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State of the journey

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning

We learned how to predict heterogeneous effects applying concepts developed
for average effect estimation
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Plan of this morning

What to do with all these predicted effects?

1. How to evaluate estimated CATEs?

2. Best Linear Predictor

3. Sorted Group Average Treatment Effect

4. Rank-Weighted Average Treatment Effect

5. How to describe/understand CATEs?

6. Even more on effect heterogeneity 2



Too much information

After applying Causal ∗insert here your favourite supervised ML∗ or ∗insert here
your favourite letter (combination)∗-learner, we end up with (at least) N flexibly
estimated CATEs

These can be useful for decision making, but how to communicate them in
papers/reports or to decision makers?

Nobody can digest a table with N effects

The first step is usually to plot the distribution

Many different ways...
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As histograms

Figure 4: Distribution of Treatment Effects Across VHA Patients
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Notes: This figure displays histograms of stroke and bleed treatment effects in the VHA sample. Conditional
average treatment effect (CATE) predictions are trained and validated by using causal forest methods, described
in Section 5, applied to RCT data in the AFI database. We use the causal forest rules to calculate CATEs as a
function of patient characteristics for each patient in the VHA data.
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As density plots
Figure 4: Distribution of individualized treatment effects of Medicaid by selected groups (Any
visit)
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Notes: This figure plots the individualized treatment effects ofMedicaid on any overall ED visit for the four major groups
identified with substantial group average effects—pre-lottery SNAP receipt (panel a), pre-lottery primary care treatable
ED visit (panel b), age group (panel c), and gender (panel d). The baseline sample consists of 24,615 individuals in
the Taubman et al. (2014) sample with non-missing information on pre-lottery emergency department utilization and
SNAP/TANF receipt.
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As boxplots Double machine learning-based programme evaluation 619
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Figure 4. Boxplot of out-of-sample predicted IATEs by DR- and NDR-learner. The figure shows the
distribution of IATEs for participating in the programme labelled on the x-axis vs. non-participation

estimated by the DR-learner (DRL) and the NDR-learner (NDRL). The dashed line indicates the possible
range of the IATE of [−31,31] to illustrate that several DR-learner estimated IATEs lie outside this bound.

Table 6. Classification analysis of IATEs.

Job search Vocational Computer Language
(1) (2) (3) (4)

Past income −1.32 −0.84 −1.17 1.01
Previous job: unskilled worker 1.02 0.68 0.34 −1.24
Mother tongue other than German,
French, Italian

0.69 0.68 0.00 −1.17

Qualification: some degree −0.88 −0.65 −0.41 1.15
Swiss citizen −0.66 −0.60 0.12 1.11
Fraction of months employed last 2 years −1.06 −0.37 −0.47 0.30
Qualification: unskilled 0.81 0.41 0.32 −1.02

Note: Table shows the differences in means of standardised covariates between the fifth and the first quintile of the
respective estimated IATE distribution.

Also the other variables confirm the patterns that we document already in previous subsections.
The effects of job search, vocational, and computer training are higher for unskilled workers
with lower previous labour market success and foreigners, while the opposite holds for language
programmes.22

6.3. Optimal treatment assignment

The previous section documented substantial heterogeneities in the programme effects. To lever-
age this heterogeneity for better targeting, we apply the DML-based optimal policy algorithm
of Section 3.4. Figure 5(a) shows the simplest decision tree with only one split for the five

22 Table S7 of the Online Appendix shows the classification analysis for all variables.

C© The Author(s) 2022.
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And now?

Okay, these are nice pictures and there seems to be heterogeneity

But what are we really looking at

In the next steps we learn how to ...

1. ... test whether we found systematic effect heterogeneity or just noise
2. ... explore what drives the heterogeneous effects
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How to evaluate estimated CATEs?



A challenging task

Challenges:

• Due to the missing counterfactual, we can not benchmark our predicted
effect against the true effect⇒ no classic out-of-sample testing possible
(unique to causal ML)

• Statistical inference for predicted CATE is not available or at least challenging
(shared with supervised ML)

A paradigm shift: It is statistically nearly hopeless and practically not very useful
to aim for an evaluation of each individual effect estimate

Instead the methods we will discuss today aim for low dimensional summary
statistics of the estimated heterogeneous effects
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Different strategies

Today we will learn about three such new target parameters:

• Best Linear Predictor (BLP) of Chernozhukov et al. (2017-2023)
• High-vs.-low Sorted Group Average Treatment Effect (GATES) (Chernozhukov
et al., 2017-2023)

• Rank-Weighted Average Treatment Effect (RATE) of Yadlowsky et al. (2021)

They will allow us to test the joint hypothesis that

(i) there is effect heterogeneity and
(ii) the applied estimation method is able to detect it at least partially
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Best Linear Predictor



Best Linear Predictor - definition

Chernozhukov et al. (2017-2023) propose to look at the Best Linear Predictor
(BLP) which is defined as the solution of the hypothetical regression of the true
CATE on the demeaned predicted CATE:

Definition BLP

(β1, β2) = argmin
b1,b2

E{[τ(X)− b1 − b2 (τ̂(X)− E[τ̂(X)])︸ ︷︷ ︸
demeaned prediction

]2}

where

• β1 = E[τ(X)] = ATE because of the demeaning
• β2 = Cov[τ(X),τ̂(X)]

Var[τ̂(X)]

10
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Best Linear Predictor - interpretation

β2 =
Cov[τ(X),τ(X)]
Var[τ(X)] = 1 if τ̂(X) = τ(X) (what we would like to see)

β2 = 0 if Cov[τ(X), τ̂(X)] = 0 this can have two reasons

1. τ(X) is constant (no heterogeneity to detect)
2. τ(X) is not constant but the estimator is not capable of finding it (bad
estimator and/or not enough observations)

Therefore, testing H0 : β2 = 0 is a joint test of

(i) existence of heterogeneity and
(ii) the estimators capability to find it
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Best Linear Predictor - strategy A

Chernozhukov et al. (2017-2023) show that the BLP parameters are identified in
RCTs (known propensity score e(X))

Strategy A: Weighted residual BLP

(β1, β2) = argmin
b1,b2

E{ω(X)[Y − b1(W − e(X))− b2(W − e(X))(τ̂(X)− E[τ̂(X)])−aX̃]2}

where ω(X) = [e(X)(1− e(X))]−1

X̃ is not required for identification, but contains optional functions of X to reduce
estimation noise, e.g [1, m̂(0, X), e(X), e(X)τ̂(X)]

See Appendix A of the paper for a detailed derivation
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Best Linear Predictor - strategy B

Chernozhukov et al. (2017-2023) show that the BLP parameters are identified in
RCTs (known propensity score e(X))

Strategy B: Horvitz-Thompson BLP

(β1, β2) = argmin
b1,b2

E{[HY − b1 − b2(τ̂(X)− E[τ̂(X)])−aHX̃]2}

where H = W−e(X)
e(X)(1−e(X)) are the familiar IPW weights

X̃ is not required for identification, but may be used to reduce estimation noise

Note that HY serves as a pseudo-outcome

See Appendix A of the paper for a detailed derivation
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Best Linear Predictor - implementation

1. Split your sample in training and test set
2. (optional) Learn a model for m(0, X) = E[Y | W = 0, X] in the training sample
3. Learn a model for τ(X) in the training sample
4. Predict τ̂(X) (and m̂(0, X)) in the test sample
5. Run the regression of strategy A and/or B in the test sample
6. Test H0 : β2 = 0 as usual

This will give you the BLP of one specific training/test split

Chernozhukov et al. (2017-2023) also show how to aggregate results from repeated
splits but we will focus for simplicity on the single split case

14
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Best Linear Predictor - example

Chernozhukov et al. (2017-2023) evaluate the effect of an intervention in Indian
villages analyzing the effect of a bundle of immunization incentives (W) on
”Number of children who completed the immunization schedule” (Y)GENERIC ML FOR FEATURES OF HETEROGENOUS TREATMENT EFFECTS 39

TABLE 3. BLP of Immunization Incentives Using Causal Proxies

Elastic Net Neural Network

ATE (β1) HET (β2) ATE (β1) HET (β2)

2.814 1.047 2.441 0.899
(1.087,4.506) (0.826,1.262) (0.846,3.979) (0.685,1.107)

[0.004] [0.000] [0.004] [0.000]

Notes: Medians over 250 splits. Median Confidence Intervals (α = .05) in parenthesis. P-values for
the hypothesis that the parameter is equal to zero against the two-sided alternative in brackets.

The implementation details for the heterogeneity analysis follow Algorithm 6.1 below, with
three characteristics due to the design: we weight village-level estimations by village population,
include district–time fixed effects, and cluster standard errors at the village level. Table 2 compares
the four ML methods for producing proxy predictors S(Zi) using the criteria in (3.11) and (3.12).
We find that Elastic Net and Neural Network outperform the other methods, with Elastic Net
beating Neural Network by a smaller margin than the other methods. Accordingly, we shall focus
on these two methods for the rest of the analysis.

Table 3 presents the results of the BLP of CATE on the ML proxies. We report estimates of the
coefficients β1 and β2, which correspond to the ATE and heterogeneity loading (HET) parameters
in the BLP. The ATE estimates in Columns 1 and 3 indicate that the package treatment increases
the number of immunized children by 2.81 based on elastic net estimates and by 2.44 based on
neural network estimates. Reassuringly, these estimates are on either side of the raw difference
in means (2.77). Focusing on the HET estimates, we find strong heterogeneity in treatment ef-
fects, as indicated by the statistically significant estimates. Moreover, the estimates are close to 1,
suggesting that the ML proxies are good predictors of the CATE.

Next, we estimate the GATES by quintiles of the ML proxies. Figure 5 presents the estimated
GATES coefficients γ1− γ5 along with joint confidence bands and the ATE estimates. In Table 4
we present the result from the hypothesis test that the difference of the ATE for the most and least
affected groups is statistically significant. We find that this difference is 21.60 and 18.13 based on
elastic net and neural network methods, respectively, and is statistically significant. Given that the
ATE estimates in the whole population are about 2.5, these results suggest a large and potentially
policy-relevant heterogeneity.

The analysis so far reveals very large heterogeneity, with two striking results. First, the results
are very large for the most affected villages. In these villages, an average of 13.23 extra children
eligible for baseline incentives get the measles vaccines every month (starting from a mean of 2.19
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From BLP to rank-based methods

The BLP is the idealized regression of the true CATE on the estimated CATE

Rejecting H0 : β2 = 0 implies that truth and estimation correlate significantly

Another way to investigate whether the estimated CATEs are any good is to

1. rank observations in the test set according to their estimated CATE
2. and test whether the effects for those with higher ranks show greater effects
out-of-sample

We expect that effects differ significantly in case we detected systematic
heterogeneity

16



Sorted Group Average Treatment
Effect



Sorted Group Average Treatment Effect - definition

Chernozhukov et al. (2017-2023) propose to look at the Sorted Group Average
Treatment Effects (GATES) which are defined as:

Definition GATES

γk = E[τ(X) | Gk], k = 1, ..., K

where Gk = {τ̂(X) ∈ Ik} with Ik = [lk−1, lk) and −∞ = l0 < l1 < ... < lK = ∞

In words: We slice the distribution of τ̂(X) into K parts and are interested in the
average effect of individuals within each slice

17
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Sorted Group Average Treatment Effect - illustration
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γ̂k is then the mean of the predicted CATEs in the respective group Gk
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Sorted Group Average Treatment Effect - interpretation

If the slices are build on the true CATE, we would observe the following
monotonicity

γ∗1 ≤ ... ≤ γ∗K

where the ∗ indicates that the parameter builds on the true CATE

⇒ We expect to see the same monotonicity if τ̂(X) provides a good approximation
of τ(X)

Situations where γ1, ..., γK are similar indicate that no systematic heterogeneity
was detected
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Sorted Group Average Treatment Effect - identification

Similar to the BLP, the GATES are identified using two different strategies

Strategy A: Weighted residual GATES

(γ1, ..., γK) = argmin
g

E{ω(X)[Y −
∑
k

gk(W − e(X))1[Gk]−aX̃]2}

Strategy B: Horvitz-Thompson GATES

(γ1, ..., γK) = argmin
g

E{[HY −
∑
k

gk1[Gk]−aHX̃]2}

Again covariates X̃ are not required for identification, but reduce estimation noise

See Appendix A of the paper for a detailed derivation
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Sorted Group Average Treatment Effect - implementation

1. Split your sample in training and test set
2. (optional) Learn a model for m(0, X) = E[Y | W = 0, X] in the training sample
3. Learn a model for τ(X) in the training sample
4. Predict τ̂(X) (and m̂(0, X)) in the test sample
5. Sort τ̂(X) and create K slices
6. Run the regression of strategy A and/or B in the test sample
7. Test for example H0 : γK − γ1 = 0

This will give you the GATES of one specific training/test split

Chernozhukov et al. (2017-2023) also show how to aggregate results from repeated
splits, but we focus on single splits
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Sorted Group Average Treatment Effect - example
40 VICTOR CHERNOZHUKOV, MERT DEMIRER, ESTHER DUFLO, AND IVÁN FERNÁNDEZ-VAL

FIGURE 5. GATES of Immunization Incentives
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Notes: GATES of Immunization Incentives, based upon Causal Learners. Median point estimates
and Median confidence interval (α = .05) in parenthesis, over 250 splits.

TABLE 4. GATES of 20% Most and Least Affected Groups

Elastic Net Nnet

20% Most 20% Least Difference 20% Most 20% Least Difference
(G5) (G1) (G5) (G1)

GATE 13.230 -8.000 21.60 11.210 -6.551 18.13
γk := Ê[s0(Z) | Gk] (8.219,18.67) (-13.41,-2.574) (13.70,29.74) (7.721,14.47) (-10.37,-2.786) (12.84,23.52)

[0.000] [0.009] [0.000] [0.000] [0.002] [0.000]

Control Mean 2.19 12.68 -10.56 1.19 10.32 -9.17
:= Ê[b0(Z) | Gk] (1.27,3.06) (11.73,13.59) (-11.84,-9.38) (0.44,1.87) (9.65,11.02) (-10.17,-8.14)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Notes: Medians over 250 splits. Median confidence interval (α = .05) in parenthesis. P-values for
the hypothesis that the parameter is equal to zero against the two-sided alternative in brackets.

in the elastic net estimation). Second, the impact is negative and significant in the least affected
villages (an average decline of 8.00 immunization per month, starting from 12.68 in the elastic net

22



Sorted Group Average Treatment Effect - example
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:= Ê[b0(Z) | Gk] (1.27,3.06) (11.73,13.59) (-11.84,-9.38) (0.44,1.87) (9.65,11.02) (-10.17,-8.14)
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Notes: Medians over 250 splits. Median confidence interval (α = .05) in parenthesis. P-values for
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in the elastic net estimation). Second, the impact is negative and significant in the least affected
villages (an average decline of 8.00 immunization per month, starting from 12.68 in the elastic net
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Rank-Weighted Average Treatment
Effect



Rank-Weighted Average Treatment Effect

Yadlowsky et al. (2021) define the Rank-Weighted Average Treatment Effect
(RATE) induced by the estimated CATEs as follows:

θα(τ̂) :=

∫ 1

0
α(u)TOC(u; τ̂)du

where the Targeting Operator Characteristics (TOC) is defined as

TOC(u; τ̂) := E[Y(1)− Y(0) | F(τ̂(X)) ≥ 1− u]− E[Y(1)− Y(0)]

with F(·) the cumulative distribution function of τ̂(X), 0 < u ≤ 1, and
α : (0, 1] → R a generic weight function.

24
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TOC - interpretation

The RATE provides a measure of the ability of estimated CATEs to prioritize units
to treatment in terms of treatment benefit (assuming higher outcomes are better)

The idea is to regard τ̂(X) as a ”prioritization rule” sorting units according to their
estimated CATEs

The TOC(u; τ̂) := E[Y(1)− Y(0) | F(τ̂(X)) ≥ 1− u]− E[Y(1)− Y(0)] contrasts the
average effect in the subgroup with the 100u% highest estimated CATEs and ATE

If the estimated CATEs capture systematic heterogeneity, we expect that the TOC
is positive throughout and largest for low values of u

Furthermore, TOC(1; τ̂) = 0 because E[Y(1)− Y(0) | F(τ̂(X)) ≥ 0] = E[Y(1)− Y(0)]

25



TOC - example

Example from Yadlowsky et al. (2021)
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Different ways to weight TOCs

Yadlowsky et al. (2021) consider three different ways to aggregate the TOCs into
RATEs:

1. High-vs-others: Gives all weight to a particular TOC and requires to fix which
fraction u of the estimated CATEs are defined as ”high”

2. Area under TOC (AUTOC): Takes integral under TOC curve

AUTOC(τ̂) =
∫ 1

0
TOC(u; τ̂(X))du

3. Qini: Qini coefficient gives linear weight to the TOCs

QINI(τ̂) =
∫ 1

0
uTOC(u; τ̂(X))du

27
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How to describe/understand CATEs?



What ”drives” heterogeneity?

If BLP and GATES indicate that our algorithms detect systematic effect
heterogeneity, we usually would like to understand which covariates are most
predictive

However, the causal ML methods do not produce seemingly easy to interpret OLS
outputs or something similar

I am currently aware of two options:

1. Rely on classic variable importance measures from the supervised ML
literature inheriting all their strengths and weaknesses (see e.g. Explanatory
Model Analysis)

2. Run a Classification Analysis of Chernozhukov et al. (2017-2023)

28
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Classification Analysis

Definition BLP
Classification Analysis (CLAN) compares the covariate values of the ”least
affected group” G1 with the ”most affected group” GK defined for the GATES:

δK − δ1

where δ1 = E[X | G1] and δK = E[X | GK ]

This can be achieved by simple mean comparison in the test sample for a single
train/test split

Again Chernozhukov et al. show how to aggregate results from repeated splits

29
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Classification Analysis - example
GENERIC ML FOR FEATURES OF HETEROGENOUS TREATMENT EFFECTS 41

TABLE 5. CLAN of Immunization Incentives

Elastic Net Nnet

20% Most 20% Least Difference 20% Most 20% Least Difference
(δ5) (δ1) (δ5−δ1) (δ5) (δ1) (δ5−δ1)

Number of vaccines 2.187 2.277 -0.081 2.174 2.285 -0.112
to pregnant mother (2.115,2.259) (2.212,2.342) (-0.180,0.015) (2.111,2.234) (2.224,2.345) (-0.202,-0.028)

- - [0.190] - - [0.019]
Number of vaccines 4.077 4.639 -0.562 4.264 4.734 -0.490
to child since birth (3.858,4.304) (4.444,4.859) (-0.863,-0.260) (4.091,4.434) (4.549,4.900) (-0.739,-0.250)

- - [0.001] - - [0.000]
Fraction of children 0.998 1.000 -0.002 1.000 1.000 0.000
received polio drops (0.995,1.001) (0.997,1.003) (-0.006,0.002) (1.000,1.000) (1.000,1.000) (0.000,0.000)

- - [0.683] - - [0.943]
Number of polio 2.955 2.993 -0.037 2.965 2.998 -0.032
drops to child (2.935,2.974) (2.976,3.010) (-0.063,-0.010) (2.953,2.977) (2.985,3.010) (-0.049,-0.016)

- - [0.013] - - [0.000]
Fraction of children 0.803 0.926 -0.121 0.908 0.927 -0.027
received immunization card (0.754,0.851) (0.882,0.969) (-0.187,-0.054) (0.881,0.932) (0.898,0.959) (-0.059,0.007)

- - [0.001] - - [0.217]
Fraction of children received 0.133 0.243 -0.106 0.126 0.260 -0.131
Measles vaccine (0.097,0.169) (0.209,0.276) (-0.153,-0.056) (0.095,0.159) (0.228,0.291) (-0.176,-0.085)
by 15 months of age - - [0.000] - - [0.000]

Fraction of children received 0.293 0.399 -0.110 0.289 0.433 -0.142
Measles vaccine (0.246,0.338) (0.358,0.444) (-0.174,-0.045) (0.246,0.331) (0.391,0.475) (-0.206,-0.084)
at credible locations - - [0.002] - - [0.000]

Notes: Medians over 250 splits. Median confidence interval (α = .05) in parenthesis. P-values for
the hypothesis that the parameter is equal to zero against the two-sided alternatives in brackets.

estimation). It looks like in some contexts, the combined package of small incentives, reminders,
and persuasion by members of the social network put people off immunization.

Given these large differences, it is important to determine whether this heterogeneity seems to
be associated with pre-existing characteristics. To answer this question, we ask what variables
are associated with the heterogeneity detected in BLP and GATES via CLAN. Table 5 reports the
CLAN estimates for a selected set of covariates and Tables 7–8 in Online Appendix F for the rest
of covariates. Regardless of the method used, the estimated differences in the means of most and
least affected groups for the number of vaccines to child since birth, number of polio drops to child,
the fraction of children receiving measles vaccines by 15 months of age, and fraction of children
receiving measles vaccine at credible locations, are negative and statistically significant. Those are
various measures of pretreatment immunization levels, all survey-based, that have nothing to do
with our measure of impact. These results suggest that the villages with low levels of pretreatment
immunization are the most affected by the incentives. These are, in fact, the only variables that
consistently pop up from the CLAN. Thus, in this instance, the policy preferred ex-ante by the
government (since it is equality-enhancing) also happens to be the most effective.
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Even more on effect heterogeneity



More methods

• BART (Hill, 2011; Hahn, Murray & Carvalho, 2020)
• Causal Boosting/MARS, ... (Powers, Qian, Jung, Schuler, Shah, Hastie &
Tibshirani, 2019)

• Dragonnet (Shi, Blei & Veitch 2019)
• Modified Causal Forest (Lechner & Mareckova, 2022)
• Orthogonal Random Forest (Oprescu, Syrgkanis & Wu, 2019)
• TARNet (Shalit, Johansson & Sontag 2019)
• X-learner (Künzel, Sekhon, Bickel & Yu, 2019)

and many many more
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https://www.tandfonline.com/doi/abs/10.1198/jcgs.2010.08162
https://projecteuclid.org/journals/bayesian-analysis/volume-15/issue-3/Bayesian-Regression-Tree-Models-for-Causal-Inference--Regularization-Confounding/10.1214/19-BA1195.full
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7623
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7623
https://proceedings.mlr.press/v70/shalit17a.html
https://arxiv.org/abs/2209.03744
http://proceedings.mlr.press/v97/oprescu19a.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v70/shalit17a.html
https://www.pnas.org/doi/abs/10.1073/pnas.1804597116


More on validation

• Calibration Error for Heterogeneous Treatment Effects (Xu & Yadlowsky, 2022)
• More on GATES in experiments (Imai & Li, 2022)
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https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7623
https://arxiv.org/abs/2203.14511


Ceterum censeo a fancy method alone is not a credible
identification strategy

⇒ separate identification and estimation
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