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State of the journey

Average effects

OLS

Double Selection

Can we find the specification
in a data-driven way?

Double ML Partially Linear

Can we relax linearity?

Double ML AIPW

Can we relax effect homogeneity?

Heterogeneous effects

Causal Tree

Causal Forest

R-learner

DR-learner

Personalized
evaluation

Personalized
recommendation

Policy learning

We focused on policy evaluation on an aggregate and personalized level
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Plan of this morning

How to use Causal ML for decision making (policy recommendation)?

1. Conceptual framework

2. Offline policy learning with binary treatments

3. Offline policy learning with multiple treatments
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Conceptual framework



From evaluation to recommendation

So far we focused on treatment evaluation: ”What works (for whom)?”

Today we focus on treatment recommendation: ”How to optimally treat (whom)?”

⇒ We are interested in data-driven (personalized) treatment recommendations

But isn’t this settled given what we learned already about predicting effects?

Well, kind of, but not really...

Let’s have a closer look
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Conceptual framework: notation

Reminder:
W ∈ {0, 1}
Y(w)
X
mw(x) := E[Y(w) | X = x]
τ(x) := m1(x)−m0(x)

Binary treatment indicator
Potential outcome (PO) under treatment w
Exogenous covariate(s)
Conditional Average PO
Conditional Average Treatment Effect (CATE)

New:
π(x) ∈ {0, 1}
Y(π(X))
Q(π) := E[Y(π(X))]

Policy rule for x (conditional treatment choice)
PO under policy π(X)
Value function (average PO under policy π(X))

Without loss of generality we assume throughout that a higher outcome is better
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Example: Policy

Consider a setting with a univariate X ∼ uniform(−1, 1)

Then candidate/potential policies could be:

• πa(X) = 1[X > 1/2]
• πb(X) = 1[X < −1/2]
• πc(X) = 1[X < −1/2] + 1[X > 1/2]

The PO under any policy π(X) is then Y(π(X)) = π(X)Y(1) + (1− π(X))Y(0)

Note that this has the flavour of consistency but with a hypothetical, not the real
treatment

⇒ We stay in the PO dream world
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Example: Value function

Consider the case of two assignment rules π1 and π2

i Yi(0) Yi(1) π1 π2 Yi(π1) Yi(π2)
1 Y1(0) Y1(1) 0 0 Y1(0) Y1(0)
2 Y2(0) Y2(1) 1 0 Y2(1) Y2(0)
3 Y3(0) Y3(1) 0 1 Y3(0) Y3(1)
4 Y4(0) Y4(1) 1 1 Y4(1) Y4(1)
...

...
...

...
...

...
...

The value functions of the policies take then the expectations over the two right
columns: Q(π1) = E[Y(π1)] and Q(π2) = E[Y(π2)]

The value function asks ”What would be the APO if we would have implemented
the policy?”
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Unreachable goals

In our dreams we would like to assign individuals to treatment with higher PO
under treatment than without: π∗ = 1[Y(1) > Y(0)] = 1[Y(1)− Y(0) > 0]

This is unfortunately not possible due to the fundamental problem of causal
inference

However, we know from previous lectures that we could identify the CATE

This suggests the following optimal policy based on the CATE:

π∗(x) = 1[E[Y(1)− Y(0) | X = x] > 0] = 1[τ(x) > 0] (1)
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Targeting CATE does not provide best policies

Manski (2004) calls the sample analogue of this rule the Conditional Empirical
Success (CES) rule: π̂(x) = 1[τ̂(x) > 0]

The CES rule seems to settle policy learning as we have learned how to flexibly
estimate CATEs/IATEs

BUT this intuition is at least partly misleading when it comes to estimation

CATE estimation aims to minimize E[(τ̂(X)− τ(X))2] ⇒ approximate CEF of CATE as
good as possible

BUT lower CATE MSE does not necessarily improve policy rules as Qian & Murphy
(2011) powerfully demonstrate⇒ next slides
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Toy example: DGP

Qian & Murphy (2011) consider the
following DGP:
• X ∼ uniform(−1, 1)
• Y(1) = (X − 1/3)2

• Y(0) = −(X − 1/3)2

⇒ τ(X) = 2(X − 1/3)2
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Toy example: oracle

We estimate CATEs with the correct
(quadratic) model
⇒ τ̂∗(X) = τ(X)
⇒ MSE(τ̂∗(X)) = 0
⇒ All estimated CATEs non-negative
⇒ Treat everybody: π∗(X) = 1
⇒ Highest possible value function

achieved: Q(π∗) = 36/81 (green area)
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Toy example: linear fit

We estimate CATEs with a misspecified
linear model
⇒ τ̂ lin(X) = 4/9− 2/3X
⇒ MSE(τ̂ lin(X)) = 0.7
⇒ Some CATEs erroneously negative
⇒ πlin(X) = 1[X < 2/3]
⇒ Lower value function: Q(πlin) = 29/81

(green + blue area)

treat don't treat

Q=29/81
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Toy example: ATE

We estimate CATEs with a misspecified
constant model (ATE)
⇒ τ̂ate(X) = 8/9
⇒ MSE(τ̂ate(X)) = 0.95
⇒ ATE positive
⇒ Treat everybody: πate(X) = 1
⇒ Highest possible value function

achieved: Q(πate) = 36/81

treat everybody

Q=36/81
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Lesson learned

We would intuitively expect that the better we estimate heterogeneous effects,
the better our resulting policy using the CES rule (at least I did)

However, lower MSE of CATE does not imply higher value function:

MSE(τ̂ lin(X)) < MSE(τ̂ate(X)) but Q(πlin) < Q(πate)

Methods that minimize MSE of CATEs focus on this only, but do not care about any
downstream policy learning they might be used for

Remark: Note the resemblance to our discussion why MSE minimization in treated
and controls separately is not the best strategy to minimize CATE MSE
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A different objective function

For CATE estimation we minE[(τ̂(X)− τ(X))2]

Instead, the objective function of policy learning is to max the value function

π∗ = argmax
π

E[Y(π(X))] = argmax
π

Q(π) (2)

and the optimal value is Q∗ := Q(π∗)

An equivalent way is to minimize regret (difference to optimal value)

π∗ = argmin
π

Q∗ − Q(π)︸ ︷︷ ︸
R(π)

(3)

both are equivalent as Q∗ is just a constant
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A practical look at the objective function

The objective function can be represented in many different forms

Especially one has proven very useful if we want to use ML for policy learning

We center the value function around a benchmark policy that assigns treatments
via a fair coin flip (50-50 chance of being treated, πcoin ∼ Bernoulli(0.5))

π∗ = argmax
π

Q(π) = argmax
π

Q(π)−[0.5E[Y(1)] + 0.5E[Y(0)]︸ ︷︷ ︸
Q(πcoin)

] (4)

= argmax
π

E[|τ(X)| sign(τ(X)) (2π(X)− 1)]︸ ︷︷ ︸
A(π)

(5)

where (2π(X)− 1) ∈ {−1, 1} is one if policy assigns treatment and minus one if not
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Rewrite objective function

Suppressing dependence of π on X, we write

π∗ = argmax
π

Q(π) = argmax
π

E[Y(π)] = argmax
π

E[Y(π)]−[0.5E[Y(1)] + 0.5E[Y(0)]]

= argmax
π

E[πY(1) + (1− π)Y(0)]− 0.5E[Y(1)]− 0.5E[Y(0)]

= argmax
π

E[(π − 0.5)Y(1)] + E[(0.5− π)Y(0)] = argmax
π

E[(π − 0.5)(Y(1)− Y(0))]

= argmax
π

2E[(π − 0.5)(Y(1)− Y(0))]

= argmax
π

E[(2π − 1)(Y(1)− Y(0))]

LIE
= argmax

π
E[(2π − 1)τ(X)]

= argmax
π

E[|τ(X)| sign(τ(X)) (2π(X)− 1)]

b/c all manipulations leave the maximum unchanged and Y(π) = πY(1) + (1− π)Y(0)
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Rewrite objective function (bonus)

Note that we could also cast it as minimization problem

π∗ = argmax
π

E[|τ | sign(τ) (2π − 1)]

= argmax
π

E[|τ | (1[τ > 0]− 1[τ < 0]) (2π − 1)]

= argmax
π

E[|τ | (21[τ > 0]− 1) (2π − 1)]

= argmax
π

E[|τ | (41[τ > 0]π − 21[τ > 0]− 2π)]

= argmax
π

(−2)E[|τ | (1[τ > 0]2 − 21[τ > 0]π + π2)]

= argmin
π

E[|τ | (1[τ > 0]− π)2]

where we use that 1[τ > 0] = 1[τ > 0]2 and π = π2

⇒ This objective function is zero if the policy always coincides with the indicator that
CATE is positive
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”Intuition”

A(π) := E[|τ(X)| sign(τ(X)) (2π(X)− 1)] measures the advantage of a policy
compared to random allocation

This helps us to understand what drives our policy learning objective:
• If sign(τ(X))(2π(X)− 1) = 1, i.e. if the policy picks the better treatment for X,
we earn the absolute value of the CATE

• If sign(τ(X))(2π(X)− 1) = −1, i.e. if the policy picks the worse treatment for X,
we lose the absolute value of the CATE

⇒ We need to get it right for those with biggest CATEs, those with CATEs close to
zero are negligible

⇒ This shows the difference to CATE MSE minimization, where we need to find
good approximations everywhere

18



Example (1/2)

Consider π(X) = 1[X > −0.8]
⇒ We misclassify 10% and lose a lot of
value because we misclassify those with
highest CATE
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Example (2/2)

Consider π(X) = 1[X < 0.8]
⇒ We (again) misclassify 10% but less
because they would have benefited not too
much anyways
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Offline policy learning with binary
treatments



Identification as usual

Until now we operated in a world with known PO or at least known CATE functions

In reality we need to first identify the value function to be able to optimize it

Identification follows like in previous lectures from randomization or from strong
ignorability assuming that X contains all confounders and common support

Following the standard recipe, the value function is identified as

Q(π) = E[Y(π(X))] = E[π(X)Y(1) + (1− π(X))Y(0)]
= E[π(X)m(1, X) + (1− π(X))m(0, X)]

This means, e.g, that the optimal policy is identified as

π∗ = argmax
π

E[Y(π(X))]

= argmax
π

E[π(X)m(1, X) + (1− π(X))m(0, X)]
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Identification of value function

Q(π) = E[Y(π(X))]
= E[π(X)Y(1) + (1− π(X))Y(0)]
LIE
= E[E[π(X)Y(1) + (1− π(X))Y(0) | X]]
= E[π(X)E[Y(1) | X] + (1− π(X))E[Y(0) | X]]
= E[π(X)E[Y(1) | W = 1, X] + (1− π(X))E[Y(0) | W = 0, X]]
Cons
= E[π(X)E[Y | W = 1, X] + (1− π(X))E[Y | W = 0, X]]
= E[π(X)m(1, X) + (1− π(X))m(0, X)]
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Candidate policies

Another question that we did not touch so far was about the permissible policies

There are good reasons to think about this issue more carefully:

• Practical: In practice we often need policy rules that are easy to
communicate and that respect fairness or budget constraints

• Statistical: Stoye (2009, 2012) notes that the regret of unrestricted learned
policies can become larger than from random assignment

⇒ The literature agrees so far that we should aim to find the best policy within a
predefined class of policies Π
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Estimation (1/2)

Equation (4) suggests that policy learning boils down to a weighted classification
problem

We want to classify the sign of the CATE while favouring correct classifications
with larger absolute CATEs

Only problem is that we do not know the CATE

Athey and Wager (2021) recommend to use an old buddy for estimation, the
pseudo-outcome ỸATE = m̂(1, X)− m̂(0, X) + W(Y−m̂(1,X))

ê(X) − (1−W)(Y−m̂(0,X))
1−ê(X)

⇒ We need to estimate the nuisance parameters or reuse ỸATE of previous step
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Estimation

The resulting weighted classification problem

π̂ = argmax
π∈Π

 1
N

N∑
i=1

|Ỹi,ATE|︸ ︷︷ ︸
weight

sign(Ỹi,ATE)︸ ︷︷ ︸
to be classified

function to be learned︷ ︸︸ ︷
(2π(Xi)− 1)

 (6)

can be solved by any method that

• classifies a binary outcome/response: sign(ỸATE) ...
• ... with weights |ỸATE| ...
• ... using covariates/predictors X

This is a standard problem in supervised ML (usually the part next to regression)

Potential candidates are decision trees/forests, Logistic Lasso, Support Vector
Machines, ...
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Properties

Athey and Wager (2021) show that this procedure minimizes regret faster as the
sample grows than alternative procedures that would only use outcome
regression or inverse probability weighting

This requires the familiar conditions on the estimation of the nuisance
parameters in ỸATE as previously (high-quality, cross-fitting)

Again this is the result of the Neyman-orthogonality property that was already
responsible for the nice properties of estimators based on ỸATE previously
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Simulation notebook: Offline policy learning

Application notebook: Offline policy learning
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Offline policy learning with multiple
treatments



Beyond binary treatments

In many settings, we have not only one treatment option, but multiple

Multiple treatment notation:
W ∈ {0, ..., T}
Y(w)
Y =

∑T
w=0 1[W = w]Y(w)

D(w) = 1[W = w]
ew(x) = P[W = w | X = x]
π(x) ∈ {0, ..., T}
Y(π(X))
Q(π) = E[Y(π(X))]

Multiple treatment
PO under treatment w
Observed outcome
Indicator for being in treatment w
Probability of receiving w
Policy rule
PO under policy π(X)
Value function
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A harder problem

Again we want to find the value maximizing policy: π∗ = argmaxπ Q(π)

However, with more than two options the trick of classifying signs of CATEs fails
because it is now ambiguous what’s the alternative treatment

Instead, we really have to find the maximum of Q(π)

Again we can use AIPW scores to make progress

Remember that the Conditional Average Potential Outcome is identified as

E[Y(w) | X = x] = E
[
m(w, x) + D(w)(Y −m(w, x))

ew(x)︸ ︷︷ ︸
=: Γw

∣∣∣∣ X = x
]

(7)
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Identification of optimal policy

The optimal policy under multiple treatments is identified as

π∗ = argmax
π

Q(π) = argmax
π

E[Y(π(X))] = argmax
π

E

[ T∑
w=0

1[π(X) = w]Y(w)
]

LIE
= argmax

π
E

[ T∑
w=0

E[1[π(X) = w]Y(w) | X]
]

= argmax
π

E

[ T∑
w=0

1[π(X) = w]E[Y(w) | X]
]

= argmax
π

E

[ T∑
w=0

1[π(X) = w]E[Γw | X]
]

(8)
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Estimation of optimal policy (1/2)

Equation (8) motivates the estimation procedure of Zhou, Athey & Wager (2023):

Using estimated nuisance parameters as always, we calculate the observation and
treatment specific AIPW pseudo-outcomes

Γ̂i,w = m̂(w, X) + D(w)(Y − m̂(w, X))
êw(X)

and store them in a N× T + 1 matrix

Γ̂ =

 Γ̂1,0 · · · Γ̂1,T
... . . . ...

Γ̂N,0 · · · Γ̂N,T



30

https://pubsonline.informs.org/doi/abs/10.1287/opre.2022.2271


Estimation of optimal policy (2/2)

The empirical optimization problem that we need to solve is

π̂ = argmax
π∈Π

{
1
N

N∑
i=1

T∑
w=0

1[π(X) = w]Γ̂i,w

}

This looks and is ugly as this is a so-called non-convex optimization problem

⇒ There is no fast/direct way of computing the estimated optimal policy

We basically need to check the value function of all possible policies

This can be a computational nightmare
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Example (1/2)

Example: W ∈ {0, 1, 2} with two candidate rules π1(X) and π2(X)

Γ̂ =


Γ̂1,0 Γ̂1,1 Γ̂1,2

Γ̂2,0 Γ̂2,1 Γ̂2,2
...

...
...

Γ̂N,0 Γ̂N,1 Γ̂N,2

 ;π1(X) =


2
0
...
1

 ; Q̂(π1) =


Γ̂1,2

Γ̂2,0
...

Γ̂N,1


Mean of Q̂(π1) estimates the expected outcome under rule π1(X)
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Example (2/2)

Example: W ∈ 0, 1, 2 with two candidate rules π1(X) and π2(X)

Γ̂ =


Γ̂1,0 Γ̂1,1 Γ̂1,2

Γ̂2,0 Γ̂2,1 Γ̂2,2
...

...
...

Γ̂N,0 Γ̂N,1 Γ̂N,2

 ;π2(X) =


2
2
...
0

 ; Q̂(π2) =


Γ̂1,2

Γ̂2,2
...

Γ̂N,0


Mean of Q̂(π2) estimates the expected outcome under rule π2(X)

Compare Q̂(π1) and Q̂(π2) and choose policy with larger value
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Optimal decision tree

Zhou et al. (2023) propose to focus on decision trees as class of possible policies

However, greedy splitting makes little sense in the multiple treatment setting

Zhou et al. (2023) provide a clever algorithm that searches through all possible
splits for a fixed depth

But still it can take ages to run

It is implemented in the R package policytree
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Example

Female <= 0

Vocational

True

Computer

False

(a) Depth 1

Past income <= 50260

Female <= 0

True

Past income <= 54740

False

Vocational Computer Computer Language

(b) Depth 2

Source: Knaus (2022) check replication notebook if you want to see the full
pipeline from ATEs to GATEs to IATEs to policy learning with multiple treatments
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Discussion policy learning

Policy learning is arguably the most valuable part of Causal ML

Previously we needed to derive policy recommendations based on the results of
evaluation results in a more or less principled way

Policy learning promises at least to directly target the objective function of the
policy maker and to optimize it in a data-driven way

Applications in social sciences are still in their infancies

⇒ Very exciting field
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Loads of open questions

• How to properly incorporate budget or capacity constraints in the algorithm?
• How to tune the policy learner?
• Statistical inference?
• What is the outcome I really would like to optimize?
• Which variables are allowed? #Fairness
• Is assignment based on CATEs really so bad?
• ...

First steps in the applied literature, but even less experience than with the new
evaluation methods
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Ceterum censeo a fancy method alone is not a credible
identification strategy

⇒ separate identification and estimation
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