solution based on Double ML and OLS (1/3)

Recall from previous lectures that the ATE can be estimated as the mean of a
pseudo-outcome:

τ̂AIPWATE =
1
N
∑
i

Ỹi,ATE

where

ỸATE = m̂(1, X)− m̂(0, X) + W(Y − m̂(1, X))
ê(X)

− (1−W)(Y − m̂(0, X))
1− ê(X)

This is equivalent to specifying a ”linear” regression model with pseudo-outcome
and constant:

ỸATE = α+ ε

Estimating α by OLS yields α̂ = τ̂AIPWATE
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Elegant solution based on Double ML and OLS (2/3)

Why should we stop at the model with only a constant?

Indeed, we can specify a linear model using our heterogeneity variable(s) G

ỸATE = α+ ρG+ ε

The cool thing is that we can interpret the coefficients in this model like we are
used to (including hypothesis tests, Semenova and Chernozhukov, 2021)

The twist is that we model the level of the effect, not the level of the outcome
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Elegant solution based on Double ML and OLS (3/3)

This has several practical advantages:

• Computationally less expensive than subgroup analyses (only one additional
OLS, no new nuisance parameters)

• It is more flexible than specifying interaction terms in a linear model, as we
flexibly adjust for confounding by ML methods

As ỸATE is an unbiased signal, i.e. E[ỸATE | G = g] = τ(g), we can either use

• OLS or series regression (Semenova and Chernozhukov, 2021)
• or kernel regression (Fan et al., 2022; Zimmert & Lechner, 2019)

to regress the pseudo-outcome ỸATE on low-dimensional G

Most importantly, the Neyman-orthogonality of ỸATE allows to apply standard
statistical inference
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Show that E[ỸATE | G = g] = τ(g)

Recall from the AIPW identification results of the CAPO in the AIPW slide deck that
E[Y(w) | X = x] = E[D(w)Y|X=x]

ew(x) = E
[
D(w)Y
ew(x)

∣∣∣∣X = x
]
and appy this in line 3 to four:

E[ỸATE | G = g]

= E
[
m(1, X) + W(Y −m(1, X))

e(X) −m(0, X)− (1−W)(Y −m(0, X))
1− e(X)

∣∣∣∣G = g
]

LIE
= E

[
E
[
m(1, x) + W(Y −m(1, x))

e(x)

∣∣∣∣X = x
]

︸ ︷︷ ︸
E[Y(1)|X=x]

−E
[
m(0, x) + (1−W)(Y −m(0, x))

1− e(x)

∣∣∣∣X = x
]

︸ ︷︷ ︸
E[Y(0)|X=x]

∣∣∣∣∣G = g
]

= E[E[Y(1) | X = x]− E[Y(0) | X = x] | G = g]
LIE
= E[Y(1)− Y(0) | G = g]

= τ(g)

The law of iteration applications use that G is a function of X
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GATE - example - subgroup analysis

Question: Do the effects of job training programs on employment differ for men
and women?

Ingredients: ỸATE & OLS: ỸATE = β0 + β1female+ error

Job search Vocational Computer Language

Constant -1.29∗∗∗ 3.82∗∗∗ 2.33∗∗∗ 3.40∗∗∗

(0.17) (0.55) (0.60) (0.46)

Female 0.60∗∗ -1.27 2.49∗∗∗ -1.97∗∗

(0.25) (0.87) (0.85) (0.77)

Source: Knaus (2022)
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GATE - example - kernel/splines

Question: Do the effects of job training programs differ by past income?

Ingredients: ỸATE & kernel/spline regression: ỸATE = f (income) + error

Double machine learning-based programme evaluation 617

Figure 3. Effect heterogeneity regarding past income. Dotted line indicates point estimate of the respective
average treatment effect. Grey area shows 95% confidence interval.

C© The Author(s) 2022.
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Simulation notebook: Group Average Treatment Effects

Application notebook: Double ML for group average
treatment effects
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Predicting effects: The challenge



Predicting effects

The heterogeneity variables in the previous chapter were hand-crafted

Now we focus on the case where we aim for the most flexibel/ personalized/
individualized effect prediction CATE/IATE (only CATE from now on):

τ(x) = E[Y(1)− Y(0) | X = x]

This is a conditional expectation and we know how to approximate that using
machine learning

BUT the outcome is unobserved

⇒ Standard supervised ML cannot be applied directly

⇒ Clever ideas needed
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Captain obvious

The most straightforward idea is to use the identification result that we
established for experiments and under IA3 (strong ignorability)

τ(x) = E[Y(1)− Y(0) | X = x] = E[Y | W = 1, X = x]︸ ︷︷ ︸
CEF in treated group

−E[Y | W = 0, X = x]︸ ︷︷ ︸
CEF in control group

We know how to approximate such CEFs and this motivates two ”simple”
algorithms

18



S-learner and T-learner

The S-learner proceeds as follows:

1. Use ML estimator of your choice to fit outcome model using X AND W in the
full sample: m̂(W, X)

2. Estimate CATE as τ̂(x) = m̂(1, x)− m̂(0, x)

The T-learner proceeds as follows:

1. Use ML estimator of your choice to fit model m̂(1, X) in treated subsample
2. Use ML estimator of your choice to fit model m̂(0, X) in control subsample
3. Estimate CATE as τ̂(x) = m̂(1, x)− m̂(0, x)
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Why is this not the best idea? (1/2)

The prediction problems do not know of joint goal to approximate a difference

⇒ m̂(1, x) minimizes MSE(m̂(1, x)) = E[(m̂(1, x)−m(1, x))2]

⇒ m̂(0, x) minimizes MSE(m̂(0, x)) = E[(m̂(0, x)−m(0, x))2]

BUT what they should aim to minimize is

MSE(τ̂(x)) = E[(τ̂(x)− τ(x))2]
= E[(m̂(1, x)− m̂(0, x)− (m(1, x)−m(0, x)))2]
= E[(m̂(1, x)−m(1, x))2] + E[(m̂(0, x)−m(0, x))2]
− 2E[(m̂(1, x)−m(1, x))(m̂(0, x)−m(0, x))]

= MSE(m̂(1, x)) +MSE(m̂(0, x))− 2MCE(m̂(1, x), m̂(0, x))

Lechner (2018) calls the additional term Mean Correlated Error (MCE)
20
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Why is this not the best idea? (2/2)

The MCE tells us that positively correlated errors matter less

Example
m̂(1, x) = m(1, x) + 2 and m̂(0, x) = m(0, x) + 2⇒ both make same error

⇒ MSE(m̂(1, x)) = 4 and MSE(m̂(0, x)) = 4

But their CATE would be just on point: MSE(τ̂(x)) = 4+ 4− 2(2× 2) = 0

On the other hand if errors go in different direction m̂(0, x) = m(0, x)−2

⇒ MSE(m̂(1, x)) = 4, MSE(m̂(0, x)) = 4 but MSE(τ̂(x)) = 16

⇒ Not so clever yet, methods that are aware of the joint goal could provide
improvements
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Two strategies

Different ways to teach ML to target causal parameters:

1. Modify supervised ML methods to target causal effect estimation
• Causal tree
• Causal forest

2. Combine supervised ML methods to target causal effect estimation
• R-learner
• DR-learner

The first are method specific, the second are generic approaches/meta-learner

Many more methods, but too many to cover in one day

⇒ focus on those building on familiar ideas
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Causal trees/forests



Causal Trees (1/3)

Recall from the supervised ML lecture that one representation of the splitting
criterion for regression trees is to maximize squared predictions max

∑
i m̂tree(Xi)2

This is very helpful if we want to model effect heterogeneity

There is no need to observe the outcome we are predicting

Adapted to the causal setting our splitting criterion becomes max
∑

i τ̂
tree(Xi)2

It suffices to be able to calculate the average treatment effect in each candidate
leaf

We know how to do that...
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Causal Trees (2/3)

Parent node can be split along variable j at split point s in a left leaf
L(j, s) = {X | Xj ≤ s} and a right leaf R(j, s) = {X | Xj > s}

We seek j and s that maximize the sum of squared leaf specific ATEs:

max
j,s

[ ∑
i:xi∈L(j,s)

τ̂ 2L(j,s) +
∑

i:xi∈R(j,s)

τ̂ 2R(j,s)

]
(1)

where we have different ways to calculate the leaf specific ATEs τ̂L(j,s) and τ̂R(j,s):

• In experiments, difference in outcome means between treated and controls
• Using, e.g. AIPW in case of confounding
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Causal Trees (3/3)

This is the basic idea behind Athey and Imbens (2016)

The paper also extends the splitting criterion to anticipate honest estimation

They use an honest approach to guarantee valid inference after tree building

Cross-validation can be applied for pruning as in the standard case

Implemented in causalTree package for experiments
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https://www.pnas.org/content/113/27/7353
https://github.com/susanathey/causalTree


Causal Forest(s): a longer journey

The development of Causal Forests went through different stages:

• Causal Forest of Wager and Athey (2018) is an ensemble of Causal Trees (CT)
and focused on the experimental setting

• Causal Forest of Athey, Tibshirani & Wager (2019) uses an approximation of
the CT splitting rule for a binary random treatment but extends also to

• observational settings
• continuous treatments

The former might be considered as an interim technology

Athey et al. provide an excellent infrastructure for causal ML around the Causal
Forest in the R package grf
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Causal Forest and partially linear model

Today we think about Causal Forest (CF) in the following way:

CF estimates CATEs as a localized/individualized residual-on-residual regression

τ̂ cf (x) = argmin
τ̆

{ N∑
i=1

αi(x) [(Yi − m̂(Xi))− τ̆(Wi − ê(Xi))]
2
}
, (2)

where α(x) are x-specific weights

This should look familiar, it estimates a localized version of the partially linear
estimator

⇒ nuisance parameters m̂(X) and ê(X) estimated in first step using cross-fitting
or out-of-bag (a random forest specific way to ensure out-of-sample predictions)
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Recall: Random Forest as weights

i

see that n
i=1

1
B

∑B
b=1 αbi(x)(Yi − μ̂(x)) = 0 if and only if μ̂(x) = 1

B

FIG. 1.  Illustration of the 
random forest weighting 
function. Each tree starts by 
giving equal (pos-itive) weight 
to the training examples in the 
same leaf as our test point x of 
interest, and zero weight to all 
the other training examples. 
Then the forest averages all 
these tree-based weightings, 
and effectively measures how 
often each training example 
falls into the same leaf as x.

B
b=1 μ̂b(x),

where μ̂b(x) = ∑
{i:Xi∈Lb(x)} Yi/|Lb(x)| is the prediction made by a single CART

regression tree.

2.2. Splitting to maximize heterogeneity. We seek trees that, when combined
into a forest, induce weights αi(x) that lead to good estimates of θ(x). The
main difference between random forests relative to other nonparametric regression
techniques is their use of recursive partitioning on subsamples to generate these
weights αi(x). Motivated by the empirical success of regression forests across
several application areas, our approach mimics the algorithm of Breiman (2001)
as closely as possible, while tailoring our splitting scheme to focus on heterogene-
ity in the target functional θ(x).

Just like in Breiman’s forests, our search for good splits proceeds greedily, that
is, we seek splits that immediately improve the quality of the tree fit as much as
possible. Every split starts with a parent node P ⊆ X ; given a sample of data J ,
we define (θ̂P , ν̂P )(J ) as the solution to the estimating equation, as follows (we
suppress dependence on J when unambiguous):

(4) (θ̂P , ν̂P )(J ) ∈ argmin
θ,ν

{∥∥∥∥ ∑
{i∈J :Xi∈P }

ψθ,ν(Oi)

∥∥∥∥
2

}
.

Source: Athey, Tibshirani & Wager (2019)
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Splitting criterion uses influence function

What is the splitting criterion of causal forests that is applied in the tree building
and eventually results in the weights for the RORR?

Causal forests use the following pseudo-outcome to place regression tree splits:

ρ =

[∑
i

(W − ê(X))2
]−1

[(Y − m̂(X))− τ̂(W − ê(X))] (W − ê(X))

This is the influence function of the partially linear estimator (see last lecture)

The splitting along the influence function is a general recipe to estimate
heterogeneous parameters, e.g. in IV settings (Biewen & Kugler, 2021)

⇒ Generalized Random Forest
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A note on statistical inference

Athey et al. (2019) show that the CATEs estimated using their CF are
asymptotically normal and propose and implement an inference procedure

This is really nice and works theoretically when X is relatively small

You might see papers or presentations claiming that CF is so cool because it
allows for high-dimensional X

Be aware that when it comes to the standard errors this is not in line with the
theoretical analysis of the paper

The results require low-dimensional variables and even there we may need a lot
of observations until the ”asymptotics kick in”
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Simulation notebook: Causal Tree and Causal Forest

Application notebook: Predicting effects (part 1)

Causal Forest Fun Shinyapp
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Meta-learner



What are Meta-learner?

Meta-learner combine multiple supervised ML steps in a pipeline that outputs
predicted CATEs

The common ones require the following steps:

1. Estimate nuisance parameters using suitable ML method
2. Plug them into a clever minimization problem targeting CATE
3. Solve the minimization problem using suitable ML method
4. Predict CATE using the model learned in 3

Most popular ML methods are suitable and can be applied in steps 1, 3 and 4

Like for standard prediction methods, statistical inference is usually not available
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R-learner: idea

Recall the partially linear model, but now allowing for x-specific treatment effects:

Y(w) = τ(X)w + g(X) + UY(w); E[UY(w) | W, X] = 0 (3)
⇒Y = Wτ(X) + g(X) + UY(W) (4)
⇒Y −m(X) = τ(X)(W − e(X)) + UY(W) (5)

This motivates the R-learner of Nie and Wager (2020):

τ̂ rl(X) = argmin
τ

N∑
i=1

(
Yi − m̂(Xi)− τ(Xi)(Wi − ê(Xi))

)2 (6)

with cross-fitted high-quality nuisance parameters from first step

But how to estimate it
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R-learner: linear ML methods

An interesting option arises if we model the CATE as linear function: τ(X) = X′β

β̂rl = argmin
β

N∑
i=1

(
Yi−m̂(Xi)−(Wi − ê(Xi))X′i︸ ︷︷ ︸

=X̃′i

β
)2

= argmin
β

N∑
i=1

(
Yi−m̂(Xi)− X̃′iβ

)2 (7)
where X̃ = (W − ê(X))X are modified/pseudo-covariates

and τ̂ rl(x) = xβ̂rl 6= x̃β̂rl is the estimated CATE for a specific x

⇒ All the linear shrinkage estimators (Lasso and friends) can be applied

Remark: The nuisance parameters can still be estimated with non-linear ML
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R-learner: generic ML methods

We rewrite (6) differently if we are not willing to impose linearity of the CATE:

τ̂ rl(X) = argmin
τ

N∑
i=1

(Wi − ê(Xi))2
(
Yi − m̂(Xi)
Wi − ê(Xi)

− τ(Xi)
)2

(8)

Every supervised ML model that is capable of dealing with weighted minimization
problems can be used (neural nets, random forest, boosting, ...) with

• weights (W − ê(X))2

• pseudo-outcome Y−m̂(X)
W−ê(X)

• the unmodified covariates
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Rewrite R-learner

τ̂ rl(X) = argmin
τ

N∑
i=1

(
Yi − m̂(Xi)− τ(Xi)(Wi − ê(Xi))

)2
= argmin

τ

N∑
i=1

(Wi − ê(Xi))2

(Wi − ê(Xi))2
(
Yi − m̂(Xi)− τ(Xi)(Wi − ê(Xi))

)2
= argmin

τ

N∑
i=1

(Wi − ê(Xi))2
(
Yi − m̂(Xi)− τ(Xi)(Wi − ê(Xi))

Wi − ê(Xi)

)2

= argmin
τ

N∑
i=1

(Wi − ê(Xi))2
(
Yi − m̂(Xi)
Wi − ê(Xi)

− τ(Xi)
)2
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DR-learner

Recall or note that

τ(x) = E
[
m(1, x)−m(0, x) + (W − e(X))(Y −m(W, X))

e(X)(1− e(X))︸ ︷︷ ︸
ỸATE

∣∣∣∣ X = x
]

⇒ E[ỸATE | X] is a CEF of a (admittedly fancy looking) random variable

and we know how to approximate CEFs of random variables

⇒ The DR-learner of Kennedy (2020) uses ỸATE in a generic ML problem

τ̂dr(X) = argmin
τ

N∑
i=1

(
Ỹi,ATE − τ(Xi)

)2
(9)

We used the same ”trick” already for GATE estimation
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Discussion Meta-learner

Advantages:
• Very flexible
• Very individualized
• Predicted effects can be used for policy assignment (treat if τ̂(x) > 0)
• DR-learner naturally extends to multiple treatments

Disadvantages:
• No/little inference results (same problem as with standard ML)
• Hard to interpret (same problem as with standard ML)
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Simulation notebook: Meta-learner

Application notebook: Predicting effects (part 2)
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https://mcknaus.github.io/assets/notebooks/SNB/SNB_Meta_learner.nb.html
https://mcknaus.github.io/assets/notebooks/appl401k/ANB_401k_Predicting_effects.nb.html


Heterogeneous effects unlocked
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We could leverage concepts from previous lectures to make fast progress
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Bonus assignment: Causal Christmas Tree Challenge

Send me your solutions for 5 bonus points until 22.12. via mail
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Ceterum censeo a fancy method alone is not a credible
identification strategy

⇒ separate identification and estimation
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