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State of the journey

Average effects Heterogeneous effects

Causal Tree

Can we find the specification
in a data-driven way?

o

Causal Forest

Double Selection

Can we relax linearity?

DR-learner

R-learner

Double ML Partially Linear

i

Can we relax effect homogeneity?

I

Double ML AIPW

We learned how to predict heterogeneous effects applying concepts developed
for average effect estimation



Plan of this morning

What to do with all these predicted effects?

1.



Too much information

After applying Causal *insert here your favourite supervised ML* or *insert here
your favourite letter (combination)*-learner, we end up with (at least) N flexibly
estimated CATEs

These can be useful for decision making, but how to communicate them in
papers/reports or to decision makers?

Nobody can digest a table with N effects
The first step is usually to plot the distribution
Many different ways...



As histograms

Figure 4: Distribution of Treatment Effects Across VHA Patients
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Source:


https://ideas.repec.org/p/nbr/nberwo/27467.html

As density plots
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(b) Pre-lottery primary care treatable ED use

Source:


https://arxiv.org/abs/2201.07072

0
it}
©

o

X

(@)
o)

(%)
<<

DRL
ES NDRL

LK)

Lol

b e e e e e e e g mmmmmmmmm i —

0+

=3 (=3
X &

109139 JuduEaI) 9FBIAAER PISI[ENPIAIPU]

Source:


https://academic.oup.com/ectj/article/25/3/602/6596870?guestAccessKey=00a57dcc-6a6e-46e5-8499-e7e4f868dfc4

Okay, these are nice pictures and there seems to be heterogeneity
But what are we really looking at (£
In the next steps we learn how to ...

1. ... test whether we found systematic effect heterogeneity or just noise

2. ... explore what drives the heterogeneous effects



How to evaluate estimated CATEs?




A challenging task

Challenges:

- Due to the missing counterfactual, we can not benchmark our predicted
effect against the true effect = no classic out-of-sample testing possible
(unique to causal ML)

- Statistical inference for predicted CATE is not available or at least challenging
(shared with supervised ML)

A paradigm shift: It is statistically nearly hopeless and practically not very useful
to aim for an evaluation of each individual effect estimate

Instead the methods we will discuss today aim for low dimensional summary
statistics of the estimated heterogeneous effects



Different strategies

Today we will learn about three such new target parameters:

- Best Linear Predictor (BLP) of
- High-vs.-low Sorted Group Average Treatment Effect (GATES) (

- Rank-Weighted Average Treatment Effect (RATE) of
They will allow us to test the joint hypothesis that

(i) there is effect heterogeneity and
(ii) the applied estimation method is able to detect it at least partially


https://arxiv.org/abs/1712.04802
https://arxiv.org/abs/1712.04802
https://arxiv.org/abs/1712.04802
https://arxiv.org/abs/2111.07966

Best Linear Predictor




Best Linear Predictor - definition

propose to look at the BEST LINEAR PREDICTOR
(BLP) which is defined as the solution of the hypothetical regression of the true
CATE on the demeaned predicted CATE:

Definition BLP

(B1, B2) = arg min E{[r(X) — b1 — by (#(X) — E[F(X)])]'}

1,22

demeaned prediction
where
- 01 = E[r(X)] = ATE because of the demeaning

]
Cov[r(X),7(X
o
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https://arxiv.org/abs/1712.04802

Best Linear Predictor - interpretation

B = W = 1if #(X) = 7(X) (what we would like to see)

Br = 0 If Cov[r(X),7(X)] = 0 this can have two reasons

1. 7(X) is constant (no heterogeneity to detect)

2. 7(X) is not constant but the estimator is not capable of finding it (bad
estimator and/or not enough observations)

Therefore, testing Ho : 3, = 0 is a joint test of

(i) existence of heterogeneity and

(ii) the estimators capability to find it

i



Best Linear Predictor - strategy A

show that the BLP parameters are identified in
RCTs (known propensity score e(X))

Strategy A: Weighted residual BLP

(B1,B2) = are fgﬂn E{w(X)[Y — bi(W — e(X)) — ba(W — e(X))(7(X) = E[#(X)]) /]*}

where w(X) = [e(X)(1 — e(X))] "

X is not required for identification, but contains optional functions of X to reduce
estimation noise, e.g [1, M(0, X), e(X), e(X)7(X)]

See Appendix A of the paper for a detailed derivation
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https://arxiv.org/abs/1712.04802

Best Linear Predictor - strategy B

show that the BLP parameters are identified in
RCTs (known propensity score e(X))

Strategy B: Horvitz-Thompson BLP

(61, 32) = arbgrgwin E{[HY — b1 — by(7(X) — E[F(X)]) 1’}

W—e(X - .
where H = Wi(e()x)) are the familiar IPW weights

X is not required for identification, but may be used to reduce estimation noise
Note that HY serves as a pseudo-outcome
See Appendix A of the paper for a detailed derivation
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https://arxiv.org/abs/1712.04802

Best Linear Predictor - implementation

Split your sample in training and test set

(optional) Learn a model for m(0,X) = E[Y | W = 0,X] in the training sample
Learn a model for 7(X) in the training sample

Predict #(X) (and m(0, X)) in the test sample

Run the regression of strategy A and/or B in the test sample

SR A o

Test Hg : 8, = 0 as usual

This will give you the BLP of one specific training/test split

also show how to aggregate results from repeated
splits but we will focus for simplicity on the single split case


https://arxiv.org/abs/1712.04802

Best Linear Predictor - example

evaluate the effect of an intervention in Indian
villages analyzing the effect of a bundle of immunization incentives (W) on
"Number of children who completed the immunization schedule” (Y)

TABLE 3. BLP of Immunization Incentives Using Causal Proxies

Elastic Net Neural Network
ATE (B1) HET (f2) ATE (B1) HET (f2)

2.814 1.047 2.441 0.899
(1.087,4.506) (0.826,1.262) (0.846,3.979) (0.685,1.107)
[0.004] [0.000] [0.004] [0.000]

Notes: Medians over 250 splits. Median Confidence Intervals (& = .05) in parenthesis. P-values for

the hypothesis that the parameter is equal to zero against the two-sided alternative in brackets.
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https://arxiv.org/abs/1712.04802

From BLP to rank-based methods

The BLP is the idealized regression of the true CATE on the estimated CATE
Rejecting Hp : 3, = 0 implies that truth and estimation correlate significantly
Another way to investigate whether the estimated CATEs are any good is to

1. rank observations in the test set according to their estimated CATE

2. and test whether the effects for those with higher ranks show greater effects
out-of-sample

We expect that effects differ significantly in case we detected systematic
heterogeneity



Sorted Group Average Treatment
Effect




Sorted Group Average Treatment Effect - definition

propose to look at the SORTED GROUP AVERAGE
TREATMENT EFFECTS (GATES) which are defined as:

Definition GATES
v = E[T(X) | Gg], k=1,...,K
where Gy = {7(X) € I} with Ip = [lp_1,lr) and —co=lo < lh < ... < [x = 0

In words: We slice the distribution of 7(X) into K parts and are interested in the
average effect of individuals within each slice


https://arxiv.org/abs/1712.04802

Sorted Group Average Treatment Effect - illustration

L L
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Predicted CATE

Ak Is then the mean of the predicted CATEs in the respective group Gy,



Sorted Group Average Treatment Effect - interpretation

If the slices are build on the true CATE, we would observe the following
monotonicity

M < Sk
where the * indicates that the parameter builds on the true CATE
= We expect to see the same monotonicity if #(X) provides a good approximation
of 7(X)

Situations where v, ..., v¢ are similar indicate that no systematic heterogeneity
was detected



Sorted Group Average Treatment Effect - identification

Similar to the BLP, the GATES are identified using two different strategies
Strategy A: Weighted residual GATES

(%---,’YK):afggmi”E{w )N — ZQ& X)LG] o1}

Strategy B: Horvitz-Thompson GATES

(1,-7%) = argmin E{IHY — 3 gutGel 1)
kR

Again covariates X are not required for identification, but reduce estimation noise
See Appendix A of the paper for a detailed derivation
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Sorted Group Average Treatment Effect - implementation

1. Split your sample in training and test set

(optional) Learn a model for m(0,X) = E[Y | W = 0,X] in the training sample
Learn a model for 7(X) in the training sample

Predict #(X) (and M(0,X)) in the test sample

Sort 7(X) and create K slices

Run the regression of strategy A and/or B in the test sample

~N O R W

Test for example Hp : % — 7 =0

This will give you the GATES of one specific training/test split

also show how to aggregate results from repeated
splits, but we focus on single splits

21
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Sorted Group Average Treatment Effect - example

FIGURE 5. GATES of Immunization Incentives
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Notes: GATES of Immunization Incentives, based upon Causal Learners. Median point estimates
and Median confidence interval (ot = .05) in parenthesis, over 250 splits.
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Sorted Group Average Treatment Effect - example

TABLE 4. GATES of 20% Most and Least Affected Groups

Elastic Net

Nnet
20% Most 20% Least Difference 20% Most 20% Least Difference
(Gs) G (Gs) G
GATE 13.230 -8.000 21.60 11.210 -6.551 18.13
Y= E[So(z) | Gx] (8.219,18.67) (-13.41,-2.574) (13.70,29.74) (7.721,14.47) (-10.37,-2.786) (12.84,23.52)
[0.000] [0.009] [0.000] [0.000] [0.002] [0.000]
Control Mean 2.19 12.68 -10.56 1.19 10.32 -9.17
= E[bU(Z) | Gi] (1.27,3.06)  (11.73,13.59) (-11.84,-9.38)  (0.44,1.87) (9.65,11.02)  (-10.17,-8.14)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Notes: Medians over 250 splits. Median confidence interval (o = .05) in parenthesis. P-values for

the hypothesis that the parameter is equal to zero against the two-sided alternative in brackets.
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Rank-Weighted Average Treatment
Effect




Rank-Weighted Average Treatment Effect

define the RANK-WEIGHTED AVERAGE TREATMENT EFFECT
(RATE) induced by the estimated CATEs as follows:

]
0a(7) == / a(u)TOC(u; 7)du
0
where the TARGETING OPERATOR CHARACTERISTICS (TOC) is defined as
TOC(u; 7) := E[Y(1) = Y(0) | F(7(X)) > 1—u] — E[Y(1) — Y(0)]

with F(-) the cumulative distribution function of #(X), 0 < u <1, and
a: (0,1 — R a generic weight function.

2%


https://arxiv.org/abs/2111.07966

TOC - interpretation

The RATE provides a measure of the ability of estimated CATEs to prioritize units
to treatment in terms of treatment benefit (assuming higher outcomes are better)

The idea is to regard 7(X) as a "prioritization rule” sorting units according to their
estimated CATEs

The TOC(u; 7) :=E[Y(1) — Y(0) | F(7(X)) > 1 —u] — E[Y(1) — Y(0)] contrasts the
average effect in the subgroup with the 100u% highest estimated CATEs and ATE

If the estimated CATEs capture systematic heterogeneity, we expect that the TOC
is positive throughout and largest for low values of u

Furthermore, TOC(1; 7) = 0 because E[Y(1) — Y(0) | F(7(X)) > 0] = E[Y(1) — Y(0)]

25



TOC - example

Example from
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Figure 2. TOC curves for two prioritization rules (baseline- and CATE-based) and two
outcomes (rate of visits and rate of conversion) on Criteo Uplift benchmark dataset.
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Different ways to weight TOCs

consider three different ways to aggregate the TOCs into
RATEs:

1. High-vs-others: Gives all weight to a particular TOC and requires to fix which
fraction u of the estimated CATEs are defined as "high”

2. Area under TOC (AUTOC): Takes integral under TOC curve
AUTOC(7) = /01 TOC(u; #(X))du

3. Qini: Qini coefficient gives linear weight to the TOCs
QINI(?) = /O UTOC(U: #00)du

27
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How to describe/understand CATES?




What "drives” heterogeneity?

If BLP and GATES indicate that our algorithms detect systematic effect
heterogeneity, we usually would like to understand which covariates are most
predictive

However, the causal ML methods do not produce seemingly easy to interpret OLS
outputs or something similar

I am currently aware of two options:

1. Rely on classic variable importance measures from the supervised ML
literature inheriting all their strengths and weaknesses (see e.g.

)

2. Run a Classification Analysis of

28
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Classification Analysis

Definition BLP

CLASSIFICATION ANALYSIS (CLAN) compares the covariate values of the "least
affected group” Gy with the "most affected group” Gx defined for the GATES:

ok — o1
where (51 = E[X ’ 61] and 5/( = E[X ’ GK]

This can be achieved by simple mean comparison in the test sample for a single
train/test split

Again show how to aggregate results from repeated splits
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Classification Analysis - example

TABLE 5. CLAN of Immunization Incentives

Elastic Net Nnet
20% Most 20% Least Difference 20% Most 20% Least Difference
(5) (&) (85— &1) (85) (61 (85— 61)
Number of vaccines 2.187 2.277 -0.081 2.174 2.285 -0.112
to pregnant mother (2.115,2.259)  (2.212,2.342)  (-0.180,0.015)  (2.111,2.234) (2.224,2.345)  (-0.202,-0.028)
- - [0.190] - - [0.019]
Number of vaccines 4.077 4.639 -0.562 4.264 4.734 -0.490
to child since birth (3.858,4.304) (4.444,4.859) (-0.863.-0.260) (4.091,4.434) (4.549.4.900) (-0.739,-0.250)
- - [0.001] - - [0.000]
Fraction of children 0.998 1.000 -0.002 1.000 1.000 0.000
received polio drops (0.995,1.001)  (0.997,1.003)  (-0.006,0.002)  (1.000,1.000) (1.000,1.000)  (0.000,0.000)
- - [0.683] - - [0.943]
Number of polio 2.955 2.993 -0.037 2.965 2.998 -0.032
drops to child (2.935,2.974) (2.976,3.010) (-0.063.-0.010)  (2.953,2.977) (2.985.3.010) (-0.049,-0.016)
- - [0.013] - - [0.000]
Fraction of children 0.803 0.926 -0.121 0.908 0.927 -0.027
received immunization card ~ (0.754,0.851)  (0.882,0.969) (-0.187.-0.054) (0.881,0.932) (0.898,0.959)  (-0.059,0.007)
- - [0.001] - - [0.217]
Fraction of children received 0.133 0.243 -0.106 0.126 0.260 -0.131
Measles vaccine (0.097,0.169)  (0.209,0.276)  (-0.153.-0.056)  (0.095,0.159)  (0.228,0.291)  (-0.176,-0.085)
by 15 months of age - - [0.000] - - [0.000]
Fraction of children received 0.293 0.399 -0.110 0.289 0.433 -0.142
Measles vaccine (0.246,0.338)  (0.358,0.444)  (-0.174,-0.045)  (0.246,0.331)  (0.391,0.475)  (-0.206,-0.084)
at credible locations - - [0.002] - - [0.000]
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Even more on effect heterogeneity




More methods

- BART ( : )

- Causal Boosting/MARS, ... (
)

- Dragonnet ( )

- Modified Causal Forest ( )

- Orthogonal Random Forest ( )
- TARNet ( )

- X-learner ( )

and many many more
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https://www.tandfonline.com/doi/abs/10.1198/jcgs.2010.08162
https://projecteuclid.org/journals/bayesian-analysis/volume-15/issue-3/Bayesian-Regression-Tree-Models-for-Causal-Inference--Regularization-Confounding/10.1214/19-BA1195.full
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7623
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7623
https://proceedings.mlr.press/v70/shalit17a.html
https://arxiv.org/abs/2209.03744
http://proceedings.mlr.press/v97/oprescu19a.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v70/shalit17a.html
https://www.pnas.org/doi/abs/10.1073/pnas.1804597116

More on validation

- Calibration Error for Heterogeneous Treatment Effects ( )

- More on GATES in experiments ( )

32
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Ceterum censeo a fancy method alone is not a credible
identification strategy
= separate identification and estimation
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