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Abstract

Differentiated products demand systems are a workhorse for understanding the price effects
of mergers, the value of new goods, and the contribution of products to seller networks. Berry,
Levinsohn, and Pakes (1995) provide a flexible random coefficients logit model which accounts
for the endogeneity of prices. This article reviews and combines several recent advances related
to the estimation of BLP-type problems and implements an extensible generic interface via the
PyBLP package. Monte Carlo experiments and replications suggest different conclusions than
the prior literature: multiple local optima appear to be rare in well-identified problems; good
performance is possible even in small samples, particularly when “optimal instruments” are
employed along with supply-side restrictions.

If Python is installed on your computer, PyBLP can be installed with the following command:
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1. Introduction

Empirical models of supply and demand for differentiated products are one of the most important

achievements of the New Empirical Industrial Organization (NEIO) literature of the last thirty

years. The workhorse model is the Berry, Levinsohn, and Pakes (1995) or BLP approach, which

provides an estimator that allows for flexible substitution patterns across products, addresses the

potential endogeneity of price, and also provides an algorithm for recovering that estimator. It has

the advantage that it both scales well for large numbers of potential products, and can utilize both

aggregated and dis-aggregated data. The BLP model and its variants have been used in a wide

variety of applications: understanding the value of new goods (Petrin, 2002), evaluating the price

effects of mergers (Nevo, 2001, 2000a), and studying two-sided markets (Fan, 2013; Lee, 2013). The

BLP approach has been applied to a wide number of different questions and industries including

hospital demand and negotiations with insurers (Ho and Pakes, 2014) and students’ choice of schools

(Bayer et al., 2007; Nielson, 2017). Moreover, the BLP approach has been extremely influential in

the practice of prospective merger evaluation, particularly in recent years.

The model itself is both quite simple to understand, and quite challenging to estimate. At its

core, it involves a nonlinear change of variables from the space of observed market shares to the

space of mean utilities for products. After this nonlinear change of variables, the BLP problem is

simply either a single linear instrumental variables (IV) regression problem (demand alone), or a

two equation (supply and demand) linear IV regression problem. This means that a wide variety

of tools for that class of problems are available to researchers.

The main disadvantage of the BLP estimator is that parameters governing the nonlinear change

of variables are unknown. This results in a non-linear, non-convex optimization problem with a

simulated (or approximated) objective function. The problem must be solved iteratively using non-

linear optimization software, and because of the non-convexity, there is no mathematical guarantee

that a solution will always be found. This has led to some frustration with the BLP approach (see

Knittel and Metaxoglou, 2014). There is also the fear that when estimation is slow or complicated,

researchers may cut corners in undesirable ways and sacrifice modeling richness for computational

speed.
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Despite its popularity, this literature lacks a standardized implementation that is sufficiently

general to encompass a wide range of potential problems and use cases. Instead, nearly every

researcher implements the estimator on their own with problem-specific tweaks and adjustments.

This makes replication extremely challenging, and also makes it hard to evaluate different method-

ological and statistical improvements to the estimator.

The goal of this article is to present best practices for the estimation of BLP-type models, some

of which are well-known in the literature, others of which are lesser known, and others still are

novel to this article. In addition to presenting these best practices, we provide a common frame-

work, PyBLP, which offers a general implementation of the BLP approach as a Python package.1

We recommend installing PyBLP on top of an Anaconda distribution, which comes pre-packaged

with PyBLP’s primary dependencies.2 Users of other languages such as MATLAB, Julia, and R

can easily use PyBLP from their language of choice with packages that allow for between-language

interoperability.3 The PyBLP software is general, extensible, and open-source so that it can be

modified and extended by scholars as new methodological improvements become available. The

hope is that these best practices, along with this standardized and extensible software implemen-

tation, reduce some of the barriers to BLP-type estimation, making these techniques accessible to

a wider range of researchers and facilitating replication of existing results.

This article and the accompanying package build upon a growing literature focused on method-

ological innovations and econometric properties of the BLP estimator. In Section 3, we discuss

several such improvements and evaluate them with Monte Carlo studies in Section 5. Our objec-

tive is to compare practices in the literature and arrive at best practices suitable for a large number

of use cases. We then implement these best practices as defaults in PyBLP. We organize the best

practices around several of the tasks in the BLP estimator: solving the fixed point, optimization,

1We chose Python over other languages because its popularity is growing, its package management systems are
well-established, it has a mature scientific computing ecosystem, and as a general purpose language, it is conducive
to the development of larger projects.

2PyBLP depends on standard packages in Python’s scientific ecosystem: NumPy, SciPy, SymPy, and Patsy. It
also depends on a companion package PyHDFE (Gortmaker and Tarascina, 2020), which implements algorithms for
absorbing high-dimensional fixed effects.

3Python can be called from MATLAB with the py command, from Julia with PyCall (Johnson, 2019), and from R
with reticulate (Allaire et al., 2017), which we give an example of in Section 6. Scientific computing in all of these
high-level languages is backed by similar implementations of numerical linear algebra routines such as LAPACK.
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integration, and solving counterfactual pricing equilibria.

In addition to best practices, we also provide some novel results. We provide a slightly different

characterization of the BLP problem in Section 2 which facilitates estimation with simultaneous

supply and demand restrictions. We show how this characterization can be made amenable to large

numbers of fixed effects, and in Section 4 we characterize an approximation to optimal instruments

in the spirit of Amemiya (1977) or Chamberlain (1987). Our characterization of the problem under

optimal instruments allows us explore parametric identification with supply and demand in a way

that parallels Berry and Haile (2014) and makes explicit cross equation and exclusion restrictions.

On the matter of instruments, our results generally coincide with and build on the existing

literature. Gandhi and Houde (2019) construct what they refer to as differentiation IV, whereas

Reynaert and Verboven (2014) evaluate a feasible approximation to the optimal IV in the sense of

Amemiya (1977) or Chamberlain (1987).4 We provide routines to construct both sets of instru-

ments. Our results with respect to differentiation IV are mostly consistent with Gandhi and Houde

(2019) in that they outperform other simple, yet commonly used forms of the BLP instruments

(functions of exogenous product characteristics) such as sums or averages. Our results with respect

to approximate optimal instruments are broadly similar to those of Reynaert and Verboven (2014)

in that the performance gains under correctly specified supply models are substantial both in terms

of bias and efficiency.

Our simulations indicate somewhat more positive results than previously observed in the liter-

ature when additional moments from correctly specified models of supply are also included. These

findings are somewhat different from those of Reynaert and Verboven (2014), which suggest that

once optimal demand-side instruments are included, the addition of a supply side has limited ben-

efit.5 The explanation for this phenomenon is directly related to our theoretical result in Section 4.

Indeed, our simulations indicate that with both a correctly specified supply side and optimal instru-

ments, the finite sample performance of the estimator is good even with relatively weak excluded

cost-shifters, which supports the “folklore” around the original Berry et al. (1995) article: supply

4It is worth mentioning that the actual optimal IV are well-known to be infeasible. See Berry et al. (1995) or
Berry et al. (1999).

5This is most likely because Reynaert and Verboven (2014) examine scenarios with strong cost-shifters.
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restrictions are valuable in improving the econometric performance of the estimator.

Employing best practices and the PyBLP software, we are able to revisit recent findings re-

garding methodological issues and innovations in BLP-type estimators in large-scale Monte Carlo

experiments. Although many of our results confirm previous findings in the literature, we arrive at

different conclusions on several occasions. The findings of Knittel and Metaxoglou (2014) suggest

that the BLP problem is often characterized by a large number of local optima, and that these local

optima can produce a wide range of potential elasticities and welfare effects. In contrast, our expe-

rience is that after implementing best practices, parameter estimates and counterfactual predictions

are quite stable across starting values and choices of optimization software, both open-source and

commercial. Likewise, Armstrong (2016) finds that absent strong cost shifting instruments, as the

number of products increases, BLP instruments (characteristics of own and competing products)

become weak, and it becomes difficult to reliably estimate demand parameters. Our findings sug-

gest that with a correctly specified supply side and approximations to the optimal instruments,

parameter estimates can still be estimated precisely. In general, we struggle to replicate some of

the difficulties found in the previous literature, suggesting that the finite sample performance of

BLP estimators may be better than previously thought.

There is also a recent literature of alternative approaches to BLP problems employing different

algorithms or statistical estimators, which we do not directly address. This is not meant to suggest

that there is anything wrong with these approaches, but merely that they are beyond the scope

of this article. For example, Dubé et al. (2012) propose an alternative estimation algorithm based

on the mathematical programming with equilibrium constraints (MPEC) method of Su and Judd

(2012) and which Conlon (2017) extends to generalized empirical likelihood estimators. Although

the MPEC approach has some advantages, we focus on the more popular nested fixed point problem.

Lee and Seo (2015) provide an approximate BLP estimator, which is asymptotically similar to the

BLP estimator though differs in finite sample. Hong et al. (Forthcoming) propose a Laplace-type

estimator (LTE). Salanie and Wolak (2019) propose another approximate estimator that can be

estimated with linear IV, and is helpful for constructing good starting values for optimization.

Other common modifications to the BLP model that are beyond the scope of this article include
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the pure characteristics model of Berry and Pakes (2007) and the inclusion of micro moments, as

in Petrin (2002) and Berry et al. (2004a).6

2. Model and Estimation

In Table 1 we summarize the notation that we will introduce in this section. Bold font denotes a

Jt× 1 vector for all products within a market. For example, st and pt denote vectors of shares and

prices for all products in market t. For clarity, we partition the parameter space θ into three parts:

the K1 × 1 vector θ1 contains the demand parameters β, the K3 × 1 vector θ3 contains the supply

parameters γ, and the remaining parameters, including the price coefficient α and parameters

governing heterogeneous tastes θ̃2, are contained in the K2 × 1 vector θ2.

Demand

Berry et al. (1995) begin with the following problem. An individual i in market t = 1, . . . , T receives

indirect utility from selecting a particular product j:

Uijt = δjt + µijt + εijt. (1)

Consumers then choose among Jt = {0, 1, . . . , Jt} discrete alternatives—including the outside al-

ternative, denoted j = 0, which gives Ui0t = εi0t for all (i, t)—and select the option that provides

the most utility:

dijt =


1 if Uijt > Uikt for all k 6= j,

0 otherwise.

(2)

Aggregate market shares are given by integrating over heterogeneous consumer choices:7

sjt =

∫
dijt(δt,µit) dµit dεit.

6PyBLP supports an approximation to the pure characteristics model and common forms of micro moments, but
we do not analyze econometric performance of these modifications in this article.

7Here we define δt, µit, and εit as the Jt × 1 vectors with elements δjt, µijt, and εijt.
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When the εijt are i.i.d. with the type I extreme value distribution,8

sjt(δt, θ̃2) =

∫
exp(δjt + µijt)∑
k∈Jt exp(δkt + µikt)

f(µit|θ̃2) dµit. (3)

This is often referred to as a mixed logit or random coefficients logit because each individual i’s

demands are given by a multinomial logit kernel where f(µit|θ̃2) denotes the mixing distribution

over the heterogeneous types i and θ̃2 parameterizes this heterogeneity.9 Indeed, θ2 contains all of

the parameters in the model related to the endogenous objects that are common to both supply

and demand: the parameters θ̃2 governing heterogeneous tastes µit and the price coefficient α.

The key insight of Berry (1994) or Berry et al. (1995) is that we can perform a nonlinear change

of variables: δt ≡ D−1
t (St, θ̃2) where St denotes the Jt vector of observed market shares (see Berry

and Haile, 2014). For each market t, (3) represents a system of Jt equations in Jt unknowns δt.

Given the δt(St, θ̃2) that solves that system of equations; along with some covariates xjt and vjt,

prices pjt, and a structural error ξjt; under an additivity assumption, one can write the index:10

δjt(St, θ̃2) = [xjt, vjt]β − αpjt + ξjt. (4)

With the addition of some instruments ZDjt , which include the exogenous regressors xjt and vjt, one

can construct moment restriction conditions of the form E[ξjtZ
D
jt ] = 0.

Supply

We can derive an additional set of supply moments from the first order conditions of firms. The

conventional approach assumes that multi-product oligopoly firms simultaneously set prices inde-

pendently for each market t.

Consider the profits of firm f , which for a single market t controls several products Jft and sets

8Identification generally requires normalizing one of the options. As mentioned above, the typical choice is to
normalize indirect utility from the outside option: Ui0t = εi0t.

9McFadden and Train (2000) show that any random utility model (RUM) can be approximated with some mixture
of multinomial logits with a sufficient basis of characteristics xjt. The mixed multinomial logit itself dates back to at
least Boyd and Mellman (1980) and Cardell and Dunbar (1980).

10Well-known special cases are logit without any parameters, in which D−1
t = log sjt − log s0t, and nested logit

with one parameter, in which D−1
t = log sjt − log s0t − ρ log sj|ht where sj|ht is the market share of j in its nest h.
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prices pjt. We take the first-order conditions of the profit function as follows:

max
pjt : j∈Jft

∑
j∈Jft

sjt(pt) · (pjt − cjt),

sjt(pt) +
∑
k∈Jft

∂skt
∂pjt

(pt) · (pkt − ckt) = 0.

It is helpful to write the first-order conditions in matrix form so that for a single market t,

st(pt) = ∆t(pt) · (pt − ct),

∆t(pt)
−1st(pt)︸ ︷︷ ︸

ηt(pt,st,θ2)

= pt − ct.
(5)

Here the multi-product Bertrand markup ηt(pt, st, θ2) depends on ∆t(pt, st, θ2), a Jt × Jt matrix

of intra-firm demand derivatives given by:

∆t(pt) ≡ −Ht �
∂st
∂pt

(pt), (6)

which is the element-wise Hadamard product of two Jt × Jt matrices: the matrix of demand

derivatives with each (j, k) entry given by
∂sjt
∂pkt

and the holdings or ownership matrix Ht with each

(j, k) entry indicating whether the same firm produces products j and k.11

This enables us to recover an estimate of marginal costs cjt = pjt−ηjt(θ2), which in turn allows

us to construct additional supply side moments. We can parametrize marginal cost as12

fMC(pjt − ηjt(θ2)) = fMC(cjt) = xjtγ1 + wjtγ2 + ωjt (7)

and construct moment conditions of the form E[ωjtZ
S
jt] = 0. The idea is that we can use observed

prices, along with information on demand derivatives and firm conduct, to recover markups ηjt and

then marginal costs cjt. This also imposes a functional form restriction on marginal costs, which

11Each (j, k) entry equals 1 if both j, k ∈ Jft for some f ∈ Ft, and equals 0 otherwise. We can easily consider
alternative forms of conduct such as Single- or Multi-Product Oligopoly, or Monopoly. Miller and Weinberg (2017)
consider estimating a single parameter Ht(κ) and Backus et al. (2020) use PyBLP test various forms of Ht(κ).

12The most common choice for fMC(·) is the identity function. Some authors also consider fMC(·) = log(·). In
practice this constrains marginal costs to be always positive.
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depends on both product characteristics xjt and the marginal cost shifters wjt that are excluded

from demand.

Some researchers may wish to allow marginal costs to depend on the quantity sold (either in

market share or total units). This was true in the original Berry et al. (1995) article, which allowed

log cjt to depend on log qjt to allow for returns to scale. PyBLP allows for this, but we do not explore

quantity dependent marginal costs in our simulations. See Appendix A.3 for more information.

The Estimator

We can construct a GMM estimator using our supply and demand moments. To do so, we stack

their sample analogues to form

g(θ) =

gD(θ)

gS(θ)

 =

 1
N

∑
j,t ξjtZ

D
jt

1
N

∑
j,t ωjtZ

S
jt


and construct a nonlinear GMM estimator for θ = [β, α, θ̃2, γ] with some weighting matrix W :13

min
θ

q(θ) ≡ g(θ)′Wg(θ). (8)

The θ2 parameters are common to both supply and demand, govern the endogeneous objects, and

require at least one excluded instrument each.14 To be explicit we write the entire program as

13Some of the literature implicitly scales the objective by N2. For example, Nevo (2000b) defines the objective
for the demand-only problem as q(θ) = ξ′ZDWZ′Dξ. Unless stated otherwise, we leave objective values unscaled
throughout this article.

14Berry and Haile (2014) show that D−1
t (St, θ̃2) depends on the endogenous market shares of all products within

the market, thus each parameter in θ̃2 requires an additional instrument.
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follows:

min
θ

q(θ) ≡ g(θ)′Wg(θ),

g(θ) =

 1
N

∑
j,t ξjtZ

D
jt

1
N

∑
j,t ωjtZ

S
jt

 ,
ξjt = δjt − [xjt, vjt]β + αpjt,

ωjt = fMC(pjt − ηjt)− [xjt, wjt]γ,

ηt = ∆t(θ2)−1st,

Sjt = sjt(δt, θ2) ≡
∫

exp(δjt + µijt)∑
k∈Jt exp(δkt + µikt)

f(µit|θ̃2) dµit.

(9)

This estimator and its econometric properties are discussed in Berry et al. (1995) and Berry et al.

(2004b). Our focus is not going to be on the econometric properties of θ̂ but on rather various

algorithms by which one might obtain θ̂. Technically, we need to solve this program twice. Once

to obtain a consistent estimate for W and a second time to obtain the efficient GMM estimator.

Many applied articles omit the supply side from (9), and instead estimate θ = [θ1, θ2] using

demand moments alone, which is what PyBLP will do if the user does not provide a supply side.

An important justification for not including the supply side is that it may be misspecified if the

researcher does not know (or is not willing to assume) either the functional form of marginal costs

fMC(·) or firm conduct Ht.15 The program without a supply side is as follows:

min
θ

qD(θ) ≡ gD(θ)′WgD(θ),

gD(θ) =
1

N

∑
j,t

ξj,tZ
D
jt ,

ξjt = δjt − [xjt, vjt]β + αpjt,

Sjt = sjt(δt, θ2) ≡
∫

exp(δjt + µijt)∑
k∈Jt exp(δkt + µikt)

f(µit|θ̃2) dµit.

(10)

15There are other cases where the supply side may be misspecified. Many of these stem from misspecification
around the functional form of ηt or Ht. Important examples include: possible collusion, Cournot rather than
Bertrand competition and double marginalization (Bonnet and Dubois, 2010; Villas-Boas, 2007).
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The Nested Fixed Point Algorithm

In addition to providing an estimator, Berry et al. (1995) provide an algorithm for solving (9), which

attempts to simplify the problem. Parameters on exogenous regressors enter the problem linearly;

we concentrate out [θ1, θ3] and perform a nonlinear search over just θ2 because [θ̂1(θ2), θ̂3(θ2)] are

implicit functions of other parameters. Our modified algorithm is given below.

Algorithm 1 Nested Fixed Point

For each guess of θ2:

(a) For each market t, solve Sjt = sjt(δt, θ2) for δ̂t(St, θ2) ≡ δ̂t(θ2).

(b) For each market t, use the Jt × 1 vector δ̂t(θ2) to construct the Jt × Jt matrix ∆t(pt, δ̂t(θ2), θ2)

(c) For each market t, recover η̂t(θ2) = ∆t(δ̂t(θ2), θ2)−1St by solving the Jt × Jt linear system.

(d) Stack up δ̂t(Sjt, θ2) and ĉjt(δ̂t(θ2), θ2) = fMC(pjt − η̂jt(δ̂t(θ2), θ2)) and use linear IV-GMM to recover
[θ̂1(θ2), θ̂3(θ2)] following the recipe in Appendix A.1. The following is our somewhat different formulation:

δ̂jt(St, θ2) + αpjt = [xjt, vjt]β + ξjt,

fMC(pjt − η̂jt(θ2)) = [xjt, wjt]γ + ωjt.
(11)

(e) Construct the residuals:

ξ̂jt(θ2) = δ̂jt(θ2)− [xjt, vjt]β̂(θ2) + αpjt,

ω̂jt(θ2) = ĉjt(θ2)− [xjt, wjt]γ̂(θ2).
(12)

(f) Stack the sample moments:

g(θ2) =

[
1
N

∑
jt ξ̂jt(θ2)ZDjt

1
N

∑
jt ω̂jt(θ2)ZSjt

]
. (13)

(g) Construct the GMM objective: q(θ2) = g(θ2)′Wg(θ2).

Our setup differs slightly from many BLP applications.16 A key distinction occurs in step

(d) where αpjt appears on the left-hand side of (11). The second distinction occurs in step (f),

which requires that we stack the supply and demand equations appropriately. We provide a de-

tailed derivation in Appendix A.1. Later in Section 3, we show how this setup can be adapted

to incorporate fixed effects when supply and demand are estimated simultaneously. This requires

that the endogenous markup term ηjt(st,pt, δt(θ2), θ2) can be written as a function of only the θ2

parameters and does not depend on [θ1, θ3].17

We provide analytic gradients for the BLP problem with supply and demand in Appendix A.2.

16Arguably it is more in line with the original Berry et al. (1995) article.
17Why? We already know we can invert the shares to solve for δt(θ2), and the matrix of demand derivatives

∂skt
∂pjt

= −
∫
αisikt(δt(θ2),µit)[1(j = k)− sijt(δt(θ2),µit)]f(µit, αi|θ2) dµit again depends only on θ2, which contains

the price coefficient α.
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One advantage of the BLP algorithm is that is performs a nonlinear search over only K2 nonlinear

parameters. Consequently, the Hessian matrix is only K2 × K2. This implies relatively minimal

memory requirements. Also, the IV-GMM regression in step (d) concentrates out the linear pa-

rameters [θ1, θ3]. This implies that large numbers of linear parameters can be estimated essentially

for free, which is important if one includes a large number of fixed effects such as product- or

market-level fixed effects.18 In fact, other than (a) the remaining steps are computationally trivial.

As is well known, (a)-(c) can be performed separately for each market across multiple processors.

The main disadvantage is that all parameters are implicit functions of other parameters, par-

ticularly of θ2. The objective is a complicated implicit function of θ2. Once we incorporate any

heterogeneous tastes, the resulting optimization problem is non-convex. In general the complexity

of this problem grows rapidly with the number of nonlinear θ2 parameters, whereas a high number

of linear [θ1, θ3] parameters are more or less for free.

Nested Logit and RCNL Variants

The random coefficients nested logit (RCNL) model of Brenkers and Verboven (2006) instead as-

sumes that εijt are not i.i.d. but rather follow the assumptions of a two-level nested logit. This

model is popular in applications where the most important set of characteristics governing substi-

tution is categorical. This has made it popular in studies of alcoholic beverages such as distilled

spirits (Conlon and Rao, 2017; Miravete et al., 2018) and beer (Miller and Weinberg, 2017).

Much like the random coefficients model integrates over a heterogeneous distribution where

each individual type follows a logit distribution, the RCNL model integrates over a heterogeneous

distribution where each individual now follows a nested logit. Within group correlation is governed

by a new parameter ρ. We expand our definition of θ2 to include the nesting parameter ρ so that

θ2 ≡ [α, ρ, θ̃2]:19

Uijt = δjt + µijt(θ̃2) + εijt(ρ).

The primary difference from the nested logit is that the inclusive value term for all products Jht in

18For example, Nevo (2001, 2000b) includes product fixed effects.
19The nesting parameter can also be indexed as ρh so as to vary by group h. We support both types of nesting

parameters in PyBLP.
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nest h ∈ H = {1, . . . ,H} now depends on the consumer’s type i:

sjt(δt, θ2) =

∫
exp[(δjt + µijt)/(1− ρ)]

exp[IViht(δt,µit)/(1− ρ)]
· exp IViht(δt,µit)

1 +
∑

h∈H exp IViht(δt,µit)
f(µit|θ̃2) dµit, (14)

in which the inclusive value term is

IViht(δt,µit) = (1− ρ) log
∑
j∈Jht

exp

(
δjt + µijt

1− ρ

)
.

A challenge for estimation is that δt 7→δt + logSt − log st(δt, θ2) is no longer a contraction.

Instead, the contraction must be dampened:20

δt 7→δt + (1− ρ) [logSt − log st(δt, θ2)] . (15)

This creates an additional challenge because the rate of convergence for the contraction in (15) can

become arbitrarily slow as ρ→ 1.21 Thus as more consumers substitute within the nest, this model

becomes much harder to estimate. Our simulations will demonstrate that this can be problematic.

As is well known, the relation in (15) has an analytic solution in the absence of random co-

efficients when µijt = 0. This model reduces to the regular nested logit for which the following

expression was derived in Berry (1994):

δjt = logSjt − logS0t − ρ logSj|ht

where Sj|ht is the market share of j in its nest h.

3. Algorithmic Improvements

In each subsection, we review several methods from the literature, including some of our own design.

Although we make many of these methods available as options in PyBLP, our focus is on finding

20See Grigolon and Verboven (2014) for a derivation. The expression in (15) does not precisely match Grigolon
and Verboven (2014) because of a minor typesetting error.

21This can be formalized in terms of the modulus of the contraction mapping or the Lipschitz constant. See Dubé
et al. (2012) for more details.
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best practices that are fastest and most reliable for most users. Later, we provide support for these

decisions with our Monte Carlo studies.

Incorporating Many Fixed Effects

There is a long tradition of extending the demand side utility to incorporate product or market

fixed effects. For example Nevo (2001, 2000a) allows for product fixed effects ξj so that

δjt = [xjt, vjt]β − αpjt + ξj + ∆ξjt.

These can manageably be incorporated as dummy variables in the linear part of the regression as

there are only J = 24 products in these articles.

With weekly UPC-store level Nielsen scanner data it is not uncommon for there to be Jt > 3,500

products (true in both distilled spirits and ready-to-eat cereal). There are approximately T = 500

weeks t of Nielsen scanner data from 2006-2016. Incorporating store-week fixed effects ξst for only

100 stores could reach the order of 50,000 such fixed effects. Allowing for UPC-store fixed effects

ξjs can imply 100,000 or more fixed effects.22 Clearly, the least squares dummy variable (LSDV)

approach will not scale with tens or hundreds of thousands of fixed effects. We might consider

the within transformation to remove the fixed effects, though we cannot directly incorporate both

a within transformation and a supply side without re-writing the problem because of endogenous

prices pjt. We show how to re-write the problem in Appendix A.1. Define Y D
jt , Y S

jt , X
D
jt , and XS

jt

as follows:

Y D
jt ≡ δ̂jt(θ2) + αpjt = [xjt, vjt]β + ξjt ≡ XD

jtβ + ξjt,

Y S
jt ≡ pjt − η̂jt(θ2) = [xjt, wjt]γ + ωjt ≡ XS

jtγ + ωjt.

Stacking the system yields YD
YS


︸ ︷︷ ︸
Y

=

XD 0

0 XS


︸ ︷︷ ︸

X

β
γ

+

ξ
ω

 . (16)

After re-arranging terms and re-stacking, this is just a conventional linear IV problem in terms

22See Backus et al. (2020) and Conlon and Rao (2017) for examples of product-chain or store-week fixed effects.
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of (Y,X) where the endogenous parameters have been incorporated into Y . This means that the

within transform can be used to absorb a single-dimensional fixed effect. Consider two dimensions

of fixed effects j = 1, . . . , J and t = 1, . . . , T :

Ỹjt = Yjt − Y j· − Y ·t,

X̃jt = Xjt −Xj· −X ·t.

The simplest approach might be to iteratively demean: remove the product mean Xj·, update

Xjt, remove the market mean X ·t, and repeat this process until Xj· = X ·t = 0. This method of

alternating projections (MAP) can be done in a single iteration if Cov(X ·t, Xj·) = 0. However, if

the two dimensions of fixed effects are correlated this can require many iterations and can be quite

burdensome.

The LSDV approach handles the burden of correlation but requires constructing the annihilator

matrix to remove all the fixed effects. This approach requires inverting a (J +T )× (J +T ) matrix.

Constructing and inverting such a large matrix is often infeasible because of memory requirements.

Several algorithms have been proposed to deal with this problem. The most popular algorithm is

perhaps that of Correia (2016), based on the accelerated MAP approach of Guimarães and Portugal

(2010).23

The BLP application is unusual in that we re-run regressions using the same X variables many

times. However, the left hand side Y variables δ̂jt(θ2)+αpjt and ĉ(θ2) change with θ2, which means

the entire procedure needs to be repeated for each guess of θ2. For more than a single dimension

of fixed effects, PyBLP supports a number of different algorithms.24 These algorithms have the

advantage that the linear explanatory variables in X can be residualized only once, whereas the left

hand side variables Y still need to be residualized for each guess of θ2. The savings are particularly

large if the dimensions of XD or XS are large.

23The Correia (2016) algorithm is implemented for the linear IV model in the Stata command ivreghdfe.
24PyBLP supports a number of different MAP acceleration schemes, the LSMR solver of Fong and Saunders

(2011), and for two-dimensional fixed effects, the algorithm of Somaini and Wolak (2016). Comparison of these
different approaches is beyond the scope of this article—for a more in-depth discussion, refer to Correia (2016).
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Solving for the Shares

The main challenge of the Nested Fixed Point (NFXP) algorithm is solving the system of market

shares: Sjt = sjt(δt, θ2). Because the NFXP approach holds θ2 fixed, rather than solve a system of

N nonlinear equations and N unknowns, we solve T systems of Jt equations and Jt unknowns in

δt in parallel.25

Consider a single market t where we search for the Jt vector δt which satisfies:

Sjt = sjt(δt|θ2) =

∫
exp(δjt + µijt)∑
k∈Jt exp(δkt + µikt)

f(µit|θ̃2) dµit. (17)

Although mathematically there is a unique solution, it is impossible, numerically speaking, to

choose a vector δt that solves (17) exactly. Instead, we must solve the system of equations to some

tolerance. We express the tolerance in terms of the log difference in shares:

‖logSjt − log sjt(δt, θ2)‖∞ ≤ ε
tol. (18)

There is a tradeoff with regard to the tolerance of the inner loop in (18). If the tolerance is too

loose, the numerical error propagates to the rest of the estimation routine.26 It is also possible to

set a tolerance which is too tight and thus can never be satisfied. This is particularly problematic

when summing over a large number of elements. We prefer to set εtol between 1E-14 and 1E-12 as

the machine epsilon or detectable difference between two double precision floating point numbers

is around 1E-16 (on 64-bit architectures).

Jacobian Based Approaches

A direct approach would be to solve the system of Jt equations and Jt unknowns using Newton-type

methods. Consider the following Newton-Raphson iteration:27

δh+1
t 7→δht − λ ·Ψ−1

t (δht , θ̃2) · st(δht , θ̃2). (19)

25This same idea provides the sparsity of share constraints in the MPEC approach of Dubé et al. (2012).
26Dubé et al. (2012) show how error propagates from (18) to the estimates of θ̂. Lee and Seo (2016) provide a more

precise characterization of this error when using Newton’s method.
27In practice it is generally faster to solve the linear system: Ψt(δ

h
t , θ̃2)(δh+1

t − δht ) = −st(δht , θ̃2).

15



Each Newton-Raphson iteration would require computation of the Jt vector of market shares

st(δ
h
t , θ̃2), the Jt × Jt Jacobian matrix Ψt(δ

h
t , θ̃2) = ∂st

∂δt
(δht , θ̃2), and its inverse Ψ−1

t (δht , θ̃2).

There are some alternative quasi-Newton methods which solve variants of (19). These variants

generally involve modifying the step-size λ or approximating Ψ−1
t (δht , θ̃2) in ways that avoid cal-

culating the inverse Jacobian at each step. Quasi-Newton methods are often relatively fast when

they work, though they need not converge (e.g., they may oscillate or not reach a resting point)

and may be sensitive to starting values.28

Our experience indicates that the Levenberg-Marquardt (LM) algorithm is the fastest and most

reliable Jacobian-based solution method.29 LM minimizes the following least-squares problem in

order to solve the following Jt × Jt system of nonlinear equations:

min
δt

∑
j∈Jt

[Sjt − sjt(δt, θ̃2)]2.

The idea is to update our guess of δht to δht + xt where xt is a Jt × 1 vector. The LM update is

given by the solution to the following linear system of equations:

[Ψ′tΨt + λ diag(Ψ′tΨt)] · xt = Ψ′t[St − st(δt, θ2)] (20)

where xt is multiplied by an approximation to the Hessian. This has the advantage that for λ = 0

the algorithm takes a full Gauss-Newton step and for λ large it takes a step in the direction of

the gradient. The additional diagonal term also guarantees the invertibility of the approximate

Hessian, even as it becomes nearly singular.

As in all iterative solution methods there are two primary costs: the cost per iteration and the

number of iterations until convergence. The cost per iteration is driven primarily by the cost of

28Though the BLP problem is a non-convex system of nonlinear equations, there are some properties which make
it amenable to quasi-Newton methods. The market share function sjt(δt|θ̃2) is C∞ with respect to δt, is bounded
between (0, 1), and agrees with its Taylor approximation at any δt. Fox et al. (2012) and Iaria and Wang (2019)
establish the real analyticity of the mixtures of logits under different conditions on the mixing distribution. Within
some basin of attraction, quasi-Newton methods will be quadratically convergent. For an example of a quasi-Newton
solution to (19), see Houde (2012). Another useful property is that with a strictly positive outside good share,
∂s0t
∂pkt

> 0 for all k, which guarantees strict diagonal dominance of Ψt and hence that it is always nonsingular.
29Specifically we use the lm option of scipy.optimize.root, which calls the LM routine from MINPACK (More et al.,

1980).
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computing (rather than inverting) the Jacobian matrix which involves Jt×Jt numerical integrals.30

Fixed Point Approaches

Berry et al. (1995) also propose a fixed point approach to solve the Jt × Jt system of equations in

(17). They show that the following fixed point relation f(δt) = δt is a contraction mapping:31

f : δh+1
t 7→δht + logSt − log st(δ

h
t , θ̃2). (21)

This kind of contraction mapping is linearly convergent with a rate of convergence that is propor-

tional to L(θ̃2)/[1−L(θ̃2)] where L(θ̃2) is the Lipschitz constant. Because (21) is a contraction, we

know that L(θ̃2) < 1. Dubé et al. (2012) show that for the BLP contraction the Lipschitz constant

is L(θ̃2) = maxδt ||IJt −
∂ log st
∂δt

(δt, θ̃2)||∞.

A smaller Lipschitz constant implies that (21) converges more rapidly. Dubé et al. (2012) show

in simulation that all else being equal, a larger outside good share generally implies a smaller

Lipschitz constant.32 Conversely, as the outside good share becomes smaller, the convergence of

the fixed point relationship takes increasingly many steps.

Accelerated Fixed Points

Given a fixed point relationship there may be faster ways to obtain a solution to f(δt) = δt than

direct iteration on the fixed point relation as in (21). There is a large literature on accelera-

tion methods for fixed points. Most of these methods use information from multiple iterations

(δht , δ
h+1
t , δh+2

t , f(δht ), f(f(δht ))) to approximate Ψt or its inverse.33

Reynaerts et al. (2012) conduct extensive testing of various fixed point acceleration methods

and find that the SQUAREM algorithm of Varadhan and Roland (2008) works well on the BLP

30A typical entry is
∂sjt
∂δkt

=
∫

[1(j = k)sijt(µit) − sijt(µit)sikt(µit)]f(µit|θ̃2) dµit. The primary cost arises from
numerical integration over heterogeneous types. Even for a large market with Jt = 1,000 products, inverting a
1,000× 1,000 matrix is easy relative to numerically computing J2

t integrals.
31Here f(·) defines a contraction iteration and is not to be confused with the functional form for marginal costs

fMC(·) or the distribution of heterogeneity f(µit|θ̃2).
32A simple but novel derivation. Consider the matrix ∂ log st

∂δt
= IJt − diag−1(st)Γt(θ̃2) in which element (j, k) is

1(j = k) − s−1
jt

∫
sijt(µit)sikt(µit)f(µit|θ̃2) dµit. This implies that L(θ̃2) = maxδt [maxj s

−1
jt

∑
k |Γjkt(δt, θ̃2)|]. A

rough approximation to the term inside the square braces is maxj
∑
k |skt| · |Corr(sijt, sikt)| < 1− s0t.

33Many of these algorithms are special cases of Anderson Mixing.
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contraction in (21). The intuition is to form a residual rh which is determined by the change

between the current iteration δht and the next iteration f(δht ), as well as the change in the residual

from this iteration to the next vh to form an estimate of the Jacobian. The residual and the

curvature can also be used to construct a step-size αh. The exact algorithm is described below:34

δh+1
t 7→δht − 2αhrh + (αh)2vh,

αh =
(vh)′rh

(vh)′vh
, rh = f(δht )− δht , vh = f(f(δht ))− 2f(δht ) + δht .

(22)

In general the SQUAREM method is 3 to 6 times faster than direct iteration on the BLP contraction

in (21). The idea is to take roughly the same number of steps as Newton-Raphson iteration, but

to reduce the cost of steps by avoiding calculating the Jacobian directly. In fact, all of the terms in

(22) are computed as a matter of course, because these are just iterations of δht and f(δht ). Unlike

direct iteration on (21), there is technically no convergence guarantee as the iteration on (22) is no

longer a contraction.

There are alternative acceleration methods in addition to SQUAREM. Reynaerts et al. (2012)

also consider DF-SANE which takes the form δh+1
t 7→δht − αhf(δht ) with a different choice of the

step-size αh. They find performance is similar to SQUAREM though it can be slightly slower and

less robust. Consistent with Reynaerts et al. (2012), we find the SQUAREM to be the fastest

and most reliable accelerated fixed point approach. We find that the Jacobian-based Levenberg-

Marquardt approach gives similar reliability and slightly better performance, though comparisons

can be problem dependent.

Optimization

Optimization of the GMM objective function for the BLP problem can be challenging. The BLP

problem in (9) represents a non-convex optimization problem.35 This has some important implica-

tions. First, the Hessian need not be positive semidefinite at all values of θ2. This also means that

no optimization routine is guaranteed to find a global minimum in a fixed amount of time. This

critique applies both to derivative-based quasi-Newton approaches and to simplex-based Nelder-

34PyBLP includes a Python port of the SQUAREM package from R.
35Absent unobserved heterogeneity or random coefficients the problem is globally convex.
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Mead type approaches. Well-known recommendations involve considering a number of different

starting values and optimization routines, verifying that θ̂ satisfies both the first order conditions

(the gradient is within a tolerance of zero) and second order conditions (the Hessian matrix has all

positive eigenvalues).36 Both of these are reported by default in PyBLP.

The PyBLP package has built-in support for the optimization routines implemented in the

open-source SciPy library and can also interface with commercial routines such as Artleys Knitro.

In Section 5, we compare different routines implemented in SciPy and Knitro. The optimization

interface to PyBLP is generic in the sense that any optimizer can be used if it is implemented as

a Python function, or, with the help of packages that allow for between-language interoperability,

a function in most other languages.37 Though non-derivative based routines such as Nelder-Mead

have been frequently used in previous articles, they are not recommended.38 Indeed, the most

important aspect of PyBLP optimization is that it calculates the analytic gradient for any user-

provided model, including models that incorporate both supply and demand moments or fixed

effects.39 Analytic gradients provide a major speedup in computational time and also generally

improve the chances that the algorithm converges to a valid minimum.40

Some optimization routines allow the user to input constraints on parameters, which can speed

up estimation and prevent the optimization routine from considering “unreasonable” values. An

important example are box constraints on the parameter space, which restrict components of θ2

to θ
(`)
2 ∈ [θ

(`)
2 , θ

(`)
2 ]. Some typical constraints are that demand slopes down and that random

coefficients have nonnegative but bounded variances.41 This is particularly helpful because large

36When there are parameter bounds, these conditions are based on the projected gradient and the reduced Hessian
instead.

37In PyBLP’s documentation we give an example of such a “custom” routine by constructing a brute force solver
that searches over a grid of parameter values. This flexibility should allow users to experiment with routines without
much difficulty or “upgrade” if better routines are developed. For more on interoperability, see Footnote 3.

38Both Dubé et al. (2012) and Knittel and Metaxoglou (2014) find that derivative-based routines outperform the
simplex-based Nelder-Mead routine both in terms of speed and reliability. Our own tests concur with this prior
opinion.

39We could not find any examples of simultaneous estimation of supply and demand with analytic gradients in
the literature. A likely explanation is that the derivatives of the markup term

∂ηjt
∂θ2

are quite complicated. See
Appendix A.2 for a derivation.

40A promising alternative is automatic differentiation (AD). We chose to implement analytic gradients because
ceding control to an AD library can limit one’s ability to handle numerical errors, which are pervasive in the BLP
problem. However, AD is a promising technique for structural estimation and we are optimistic going forward.

41Requiring non-negative variances on random coefficients is not absolutely necessary because the objective function
should be symmetric about zero so that g(σ) = g(−σ). This is because we optimize over the Cholesky root of the
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values for random coefficients can generate some of the numerical issues that we discuss below.

In practice, a common issue is that the default termination tolerances in optimization software

can be relatively loose. We provide some examples in Section 6. For termination conditions that

are sensitive to the scale of the GMM objective value, this problem is made worse when N is

large.42 This highlights the importance of trying different optimizer configurations, particularly if

the algorithm terminates surprisingly early.

Consistent with the prior literature, we recommend trying multiple optimizers and starting

values to check for agreement. Our recommendation is that researchers try Knitro’s Interior/Direct

algorithm first if it is available,43 and then try a BFGS-based routine, ideally with constraints

on the parameter space such as SciPy’s L-BFGS-B solver. An advantage of commercial solvers

is that they work well out of the box, and do not require much in the way of configuration.

However, our simulations indicate that when properly configured, most optimizers arrive at the same

parameter estimates, satisfying both first and second order conditions. For the NFXP algorithm, the

choice of solver seems much less important than proper configuration of parameter bounds, analytic

gradients, and tight termination tolerances, which are all implemented by default in PyBLP.44

Numerical Issues and Tricks

There are several numerical challenges posed by the BLP problem, most of which are related to

the exponentiated indirect utilities and the logit denominator:
∑

j exp(δjt + µijt). If some values

in this summation are on the order of exp(−5) ≈ 0.0067 and others are exp(30) > 1013, their sum

may be rounded. This rounding occurs because most computers follow the IEEE-754 standard for

floating point arithmetic and on most 64-bit architectures this means that floating point operations

have around 15 significant digits. A loss of precision arises when taking summations of many

numbers with different scales, and depending on the situation, may or may not be problematic.

A related problem is overflow, which is likely to arise when attempting to compute large values

covariance for the random coefficients LL′ = Σ rather than the covariance matrix itself.
42In theory, the scale of the objective q(θ) = g(θ)′Wg(θ) should be unimportant. By default, PyBLP scales by

N so that after two-step GMM the objective equals the Hansen (1982) J statistic, the scale of which is invariant to
problem size. We leave objective values unscaled throughout this article unless stated otherwise.

43The main disadvantage of Knitro is that it is not freely available—it must be purchased and installed by end-users.
44Commercial solvers likely have other advantages for other formulations of the problem, such as the MPEC

approach of Dubé et al. (2012), for which they recommend using Knitro.
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such as exp(800). This can mean that sjt(δt, θ̃2) → 1 whereas skt(δt, θ̃2) → 0 for k 6= j, leading

optimization routines to fail.45

There are a number of solutions to these problems. One solution is to avoid large values in the

argument of exp(·) by limiting the magnitudes of random coefficients through the box constraints

described above. Another simple solution involves working market by market and avoiding very

large summations. One additional method would be to use a summation algorithm that attempts to

preserve precision such as Kahan Summation.46 We found this to be substantially slower and thus

do not implement it by default. As suggested in Skrainka (2012b), yet another approach is to use

extended precision arithmetic. Again, we found this to be substantially slower without improving

our statistical performance.47

Another way to guarantee overflow safety is to use a protected version of the log-sum-exp

function: LSE(x) = log
∑

k expxk = a + log
∑

k exp(xk − a). By choosing a = max{0,maxk xk},

use of this function helps ensure overflow safety when evaluating the multinomial logit function.

This is a well-known trick from the applied mathematics and machine learning literatures, but

there does not appear to be evidence of it in the literature on BLP models. This is implemented

by default, as the additional computational cost appears to be trivial.

After implementing these suggestions, numerical issues are less common but can still occur. For

example the log-sum-exp function does not guard against occasional underflow, and in edge cases

the weighting matrix W or the intra-firm matrix of demand derivatives ∆t may be nearly singular.

If not dealt with, issues like these can cause the optimization routine to fail, which highlights the

importance of robust and verbose error handling.48

Implementations of the BLP method have used a number of “tricks” to speed up the algorithm.

One well-known example involves working with exp(δjt) in place of δjt in the contraction mapping

to avoid transcendental functions like exp(·). This has little benefit on modern architectures as

45In this case δt cannot be solved for in sjt(δt, θ̃2) = Sjt, so the inversion for the mean utilities fails.
46In Python this is implemented as math.fsum.
47PyBLP supports numpy.longdouble with the pyblp.options.dtype setting. On most Unix platforms, it is

implemented with a 128-bit long double. For problems very with very small shares, or for problems with very large
numbers of products, additional precision might still be valuable.

48When PyBLP encounters such a numerical error, it replaces the problematic object with a “reasonable” coun-
terpart (e.g., corresponding values from the last optimization iteration or the Moore-Penrose pseudo-inverse of a
near-singular matrix) and provides an informative warning or error message.
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transcendentals are highly optimized and exp(·) of a billion numbers takes less than a second.

Another trick is using δt from a previous guess of θ2 as a starting value. The SQUAREM and

LM algorithms we suggest for solving the system of equations are relatively insensitive to starting

values, so these sorts of speedups are not particularly useful. A “vectorization” speedup used in

Nevo (2000b) and Knittel and Metaxoglou (2014) is to stack all markets together and construct

cumulative sums of exp(δjt + µijt). We find that this is approach is dominated by parallelization

across markets T ; furthermore, this approach will result in a loss of precision as T →∞.

Heterogeneity and Integration

An important aspect of the BLP model is that it incorporates heterogeneity via random coefficients.

There are several ways to redefine the integral in (3):49

sjt(δt, θ̃2) =

∫
exp(δjt + µijt)∑
k∈Jt exp(δkt + µikt)

f(µit|θ̃2) dµit (23a)

=

∫
exp[δjt + µijt(ν̃it(νit), θ̃2)]∑
k∈Jt exp[δkt + µikt(ν̃it(νit), θ̃2)]

φ(νit) dνit (23b)

=

∫
[0,1]K2

exp[δjt + µijt(ν̃it(uit), θ̃2)]∑
k∈Jt exp[δkt + µikt(ν̃it(uit), θ̃2)]

duit. (23c)

The first approach in (23a) draws directly from the distribution of unobserved tastes f(µit|θ̃2). The

second approach in (23b) integrates over the K2-dimensional standard normal φ(νit) and transforms

the draws into a correlated normal using the Cholesky root L(θ̃2) of the covariance matrix so that

ν̃it = L(θ̃2) · νit and µijt =
∑

k∈K2
x

(k)
jt · ν̃

(k)
it . The third method in (23c) integrates over the K2-

dimensional hypercube [0, 1]K2 and transforms the draws using the inverse CDF of the mixing

distribution: ν̃it = F−1(uit|θ̃2). Under all three formulations the integral is “well behaved” in the

sense that the integrand is bounded on [0, 1], smooth, and infinitely continuously differentiable on

C∞.50

We can approximate the integral at a finite set of It nodes νit and weights wit. Together the

49We assume that heterogeneity is normally distributed to simplify some expressions. PyBLP currently accommo-
dates normal and lognormal distributions of parameters. Others such as half-normal or exponential distributions can
be implemented with a different change of variables.

50For a proof that all the derivatives are bounded see Iaria and Wang (2019).
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nodes and weights (νit, wit) define an integration rule. We use sjt(δt, θ̃2) to denote the true value

of the integral and use sjt(δt, θ̃2; It) to denote the approximation with It nodes:

sjt(δt, θ̃2) ≈ sjt(δt, θ̃2; It) ≡
∑
i∈It

wit · sijt(δt,µit(νit, θ̃2)). (24)

Pseudo-Monte Carlo

The simplest integration rule is pseudo-Monte Carlo (pMC) integration. Here pseudo-random draws

νit are taken from one of the three candidate distributions in (23a)-(23c) and are used to calculate

sijt(δt,µit(νit, θ̃2)).51 Each draw νit is equally weighted: wit = I−1
t .

How accurate is the approximation in (24) under the pMC approach? Define the simulation

error as εpMC
It

= sjt(δt, θ̃2) − sjt(δt, θ̃2; It). A straightforward application of the Central Limit

Theorem shows that:52

εpMC
It

d−→ N

(
0,
√
V (sjt)/It

)
with V (sjt) =

∫ (
sijt(δt,µit)− sjt(δt, θ̃2)

)2
f(µit|θ̃2) dµit.

The main advantage of pMC integration is that it avoids the curse of dimensionality because the

simulation error is not directly related to the dimension of the integral. Its main disadvantage is

that the simulation error declines slowly in the number of draws at an O
(
I
−1/2
t

)
rate. For a more

extensive discussion of the pMC approach for BLP problems including bias correction and standard

error adjustments, consult Freyberger (2015).

Quasi-Monte Carlo

Quasi-Monte Carlo (qMC) rules use deterministic sequences to more evenly cover the unit hyper-

cube [0, 1]K2 in (23c). Integration error can be reduced by choosing low discrepancy sequences.53

A popular choice are Halton (1960) sequences. Train (2000), Bhat (2001), and Train (2009) report

51By default PyBLP follows (23b), which is popular because it allows one to fix the draws νit and simply re-scale

ν̃it as θ̃2 changes without adding additional randomness to the estimation procedure. If the draws change with each
estimation iteration this can create “chattering” because the simulated objective is not identical at every evaluation.

52See Chapter 7 of Judd (1998) for the derivation. It is easy to bound the variance term V (sjt) < 1.
53These are low discrepancy in that D∗It(u1,t, . . . uIt,t) ≤ c · I−1

t · (log It)
K2 where the star discrepancy D∗It bounds

integration error in the Koksma–Hlawka inequality: |sjt(δt, θ̃2)− sjt(δt, θ̃2; It)| ≤ VHK(sjt) ·D∗It(u1,t, . . . uIt,t). Here
VHK denotes bounded variation in the sense of Hardy-Krause. See Judd (1998) and Owen (2005) for more details.
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success with qMC sequences (Halton draws in particular) for maximum simulated likelihood (MSL)

estimators of mixed logit models. Nevo (2001) reports success with Halton sequences for the BLP

problem.

For fixed dimension of integration K2, the O
(
I−1
t · (log It)

K2
)

rate of qMC is expected to

outperform the O
(
I
−1/2
t

)
rate of pMC as the number of nodes It becomes large.54 Owen (1997)

shows that randomizing qMC sequences in a particular manner can give a O
(
I
−3/2
t · (log It)

K2
)

rate

for smooth integrands as in (23c). For these reasons, it is common to scramble qMC sequences.

Other common practices involve discarding the first few points and skipping others in-between

selected points rather than taking points sequentially.55

Variance Reduction and Importance Sampling

There are a number of additional techniques that have been used to reduce simulation error or vari-

ance. For example, Hess et al. (2006) and Brunner et al. (2017) employ Modified Latin Hypercube

Sampling (MLHS) for MSL and BLP problems, respectively. The MLHS approach takes a strati-

fied sample by cutting the unit hypercube into smaller hypercubes and then sampling within each

hypercube with pMC. Another common variance reduction technique is antithetic sampling which

exploits the symmetry of φ(νit) = φ(−νit) by taking each standard normal draw and reflecting it

through the origin.

Importance sampling is also common. Rather than drawing from the standard multivariate

normal distribution φ(νit), importance sampling instead proposes to draw from a biased distribution

q(νit). The idea is to draw more points where sijt(δt, νit, θ̃2) = sijt(δt,µit(νit(νit), θ̃2)) is large and

fewer where it is close to zero. To keep the value of the integral the same, the oversampled part of

the distribution places less weight w(νit) on each point, and more on the undersampled parts:

sjt(δt, θ̃2) =

∫
sijt(δt, νit, θ̃2) · φ(νit)

q(νit)︸ ︷︷ ︸
w(νit)

· q(νit) dνit.

54Because the constant term can be large, this is by no means a guarantee. Also one requires that 2K2 < It.
55By default, PyBLP scrambles Halton sequences with the recipe in Owen (2017) and discards the first 1,000 points

in each dimension. Otherwise the first few points can exhibit a high degree of correlation between dimensions.
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One challenge is that the optimal qjt(νit) is product specific.56 Berry et al. (1995) oversample

consumers with a small outside good by drawing from qt(νit) = φ(νit) · 1−si0t(δt,νit,θ̃2)
1−S0t where θ̃2 and

δt are replaced by consistent estimates.57

Quadrature

The other approach is Gaussian quadrature. Theoretically, the integrand is approximated with

a polynomial and then integrated exactly as polynomial integration is trivial. This amounts to

a weighted sum in (24) over a particular choice of (νit, wit). The main choice to make is the

polynomial order of the rule. As the order grows, more nodes are required but the accuracy of the

approximation improves.

Gaussian quadrature works best when certain conditions are met: that the integrand is bounded

and continuously differentiable. Thankfully, the logit kernel in (24) is always bounded between (0, 1)

and is infinitely continuously differentiable. There are a number of different flavors of quadrature

rules designed to best approximate integrals under different weighting schemes. The Gauss-Hermite

family of rules work best when f(νit) ∝ exp(−ν2
it), which (with a change of variables) includes

integrals over a normal density. Nested rules offer an alternative where for a given polynomial

order p, they reuse the set of nodes from the rule with order p − 1.58 Both the advantage and

disadvantage of Gaussian quadrature rules is that they do a better job covering the “tail” of the

probability distribution. Although this increases the accuracy of the approximation, it can also

lead to very large values which create overflow issues.59 We prefer to use quadrature rules, and to

be careful of potential numerical issues when computing shares.

The Gaussian quadrature rules apply only to a single dimension. One way to estimate higher

dimensional integrals is to construct the product of single dimensional integrals. The disadvantage

56Heiss (2010) proposes an “adaptive importance sampler” for probit-type models. Brunner (2017) adapts this
to the BLP-type problem and reports success. This adaptive, optimal importance sampling requires updating the
weights wit as θ2 varies. For this reason, we don’t currently implement this approach as part of PyBLP.

57At the consistent estimate for θ̃2, the δt needs to be computed only once, so it is feasible to use a higher-precision
integration rule than is used for estimation. Berry et al. (1995) draw from qt(νit) with rejection sampling, and this
same procedure is implemented in PyBLP.

58In theory, this allows for adaptive accuracy without wasting calculations. When the error from numerical inte-
gration is large, the polynomial degree can be expanded to reduce the error.

59Essentially for some simulated individual i we have that sijt → 1 and sikt → 0. This problem has been previously
documented by Judd and Skrainka (2011) and Skrainka (2012b).
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of product rules is that if one needs It points to approximate the integral in dimension one, then

one needs Idt points to approximate the integral in dimension d. This is the so-called curse of

dimensionality.

The curse of dimensionality is a well-known problem in numerical analysis and several off-the-

shelf solutions exist. There are several clever algorithms for improving upon the product rule

for higher dimensional integration. Judd and Skrainka (2011) explore monomial cubature rules

whereas Heiss and Winschel (2008) use sparse grid methods to selectively eliminate nodes from

the product rules. One disadvantage of these methods is that they often involve negative weights

weights wit < 0, which can create problems during estimation or when trying to decompose the

distribution of heterogeneity (particularly for counterfactuals).

Integration in PyBLP

Though PyBLP allows for flexible, user-supplied distributions of random coefficients, by far the

most commonly employed choices in the literature are the independent normal, correlated normal,

and lognormal distributions for f(µit|θ̃2). PyBLP supports all of these distributions and provides

some specialized routines to handle these integrals with limited user intervention. There are a

number of different methods one can use to generate (νit, wit) for the normal case: pMC, Halton

sequences, MLHS, product rules, and sparse grids.

In general, we find that the best practice in low dimensions is to use product rules to a relatively

high degree of polynomial accuracy. In higher dimensions, Halton sequences and in particular

sparse grids appear to scale the best, both in our own Monte Carlo studies and in those of Judd

and Skrainka (2011) and Heiss and Winschel (2008).

Solving for Pricing Equilibria

Many counterfactuals of BLP-type problems involve perturbing either the market structure, marginal

costs, or both, and solving for counterfactual equilibrium prices. Being able to solve for equilib-

rium prices quickly and accurately is also crucial to generating the optimal instruments in the next
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section. The Bertrand-Nash first order conditions are defined by (5) for each market t:60

pt = ct + ∆t(pt,Ht)−1s(pt)︸ ︷︷ ︸
ηt(pt,Ht)

In order to recover marginal costs during estimation, one need only invert the Jt × Jt matrix

∆t(pt,Ht). Solving for counterfactual pricing equilibria is more difficult as it requires solving the

Jt × Jt nonlinear system of equations, often after replacing the ownership matrix Ht with a post-

merger counterpart H∗t :

pt = ct + ηt(pt,H∗t ). (25)

In general, solving this problem is difficult because it represents a non-convex, nonlinear system of

equations where one must simulate in order to compute ηt(pt,H∗t ) and its derivatives. Once one

incorporates both multi-product firms and arbitrary coefficients into the problem, both existence

and uniqueness of an equilibrium become challenging to establish.61

One approach might be to solve the system using Newton’s method, which requires calculating

the Jt × Jt Jacobian ∂ηt
∂pt

. The expression for the Jacobian involves the Hessian matrix of demand

∂2skt
∂ p2jt

as well as tensor products, and can be computationally challenging.62

The second, and perhaps most common approach in the literature is treating (25) as a fixed

point and iterating on pt 7→ct + ηt(pt,H∗t ).63 The problem is that although a fixed point of (25)

may represent the Bertrand-Nash equilibrium of (7), it is not necessarily a contraction. In fact, as

part of Monte Carlo experiments conducted in Armstrong (2016), the author finds that iterating

on (25) does not always lead to a solution and at least some fraction of the time leads to cycles.

60We suppress the dependence on the parameters θ2 as we hold everything fixed and solve for pt.
61Caplin and Nalebuff (1991) and Gallego et al. (2006) have results that apply to single product firms and linear in

price utility under logit demands. Konovalov and Sandor (2010) generalizes these results to logit demands with linear
in price utility and multi-product firms. With the addition of random coefficients, it is possible that the resulting
model will violate the quasi-concavity of the profit function that these results require. Morrow and Skerlos (2010)
avoid some of these restrictions but place other restrictions on indirect utilities. Existence and uniqueness are beyond
the scope of this article—we instead focus on calculating solutions to the system of first order conditions, assuming
such solutions exist.

62For example, Knittel and Metaxoglou (2014) do not update st(pt) and thus avoid fully solving the system of
equations. An Newton-type alternative with a finite-differenced Jacobian would be slow and ill-advised as there are
Jt derivatives for Jt markups and every derivative involves integration in order to compute both ∆t(pt) and st(pt).

63The “folklore” solution is to dampen this expression with some ρ and consider pt 7→ρ·pt+(1−ρ)·[ct + η∗t (pt,H∗t )].
This tends to be slower and more reliable, though we cannot find any theoretical justification for convergence.
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We were able to replicate this finding for similarly constructed Monte Carlo experiments between

1-5% of the time.

Our preferred approach borrows from the engineering literature and does not appear to be

well known in Industrial Organization, but in our experiments appears to be highly effective. We

follow Morrow and Skerlos (2011) who reformulate the solution to (5) by breaking up the matrix

of demand derivatives into two parts: a Jt × Jt diagonal matrix Λt, and a Jt × Jt dense matrix Γt:

∂st
∂pt

(pt) = Λt(pt)− Γt(pt),

Λjj,t =

∫
αi sijt(µit)f(µit|θ̃2) dµit,

Γjk,t =

∫
αi sijt(µit)sikt(µit)f(µit|θ̃2) dµit,

(26)

in which αi =
∂uijt
∂pjt

is the marginal dis-utility of price. Morrow and Skerlos (2011) then reformulate

the problem as a different fixed point that is specific to mixed logit demands:64

pt 7→ct + ζt(pt) where ζt(pt) = Λt(pt)
−1[H∗t � Γt(pt)](pt − ct)− Λt(pt)

−1st(pt). (27)

The fixed point in (27) is entirely different from that in (25) and coincides only at resting points.

Consistent with results reported in Morrow and Skerlos (2011), we find that (27) is around 3-12

times faster than Newton-type approaches and reliably finds an equilibrium.65

Perhaps most consequentially, the ability to solve for a pricing equilibrium rapidly and reliably

makes it possible to generate the Amemiya (1977) or Chamberlain (1987) feasible approximation

to the optimal instruments.

4. Supply and Demand: Optimal Instruments and Overidentifying Restrictions

In this section we focus on joint estimation of supply and demand under optimal instruments in

order to clarify the precise role of overidentifying restrictions in the parametric identification of

64This resembles a well known “folklore” solution to the pricing problem, which is to rescale each equation by its
own share sjt (see Skrainka, 2012a). For the plain logit, Λjj,t = αsjt.

65In PyBLP, iteration is terminated when the firms’ first order condition ||Λ(pt)(pt − ct − ζt(pt))||∞ is less than
a fixed tolerance. Morrow and Skerlos (2011) refer to this as the problem’s numerical simultaneous stationarity
condition.
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parameters. Absent information on firm conduct or the precise functional form for marginal costs,

many researchers estimate a demand side only.

As a way to improve performance, we can construct approximations to the optimal instruments

in the spirit of Amemiya (1977) or Chamberlain (1987). Approximations to the optimal instruments

were featured in both Berry et al. (1995) and Berry et al. (1999) but are not commonly employed in

many subsequent studies using the BLP approach in part because they are challenging to construct.

Reynaert and Verboven (2014) show that approximations to the optimal instruments can improve

the econometric performance of the estimator, particularly with respect to the θ2 parameters. The

form we derive is somewhat different from their expression, and arrives at different instruments for

supply and demand. Although the procedure itself is quite involved, the good news is that it does

not require much in the way of user input, and is fully implemented by the PyBLP software.

Derivation

Recall the GMM moment conditions are given by E[ξjt|ZDjt ] = 0 and E[ωjt|ZSjt] = 0 and the

asymptotic GMM variance depends on (D′Ω−1D ) where the expressions are given below:

D = E

[(
∂ξjt
∂θ

,
∂ωjt
∂θ

)∣∣∣∣Zt] , Ω = E


ξjt
ωjt

(ξjt ωjt)
∣∣∣∣∣∣∣Zt
 .

Chamberlain (1987) showed that the approximation to the optimal instruments are given by the

expected Jacobian contribution for each observation (j, t): E[Djt(Zt)Ω
−1
jt |Zt]. We use the word

“approximation” because the aforementioned expectation over the unobserved (ξjt, ωjt) lacks a
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closed form. We derive the components of the approximation below:66

Djt ≡



∂ξjt
∂β

∂ωjt
∂β

∂ξjt
∂α

∂ωjt
∂α

∂ξjt

∂θ̃2

∂ωjt

∂θ̃2
∂ξjt
∂γ

∂ωjt
∂γ


︸ ︷︷ ︸
(K1+K2+K3)×2

=



−xjt 0

−vjt 0

∂ξjt
∂α

∂ωjt
∂α

∂ξjt

∂θ̃2

∂ωjt

∂θ̃2

0 −xjt

0 −wjt


, Ωt ≡

 σ2
ξt

σξtωt

σξtωt σ2
ωt


︸ ︷︷ ︸

2×2

. (28)

A little calculation shows that for each market t and product j,

DjtΩ
−1
t =

1

σ2
ξσ

2
ω − σ2

ξω

·



−σ2
ωxjt σξωxjt

−σ2
ωvjt σξωvjt

σ2
ω
∂ξjt
∂α − σξω

∂ωjt
∂α σ2

ξ
∂ωjt
∂α − σξω

∂ξjt
∂α

σ2
ω
∂ξjt

∂θ̃2
− σξω

∂ωjt

∂θ̃2
σ2
ξ
∂ωjt

∂θ̃2
− σξω

∂ξjt

∂θ̃2

σξωxjt −σ2
ξxjt

σξωwjt −σ2
ξwjt


. (29)

For each column vector, the first and fifth entries are linear functions of xjt. Let Θ be a conformable

matrix of zeros and ones such that

(DjtΩ
−1
t )�Θ =

1

σ2
ξσ

2
ω − σ2

ξω

·



−σ2
ωxjt 0

−σ2
ωvjt σξωvjt

σ2
ω
∂ξjt
∂α − σξω

∂ωjt
∂α σ2

ξ
∂ωjt
∂α − σξω

∂ξjt
∂α

σ2
ω
∂ξjt

∂θ̃2
− σξω

∂ωjt

∂θ̃2
σ2
ξ
∂ωjt

∂θ̃2
− σξω

∂ξjt

∂θ̃2

0 −σ2
ξxjt

σξωwjt −σ2
ξwjt


. (30)

66In our Monte Carlo exercises we assume that (ξjt, ωjt) are jointly i.i.d. across all j and t so that Ωjt = Ω. This is
merely a matter of convenient notation, as extensions to heteroskedastic or clustered covariances are straightforward.
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We can partition our instrument set by column into “demand” and “supply” instruments:67

ZOpt,D
jt ≡ E[(Djt(Zt)Ω

−1
t �Θ)·1|Zt]︸ ︷︷ ︸

K1+K2+(K3−Kx)

, ZOpt,S
jt ≡ E[(Djt(Zt)Ω

−1
t �Θ)·2|Zt]︸ ︷︷ ︸

K2+K3+(K1−Kx)

. (31)

Here, we have K − Kx (where Kx denotes the dimension of common exogenous parameters xjt)

instruments for both supply and demand, though it is evident from (30) that the instruments

for the θ2 parameters are not the same.68 The optimal instruments from the linear portions of

demand and supply are simply exogenous regressors re-scaled by covariances, whereas the optimal

instruments from the θ2 parameters are nonlinear functions of the data.

Two sets of overidentifying restrictions arise from exclusion restrictions, which are made ex-

plicit in (30) where wjt and vjt show up in one equation but not the other. There are K3 − Kx

overidentifying restrictions from cost shifters wjt that are excluded from demand and K1 − Kx

demand shifters vjt that are excluded from supply. When we include simultaneous supply and

demand moments we also have cross equation restrictions. As shown in (30), we have 2× (K−Kx)

restrictions and K parameters. This gives us K − 2Kx overidentifying restrictions. The additional

K2 overidentifying restrictions in (30) come from the fact that we have two restrictions for each of

the θ2 parameters, including the price coefficient α.

Remark 1

Our version of the optimal instruments makes explicit the exclusion restrictions in the BLP model.

Perhaps most importantly, this tells us precisely where to find exclusion restrictions: something

that enters the other equation. Both the supply and demand moments are informative for the θ2

parameters. The role of the exogenous cost-shifters wjt is now explicit: they provide overidentifying

restrictions for demand that are informative about θ2 (including the term on price α). Likewise,

the role of the exogenous demand-shifters vjt is also made explicit: they provide overidentifying

67Here ( )·1 and ( )·2 denote the first and second column of the matrix in (30) and � is the elementwise Hadamard
product.

68This is true except for the knife-edge case where
∂ξjt
∂θ`

/
∂ωjt
∂θ`
∝ σ2

ξ+σξσ

σ2
ω+σξσ

. In fact, (30) highlights that the set of

instruments ZD and ZS should never be the same because of the different excluded variables.
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restrictions for supply which are informative about θ2 (and markups).69 The link between the

supply and demand side is the endogenous markup ηjt(θ2, ξt,ωt), which depends on the common

θ2 parameters. This has led
(∂ξjt
∂θ2

,
∂ωjt
∂θ2

)
-type instruments to be described as quantity shifters or

markup shifters.

Remark 2

It is worth pointing out that our derivation of the optimal instruments appears to vary from

derivations in the prior literature. Some of the prior literature using optimal instruments for BLP-

type problems suggests the resulting problem is just identified rather than over identified and relies

on the same set of instruments for both supply and demand. Reynaert and Verboven (2014) appear

to construct their version of optimal instruments by summing across the rows of (29) and excluding

either the first or third row.70 This gives K = K1 + K2 + K3 instruments and K unknowns so

that the model is just identified. However, because they stack (ξt,ωt) they effectively have 2N

rather than N observations. Conceptually, one way to view their formulation is that it imposes

E[ξjtZ
D
jt ] + E[ωjtZ

S
jt] = 0 rather than separately imposing E[ξjtZ

D
jt ] = 0 and E[ωjtZ

S
jt] = 0.

Remark 3

One alternative to the Chamberlain (1987) approximation to the optimal instruments is to instead

construct a semiparametric basis that spans the same vector space as the optimal instruments. This

approach was suggested by Newey (1990) and applied to conditional moment restriction models in

Ai and Chen (2003) and Donald et al. (2009). Given a conditional moment condition of the form

E[ξjt|Zt] = 0, one can instead write E[ξjtA(Zt)] = 0 for some choice of A(·). One could impose

that the moments hold at several quantiles of Zt or one can construct a polynomial sieve basis in

Zt. This approach also suffers from a curse of dimensionality as in high dimensions the number

of needed interaction terms explodes. The bases must also be chosen carefully as it is easy to

generate new instruments A(Zt) that are highly correlated with one another, which leads to the

69The idea of using demand shifters as overidentifying restrictions to identify conduct has a long history in industrial
organization going back at least as far as Bresnahan (1982), and was treated nonparametrically in Berry and Haile
(2014). In related work, Backus et al. (2020) show how to use (30) to test for firm conduct.

70We should mention that Reynaert and Verboven (2014) do not consider joint supply and demand as their main
specification.
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“many moments” problem of Newey and Smith (2004).71 To highlight this approach, we consider all

quadratic interactions of (xjt, wjt) when deriving instruments in “Own” characteristics. Gandhi and

Houde (2019) derive a second-order polynomial basis in the differences of product characteristics

djkt = xkt − xjt, and show that this basis has desireable properties and avoids several of the

aforementioned problems.

Constructing Feasible Instruments

The main challenge with implementing the optimal instruments is that we must take the expectation

of the Jacobian over the joint distribution of unobservables (ξt,ωt) for all products within a market.

We need to compute the following expectation:72

E

[
∂ξjt
∂θ2

,
∂ωjt
∂θ2

∣∣∣∣Zt] =

∫ [
∂ξjt
∂θ2

,
∂ωjt
∂θ2

]
(ξt,ωt, Zt; θ2)f (ξ1,t, . . . , ξJt,t, ω1,t, . . . , ωJt,t|Zt, θ2) dξt dωt.

One challenge is that this is an integral over 2Jt dimensions. A second challenge is that without

additional assumptions, f(ξt,ωt|Zt, θ2) is unknown. The third is that (st,pt) are endogenous in

that they depend on (ξt,ωt). This means we must construct estimates of E[pjt|Zt] and E[sjt|Zt]

in order to calculate
∂ξjt
∂θ2

. One approach would be to construct E[pjt|Zt] = p̂jt by regressing the

endogenous prices pjt on a series of exogenous regressors in a “first stage” regression (either linearly

or nonlinearly) and evaluating ŝt(p̂t, θ2).73 The other approach is to solve the nonlinear system of

equations for (p̂t, ŝt) directly. Here is what Berry et al. (1995) say about optimal instruments:

Unfortunately Dj(z) is typically very difficult, if not impossible, to compute. To calculate

Dj(z) we would have to calculate the pricing equilibrium for different (ξj , ωj) sequences,

take derivatives at the equilibrium prices, and then integrate out over the distribution

of such sequences. In addition, this would require an assumption that chooses among

multiple equilibria when they exist, and either additional assumptions on the joint dis-

71For example, the polynomial basis (1, x2, x3, x4) exhibits a high degree of correlation.
72Here f(·) denotes the joint distribution of unobservables (ξt,ωt) and is not to be confused with the distribution

of heterogeneity f(µit, θ̃2).
73Reynaert and Verboven (2014) suggest computing the approximation to the optimal instruments under an ad-

ditional assumption of perfect competition, so that E[pjt|Zt] = E[cjt|Zt] = [xjt, wjt]γ + ω̂jt. Likewise Gandhi and
Houde (2019) suggest using E[pjt|Zt] = p̂jt via linear or nonlinear regression in order to construct djkt = p̂kt − p̂jt.
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tribution of (ξ, ω), or a method for estimating that distribution.

The appendix of the NBER working paper version of Berry et al. (1999) is even less positive:

Calculating a good estimate of E[p|z] then requires (i) knowing or estimating the density

of the unobservables and (ii) solving at some initial guess for θ the fixed point that defines

equilibrium prices for each (ξ, ω) and then integrating this implicit function with respect

to the density of the unknown parameters. This process is too complicated to be practical.

We follow the possibly more accurate but costly recipe proposed by Berry et al. (1999) and

show that with other computational advances in PyBLP it is feasible to implement.

Algorithm 2 Feasible Approximation to Optimal IV (Berry et al., 1999)

After obtaining an initial estimate θ̂ = [β̂, α̂, θ̂2, γ̂], for each market t we can:

1. Obtain an initial estimate of Ω̂−1
jt by computing covariances of (ξ̂jt, ω̂jt). This can be i.i.d. or clustered at any

desired level.

2. Draw the Jt × 2 matrix of structural errors (ξ∗t ,ω
∗
t ) according to one of the below options.

3. Compute Ŷ Sjt = ĉjt = [xjt, wjt]γ̂ + ω∗jt and the exogenous portion of utility Ŷ Djt = [xjt, vjt]β̂ + ξ∗jt.

4. Use (Ŷ
D

t , Ŷ
S

t ,xt,wt,vt) to solve for equilibrium prices and quantities (p̂t, ŝt) with the ζ-markup approach in
(27). Note that this does not involve any endogenous quantities.

5. Treating (p̂t, ŝt,xt,wt) as data, solve for ξ̂t = ξt(p̂t, ŝt,xt,wt,vt, θ̂2) and ω̂t = ωt(p̂t, ŝt,xt,wt,vt, θ̂2).

6. Construct the Jacobian terms
∂ξ̂jt
∂θ2

(ξ∗t ,ω
∗
t ),

∂ω̂jt
∂θ2

(ξ∗t ,ω
∗
t ), and D̂jt(ξ

∗
t ,ω

∗
t ) using the analytic formulas in Ap-

pendix A.2.

7. Average D̂jt(ξ
∗
t ,ω

∗
t ) over several draws of (ξ∗t ,ω

∗
t ) to construct an estimate of E[D̂jt|Zt].

There are three options for generating (ξ∗t ,ω
∗
t ) suggested by Berry et al. (1999) and PyBLP makes all three available:

(a) “Approximate”: Replace (ξ∗t ,ω
∗
t ) with their expectation: (E[ξt], E[ωt]) = (0, 0). This is what Berry et al.

(1999) do. Because the function is nonlinear, this is a good approximation only if (ξt,ωt) are very small.

(b) “Asymptotic”: Estimate an asymptotic normal distribution for (ξjt, ωjt) ∼ N(0, Ω̂) and then draw (ξ∗t ,ω
∗
t )

from that distribution. This assumes that a normal approximation is reasonable.

(c) “Empirical”: Draw (ξ∗t ,ω
∗
t ) from the joint empirical distribution of (ξ̂jt, ω̂jt). This requires an assumption of

exchangeability.

In general, “asymptotic” and “empirical” approaches are not believed to be computationally

feasible, particularly when there are large numbers of draws for (ξ∗t ,ω
∗
t ). The costly step is Item 4

above, which involves solving for a new equilibrium (p̂t, ŝt) for each set of draws. These improved

optimal instruments are feasible primarily because of the advances we describe at the end of Sec-

tion 3, which drastically reduce the amount of time it takes to solve for equilibria. For relatively
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large problems, constructing optimal instruments may take several minutes. For smaller problems

such as Berry et al. (1995) or Nevo (2000b) it takes only several seconds. Our simulations indicate

that “approximate” performs as well as the more expensive options. Updating results with optimal

instruments in PyBLP requires only the last two lines of code in Figure 6.

This approach is not without its limitations. It requires both a way to generate (ξ∗t ,ω
∗
t ) and

an estimate of its covariance. This is straightforward if (ξ∗t ,ω
∗
t ) are i.i.d. or follow some other

known structure (e.g., clustered at the product level), but this requires additional assumptions.

Furthermore, the resulting 2Jt dimensional integral may be hard to approximate accurately for

distributions of (ξ∗t ,ω
∗
t ) that are highly skewed or otherwise do not lend well to approximation.

Finally, this approach leverages the fact that we have correctly specified the supply side. This may

be problematic if we assume a multi-product oligopoly price setting game and the true equilibrium

is described by collusive pricing, for example.

Demand Side Only

Most empirical applications of the BLP approach do not include a supply side, but estimate demand

alone. This has some advantages and some disadvantages. One important implication is that we lose

the cross-equation overidentifying restrictions, though we manage to retain the K3 −Kx exclusion

restrictions for demand from the cost-shifters wjt. Absent the supply side, we no longer have a

model for marginal costs and cannot solve for equilibrium (p̂t, ŝt). Instead, the user can supply

a vector of expected prices E[pt|ZDt ] or allow PyBLP to construct the vector with a first-stage

regression. Item 4 reduces to computing the market shares at the expected prices. The value of the

approximate optimal IV then depends on how well price is explained by the exogenous instruments

ZDt in the first stage.

One reason to omit the supply side is that including a misspecified supply side may be worse

than no supply side at all. The most controversial aspect of the supply side is often the conduct

assumption Ht used to recover the markup ηjt(Ht, θ2), which may not be known to the researcher

prior to estimation. The good news is that testing the validity of the supply side moments amounts

to a test of over-identifying restrictions. The simplest test involves estimating the full model with
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supply and demand to obtain θ̂, re-estimating the model using only demand moments gD to obtain

gD(θ̂D) along with the optimal demand-only weighting matrix WD, and then comparing GMM

objectives in a Hausman manner (see Newey, 1985):

LR = N [g(θ̂)′Wg(θ̂)− gD(θ̂D)′WDgD(θ̂D)] ∼ χ2
K−Kx . (32)

There are of course alternatives based on the LM (Score) and Wald tests, which are also supported

by PyBLP.

Remark 4

In our Monte Carlo study, we find a substantial additional benefit when incorporating both supply

side moments as well as the approximation to the optimal IV. These benefits substantially exceed

those of the demand moments with optimal IV or demand and supply moments with other instru-

ments. We offer two explanations: first, the difference between the nonlinear form of E[pt|ZDt ]

under the approximation to the optimal IV and its linear projection; and second, the value of

cross equation restrictions in (30), which use different expressions for
(∂ξjt
∂θ2

,
∂ωjt
∂θ2

)
. In our Monte

Carlo exercises, we are generally able to reject misspecified conduct assumptions, but not correctly

specified ones.

5. Monte Carlo Experiments

Here we provide some Monte Carlo experiments to illustrate some of the best practices laid out in

Sections 3 and 4.

Monte Carlo Configuration

Our simulation configurations are loosely based on those of Armstrong (2016). The distinguishing

feature is that we randomly draw utilities and costs, but solve for equilibrium prices and shares.74

Below, we describe our baseline configurations, and in the following sections describe how we modify

these configurations to compare different aspects of the problem.

74The first Monte Carlo studies to solve for price and quantity as an equilibrium for BLP-type models are likely
Skrainka (2012a), Armstrong (2016), and Conlon (2017). Without solving for equilibrium prices and quantities when
generating the data, markups are not “endogenous” and the relevance condition for many (BLP) IV are violated.
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For each configuration, we construct and solve 1,000 different synthetic datasets. In each of

T = 20 markets we randomly choose the number of firms from Ft ∈ {2, 5, 10} and have each firm

produce a number of products chosen randomly from Jft ∈ {3, 4, 5}. This procedure generates

variation in the number of firms and products across markets, which provides variation in our

instruments. Sample sizes are generally between 200 < N < 600.

We draw the structural error terms (ξjt, ωjt) from a mean-zero bivariate normal distribution with

variances σ2
ξ = σ2

ω = 0.2 and covariance σξω = 0.1. Linear demand characteristics are [1, xjt, pjt]

and supply characteristics are [1, xjt, wjt]. The one nonlinear characteristic is xjt and heterogeneity

is parameterized by µijt = σxxjtνit where we draw νit from the standard normal distribution for

1,000 different individuals in each market. We draw the two exogenous characteristics (xjt, wjt)

from the standard uniform distribution and compute the endogenous (pjt, sjt) with the ζ-markup

approach in (27). Demand-side parameters, [β0, βx, α] = [−7, 6,−1] and σx = 3, generate realistic

outside shares generally between 0.8 < s0t < 0.9. Supply-side parameters, [γ0, γx, γw] = [2, 1, 0.2],

enter into a linear functional form for marginal costs: cjt = [1, xjt, wjt]γ + ωjt. For our baseline

specification, Corr(pjt, wjt) ≈ 0.2 is relatively low, which implies that our cost-shifting instruments

are relatively weak.75

In our different Monte Carlo experiments we modify this baseline problem in a number of ways.

In most experiments, we consider three variants:

(a) “Simple” is the baseline problem described above.

(b) “Complex” adds a random coefficient on price: σp = 0.2. Nonlinear coefficients are [xjt, pjt].

(c) “RCNL” adds a nesting parameter: ρ = 0.5. Each of the Jft products produced by a firm is

randomly assigned to one of H = 2 nesting groups.

We estimate two broad classes of models: demand-only ones, which we estimate with single equation

GMM, and models that also include the supply side, which we estimate with multiple equation

GMM.

75With very strong cost shifters or when the variance of (ξjt, ωjt) is very small, the estimator always performs well
and we can obtain very low bias and median absolute error for nearly any choice of instruments.
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To numerically integrate choice probabilities, we use Gauss-Hermite product rules that exactly

integrate polynomials of degree 17 or less.76 In some specifications, we compare quadrature with

the other integration methods described in Section 3.

To solve the standard fixed point for δt in each market, we use the SQUAREM acceleration

method of Varadhan and Roland (2008) with a L∞ tolerance of 1E-14 and limit the number of

contraction evaluations to 1,000. When evaluating the multinomial logit function, we use the log-

sum-exp function described in Section 3 to improve numerical stability. During the first GMM

step, SQUAREM starts at the solution to the simple logit (or nested logit) model; in the second

step, it starts at the estimated first-stage δ̂t.

To optimize, we supply objective values and analytic gradients to a bounded limited-memory

BFGS routine (L-BFGS-B), which is made available by the open-source SciPy library. We use an

L∞ projected gradient-based tolerance of 1E-5 and limit the number of major iterations to 1,000.77

Drawing different starting values from a uniform distribution with support 50% above and below

the true parameter values, we solve each simulation three times and keep the solution with the

smallest objective value. For each simulation, we use box constraints 1,000% above and below the

true values with the following exceptions: σx ≥ 0, σp ≥ 0, ρ ∈ [0, 0.95], and when a supply side is

estimated, α ≤ −0.001.78

Instruments are constructed in two stages. We list the various sets of instruments in Table 2.

We begin by exclusively using “own product” characteristics and consider all quadratic interactions

of (xjt, wjt).
79 The “BLP instruments” expand this set to include characteristics of other products.

These are meant to be correlated both with the endogenous markup ηjt(θ2,xt,wt), as well as the

inverse mean utility D−1
t (St, θ̃2), both of which depend on characteristics of all products in market

t. The second set of instruments, ZSumsjt , incorporates sums of characteristics of other products,

and separates products owned by the same brand f from products owned by competing brands in

76In the Simple specification when there is only one dimension of integration, the product rule has (17 + 1)/2 = 9
nodes. In the Complex specification there are 92 = 81 nodes. If our simulations were of higher dimension, it would
be more efficient to use sparse grid integration.

77MATLAB solvers report absolute tolerances and SciPy solvers report relative ones. This means magnitudes are
not directly comparable. We discuss termination tolerances in more detail in Section 6. In practice, we recommend
trying different tolerances to ensure that the optimization routine is not terminating prematurely.

78When the optimization software considers α = 0, the matrix of intra-firm demand derivatives ∆t becomes singular.
79One way to view this approach is as a sieve basis to approximate the optimal IV (Ai and Chen, 2003).
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the same market t. The next two sets of instruments consider the differentiation IV of Gandhi and

Houde (2019). These are variants on the BLP instruments as they represent different functions of

own and rival product characteristics. Pooling products across all markets, for each pair of products

(j, k) we construct the difference djkt = xkt − xjt of the exogenous regressor. The differentiation

IV come in two flavors: Local and Quadratic. The Local measure, ZLocaljt , counts the number of

products within a standard deviation of product j, whereas the Quadratic measure, ZQuadjt , sums

up the aggregate distance between j and other products. Following Gandhi and Houde (2019), for

the Complex simulation where there is a random coefficient on price, we construct an additional

instrument using fitted values from a regression of endogenous prices onto all exogenous variables,

including the constructed instruments above. For the RCNL simulation, we follow the suggestions

of Berry (1994) or Gandhi and Houde (2019) and include the number of products within the same

nest and market.

Using parameter estimates from a single GMM step under ZSumsjt , we construct feasible op-

timal instruments with the “approximate” variant described in Algorithm 2 and compare with

the “asymptotic” and “empirical” alternatives. When a supply side is included, we compute the

vector of expected prices with the ζ-markup approach in (27). Absent a supply side, we estimate

E[pt|ZDt ] with a regression of endogenous prices onto all exogenous variables, including constructed

instruments.

Monte Carlo Results

When reporting our Monte Carlo results, we focus on the median bias and median absolute error

(MAE) of the parameter estimates. In Online Appendices OA5 to OA8 we provide additional

results measuring the performance of standard errors and various counterfactual predictions, such

as elasticities, merger effects, and welfare estimates. Computation was done on the NYU HPC

cluster.80

80We uniformly distribute our computation across five types of Intel Xeon processors: 71% on a E5-2690 v2 @
3.00GHz, 13% on a E5-2660 v3 @ 2.60GHz, 10% on a E5-2690 v4 @ 2.60GHz, 5% on a Gold 6248 @ 2.50GHz, and
1% on a Gold 6148 @ 2.40GHz.
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Fixed Effects

In Table 3 we add fixed effects to the Simple simulation and compare computational time and

memory usage for experiments where we either absorb the fixed effects or include them as dummy

variables. As one might expect, absorbing fixed effects dramatically reduces memory requirements

by multiple orders of magnitude and can speed up computation by as much as 10 times. As

expected, the largest improvements for the two-dimensional case are when one dimension is much

larger than the other. Even absorbing relatively small numbers of fixed effects (216 in a single

dimension) leads to a substantial reduction in memory usage and computational time. This is a

likely advantage of PyBLP going forward.

Fixed Point Iteration Algorithms

To highlight the effects of different iteration schemes from Section 3, we explore several methods

of solving the system of share equations for δt(θ2). We compare the conventional fixed-point

iteration scheme proposed by Berry et al. (1995) to two alternative methods of solving the system

of nonlinear equations without the Jacobian: DF-SANE and SQUAREM. We also compare with

two Jacobian-based methods: Powell’s method and Levenberg-Marquardt (LM).81

We focus mainly on computational burden and report the results in Table 4. For the Simple

and Complex simulations we vary the coefficient on the constant term β0. A smaller value of β0

leads to a larger share for the outside good. As shown by Dubé et al. (2012), a smaller outside good

share implies a larger value for the contraction’s Lipschitz constant, which generally increases the

number of required iterations. Several patterns emerge. As we shrink the outside good share from

s0t = 0.91 → 0.27, thereby increasing the Lipschitz constant, the number of required iterations

increases approximately by a factor of five times for the Simple and Complex simulations. As

expected, the Jacobian-based routines are unaffected by variation of the Lipschitz constant.82 With

the SQUAREM iteration scheme the number of iterations increases, but by only 110%.

In general, we find Powell’s method reliable for relatively loose tolerances, but it struggled with

81Powell’s method and LM are implemented in MINPACK (More et al., 1980) as HYBRJ and LMDER, respectively.
We do not report results for other SciPy root-finding methods such as Broyden’s Method or Anderson acceleration
because we found them too slow and unreliable to be worth considering.

82This is consistent with the findings of Dubé et al. (2012) using the MPEC method.
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a tolerance of 1E-14, and thus we do not recommend it. The DF-SANE algorithm performs sub-

stantially better than standard fixed point iteration, but less well than our two preferred algorithms:

the SQUAREM fixed point acceleration scheme and the Jacobian-based LM algorithm.

In terms of other speedups, the effects of the SQUAREM iteration scheme are substantial. It

reduces the number of iterations between 3-8 times without substantially increasing the cost per

iteration. This is because it approximates the Newton step without actually computing the costly

Jacobian. It performs well across all settings, but does particularly well in the Berry et al. (1995,

1999) example which includes a supply side.

The LM algorithm reduces the number of iterations, but at a higher cost per iteration. On some

of the more difficult problems with a small outside good share, it performs as much as 10 times

faster than fixed point iteration, and at other times roughly as fast as SQUAREM. The speedup is

particularly large for the RCNL model, where the contraction is dampened by (1−ρ). When ρ→ 1

the contraction becomes arbitrarily slow. In our experiments, LM performs somewhat better than

quasi-Newton routines were reported to perform in Reynaerts et al. (2012).83

Fixed Point Iteration Tricks

We also consider some commonly-employed tricks in the literature to speed up the contraction

mapping and report our results in Table B1. In all cases, we use the SQUAREM algorithm. We

consider two common “tweaks” from the literature: working with exp(δjt) rather than δjt to avoid

taking logs and eliminating a division in the share computation, and using a “hot start” where the

starting value for the iterative procedure is the δn−1
jt that solved the system of equations for the

previous guess of θ2. In addition, we consider the potential cost of our overflow safe modification

to the log-sum-exp function.

The results in Table B1 are largely underwhelming. Once we adopt SQUAREM acceleration,

additional tricks to speed up the problem seem to have little benefit. The “hot start” approach was

able to reduce the number of iterations between by between 10-20%, so it is worth considering.84

83One possible explanation is that Reynaerts et al. (2012) employ a standard Newton-Raphson solver, whereas the
MINPACK implementation of Levenberg Marquardt, LMDER, is designed to be more robust to poor starting values.

84This introduces a potential numerical problem where the GMM objective of iteration n need not evaluate to
precisely the same quantity depending on the last iteration’s θn−1, although for sufficient fixed point tolerances this
should not be an issue. In practice, we still recommend a tight tolerance of 1E-14.
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One clear recommendation is the log-sum-exp trick described in Section 3, which reduces the chance

of overflow problems. This seems relatively low-cost and reduces the possibility that the iteration

routine fails to find a solution to the system of equations.

Numerical Integration

Given extensive past work by Heiss and Winschel (2008), Judd and Skrainka (2011), Skrainka

(2012b), and Freyberger (2015), it is not surprising that the choice of integration method has a

striking effect. In Figure 1 we add random coefficients to the Simple simulation and compare in-

tegration error under pseudo-Monte Carlo (pMC), Modified Latin Hypercube Sampling (MLHS),

scrambled Halton draws, importance sampling, and Gauss-Hermite quadrature that exactly in-

tegrates polynomials of degree 7 or less.85 As we increase the dimension of integration K2, we

decrease the variance of the random coefficients so that the variance of µijt(θ̃2) remains fixed. As a

measure of integration error for It nodes, we compute ||St − st(δt, θ̃2; It)||2 where St is the vector

of true market shares and the vector of mean utilities δt = D−1
t (St, θ̃2) is precisely computed with

one million pMC draws.86

To document the curse of dimensionality (CoD), as we add random coefficients we also increase

the number of integration nodes It to match the size of the product rule. For the same number

of draws, the quadrature routines outperform the qMC and pMC routines. As It increases, the

CoD kicks in and the relative performance of pMC, MLHS, Halton draws, and importance sam-

pling improves relative to quadrature. Of the non-quadrature methods, scrambled Halton draws

perform the best, particularly for a larger number of random coefficients. In our setting, MLHS

and importance sampling seem largely underwhelming.87

Particularly for a small number of random coefficients, the product rule provides the most

accuracy. For more than K2 = 5 random coefficients, sparse grids provide similar accuracy and

require fewer than 10% as many nodes. In Table B2 we confirm that these conclusions translate

85For each dimension of Halton draws we use a different prime (2, 3, etc.), discard the first 1,000 points, and scramble
the sequence (Owen, 2017). When doing importance sampling, we use Halton draws. In Online Appendix OA2 we
find little difference between importance sampling procedures based on pMC, MLHS, or Halton draws.

86In Online Appendix OA2 we find similar results for a relative measure of integration error.
87In Online Appendix OA2 we find that importance sampling performs slightly better when there is a larger outside

share and a random coefficient on the constant term, although this is sensitive to how we measure integration error.
Importance sampling is expected to perform worse when done at an estimate of θ̃2 instead of the true parameters.
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to performance of parameter estimates. When compared to the product rule, 10 times as many

pMC, MLHS, Halton, or importance sampling draws provide similar accuracy, but take 3-20 times

as long to estimate.

Our recommendation is to use a product rule for estimating models with only a few random

coefficients. For larger numbers of random coefficients we recommend either sparse grids or scram-

bled Halton draws. However, performance is likely to be context-dependent. After obtaining an

estimate of θ̃2, we recommend verifying that the chosen integration rule performs well relative to

feasible alternatives in that setting. This can be done with a procedure like the one used to con-

struct Figure 1: precisely compute δt = D−1
t (St, θ̃2) using an integration rule with many more

nodes than would be feasible during estimation, compute approximations st(δt, θ̃2; It) with feasi-

ble numbers of integration nodes It for various integration rules, and compare integration errors

||St − st(δt, θ̃2; It)||2.88

Instruments and Supply Moments

We also consider several different choices of instruments as well as models which include both

supply and demand moments or demand moments only. In Section 4 we present a slightly differ-

ent construction of the Chamberlain (1987) optimal instruments for the BLP problem than the

construction proposed in Reynaert and Verboven (2014). In Table 5, we present simulation re-

sults using own characteristics only, sums of characteristics for other products, both the Local and

Quadratic forms of the Gandhi and Houde (2019) differentiation IV, and the “approximate” version

of the feasible optimal instruments from equation (31).

We find that in most settings the feasible approximation to the optimal instruments performs

best, which is consistent with the findings of Reynaert and Verboven (2014). We also find that the

differentiation IV outperform the sums of characteristics BLP instruments, as Gandhi and Houde

(2019) suggest.

Including moments from a correctly specified supply side substantially improves performance for

most sets of instruments with the exception of the “Own” instruments, where the performance gains

88PyBLP makes this type of procedure quick to set up with post-estimation methods that compute mean utilities
and market shares under different integration configurations.
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are limited. We also find that the feasible approximation to the optimal instruments performs much

better when a correctly-specified supply side is included. In fact, with both optimal instruments and

a supply side, the bias is all but eliminated in most of our Monte Carlo experiments, and the MAE

is substantially reduced, particularly for the random coefficients. This does not match Reynaert

and Verboven (2014) who find that including the supply side has little effect once feasible optimal

instruments are used.89 We highlight the main theoretical difference in Section 4.90 The gains from

including a correctly specified supply side also translate to nonlinear functions of model parameters

such as average elasticities and counterfactual simulations such as price effects of mergers. We

provide additional details in Online Appendices OA6 and OA7.

We also show that the incremental value of the supply-side restrictions is largest when the ex-

ogenous cost shifter wjt is weakest. We plot results in Figure 2 where we vary the magnitude of

the coefficient γw, which governs how responsive marginal costs are to the exogenous cost shifter.

Reducing this coefficient reduces the correlation between pjt and wjt. When the cost-shifting instru-

ment is very weak with Corr(pjt, wjt) ≈ 0.05, this increases both the bias and the variance of the

price parameter α consistent with Armstrong (2016). However, if we include the correctly specified

supply restrictions (with optimal instruments) we are able to eliminate the bias and substantially

reduce the variance of the estimates.91 This is consistent with the “folklore” around Berry et al.

(1995), where the parameters were difficult to estimate absent supply moments, and it is in con-

trast to Reynaert and Verboven (2014) who do not find substantial benefits of including supply-side

restrictions once optimal instruments are employed.92 The second panel of Figure 2 suggests that

we should be cautious. We generate the data from an assumption of perfect competition, and

then impose the Bertrand-Nash multiproduct-oligopoly price setting assumption when construct

89A likely important distinction is that their simulations all appear to include “strong cost shifters” in which case all
estimators perform quite well, whereas our base specification includes a “weak cost shifter” wjt with Corr(pjt, wjt) ≈
0.2.

90See Remark 3. The punchline is that E[pt|Zt] can be approximated with a linear projection onto instruments, or
with the nonlinear estimate from solving for (p∗t , s

∗
t ) in equilibrium. The addition of the supply side to the optimal

IV problem facilitates the latter.
91We should be cautious because Berry and Haile (2014) suggest that absent any cost-shifters, the model may not

be nonparametrically identified. In our Monte Carlo examples, even as the coefficient γw becomes small, γx > 0 so
that the observed characteristics do a good job explaining pjt (the effective “first-stage” for price remains nontrivial).

92There are several caveats/differences: simultaneous supply and demand is not the main focus of their work;
they construct optimal instruments so that the model is just-identified, whereas our approach constructs them to be
over-identified; their excluded cost-shifter is effectively stronger than ours.
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the supply moments. We illustrate that incorporating moments from an incorrectly specified supply

side is worse than not incorporating supply moments because it induces bias in the α parameter.

We find that that estimates are less sensitive to the precise method used to compute the feasible

approximation to the optimal instruments, and we report those results in Table B3. We also find

that computing feasible optimal IV with the recipe of Berry et al. (1999) under the wrong model

of firm conduct outperforms computing E[pjt|Zt] via a “first stage” linear regression when only

demand moments are used. We document this in Figure B1.

We further illustrate these advantages in Figure 3 where we plot the profiled GMM objective

function using our Simple simulation. In this exercise, we hold fixed either α or σx and re-optimize

the GMM objective over the other parameters. We then plot the profiled objective over a grid of

values for α or σx. We repeat this exercise for various sets of instruments, and with or without

supply moments. The resulting plots indicate that the approximation to the optimal instruments

and the inclusion of the supply moments makes the resulting objective function steeper about

the minimum. This suggests that stronger instruments may aid both in numerical optimization

and parametric identification of parameters as well as improved efficiency.93 The minimum under

the optimal instruments is generally closer to zero. This allows us to reject misspecified models of

supply and fail to reject correctly specified models with the LR test in (32) under the approximation

to the optimal IV.

Consistent with Gandhi and Houde (2019), our recommendation is to start with differentiation

IV in a first stage including some version of “expected price” and, assuming firm conduct is known,

to compute feasible optimal instruments in a second stage. The substantial small sample benefits

of including optimal instruments suggest that they should be employed more widely, particularly

when there are multiple random coefficients.

Problem Size

We might also be interested in how the BLP problem scales as we vary its size. We display our

results in Figure 4. As we increase the number of markets T , we can substantially improve both

93In practice, “weak identification” in nonlinear models arises when the objective function becomes flat with respect
to the parameters (Stock and Wright, 2000).
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the bias and the efficiency of our estimates for both α and σx. For a small number of markets

and without additional moments from the supply side, the bias in α can be substantial. For more

than T > 100 markets we get similar (asymptotic) performance for models with and without the

additional supply-side restrictions.

In Online Appendix OA4 we describe how the both the computational time and econometric

performance of the estimator is affected by the scale of the problem. We find that computational

time is roughly linear in the number of markets T , and that it grows at a rate closer to
√
Jt as we

increase the number of products. When we include both supply and demand the computational

time appears to grow more quickly than Jt.

Our Monte Carlo exercises are fairly simple and benefit from variation in the number of products

per market, but when using only demand-side restrictions, it appears as if T = 40 markets is roughly

enough to obtain “reasonable” parameter estimates in terms of bias and efficiency. These results

are somewhat in contrast to those in Armstrong (2016) who finds that when T is small, as Jt

becomes large the instruments become weak and the estimator performs poorly. We find that when

we increase the size of Jt the estimator performs better rather than worse. We attribute this to

three main differences: we allow for variation in the number of products per firm across markets,

we use the feasible approximation to the optimal instruments, and in some specifications we include

the additional supply moments.

Optimization Algorithms

We consider an array of different optimization algorithms and report our results regarding conver-

gence in Table 6. With the exception of the derivative-free Nelder-Mead algorithm, most of the

optimizers reliably find an optimum that satisfies first and second order conditions. Our preferred

algorithms are Knitro’s Interior/Direct algorithm and BFGS-based algorithms in SciPy as they

provide the best speed and reliability. In Online Appendix OA8 we consider an even wider array

of algorithms and report parameters estimates.

Our findings are somewhat different from those of Knittel and Metaxoglou (2014), who report

that different optimization algorithms find a variety of local minima and often fail to converge to
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a valid minima. We obtain essentially the opposite result. For all derivative-based optimization

algorithms in Table 6, we find that more than 99% of all simulation runs converge to a local

minimum, which we define as having an L∞ norm of the gradient sufficiently close to zero and a

positive semi-definite Hessian matrix. We should caution that our simulations are simple enough

to be run thousands of times, so it may not be surprising that most optimization software packages

appear to work well in low dimensions. It may also be the case that various numerical fixes and

improvements to the fixed point iteration problem may have resolved some of the issues with

optimization.94 In general, strong instruments and minimal numerical error lead to steep and

smooth objective functions, which are easier to optimize.

In practice, we recommend placing box constraints on parameters, using gradient-based opti-

mization routines, and setting tight optimization tolerances. We also recommend trying multiple

optimizers and starting values to check for agreement.

6. Replication Exercises

Here we provide replications using PyBLP for well-known BLP applications.

Nevo (2000b)

In our first replication we estimate the model of Nevo (2000b) on its publicly available “fake data.”

This problem is notable because it includes a combination of observable demographics, unobserved

heterogeneity, and product fixed effects. We demonstrate how to construct and solve the problem

with PyBLP in Figure 5.

We estimate the model three times: once following the original Nevo (2000b) example,95 a second

time with an optimization tolerance of 1E-5 instead of 1E-4,96 and a third time using the demand

side only feasible optimal instruments described above. We obtain nearly identical estimates of

94We use the approximation to the optimal instruments, which tends to make the objective steep about the
maximum as demonstrated in Figure 3. We also substantially reduce numerical error by using a Gauss-Hermite
product rule that exactly integrates polynomials of degree 17 or less.

95Replication is straightforward because the original instruments are provided along with the data and the reported
estimates are from one-step GMM with the two-stage least squares (2SLS) weighting matrix (Z′Z)−1. The data we
use are distributed with PyBLP.

96It is well known that the code accompanying Nevo (2000b) set tolerances too loose. However, with a scaled GMM
objective value of Nq(θ̂) = 4.56, our results with a tighter tolerance are identical to those reported by Dubé et al.
(2012) using the MPEC approach.

47



mean own-price elasticities and markups for each specification despite different parameter estimates

for the Price × Income terms that are nearly collinear in the data.

Berry et al. (1995, 1999)

For our second replication, we consider the problem in Berry et al. (1995), which lacks demographic

interactions and product fixed effects but adds a supply side and allows the price coefficient to vary

with income. We provide the PyBLP formulation of the problem in Figure 6. This time, we access

Python through the R package reticulate (Allaire et al., 2017) to demonstrate how PyBLP can

be used in R. The widespread availability of such packages for between-language interoperability

means that it is often straightforward to incorporate functionality from other languages.97

Our configuration for the Berry et al. (1995) problem differs more substantially from the original

article because parts of the original configuration are not included with the data.98 We estimate

the model once with the original article’s sums of characteristics BLP instruments and importance

sampling integration rule, and a second time with feasible optimal instruments and 10,000 scrambled

Halton draws in each market. We report our results in Table 8. We obtain broadly similar parameter

estimates. Estimates under Halton draws and the feasible approximation to the optimal instruments

suggest somewhat less preference heterogeneity, which leads to slightly less elastic demand and

larger markups than in the original specification.

Knittel and Metaxoglou (2014)

With the Nevo (2000b) configuration and a demand-only version of the Berry et al. (1995) problem,

we conduct a more extensive replication exercise meant to mimic Knittel and Metaxoglou (2014).

We solve these two problems with 50 random starting values and multiple optimization algorithms.99

We first replicate some of the difficulties encountered by Knittel and Metaxoglou (2014) by

using very loose optimization tolerances.100 Early termination of optimization algorithms creates

97For more on interoperability, see Footnote 3.
98We obtain the data from the replication package for Andrews et al. (2017) and obtain very similar results as this

earlier replication. Following Berry et al. (1999), we replace the original article’s log(yi− pj) term with its first-order
linear approximation pj/yi. Otherwise, there are individuals for whom pj > yi, creating a host of problems.

99For a longer description of our replication exercise, please refer to Online Appendix OA1.
100Knittel and Metaxoglou (2014) use a tolerance of 1E-3 for changes in the parameter vector and the objective

function. Because of the loose objective function tolerance in particular, the optimization routines often terminate
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dispersion across recovered parameter estimates, objective values, and implied elasticities across

optimizers and starting values. However, tighter optimization tolerances suffice to eliminate all

dispersion for the problem in Nevo (2000b).101 In addition to tight tolerances, using quadrature

instead of a small number of pseudo-Monte Carlo draws also eliminates all dispersion in the demand-

only version of the Berry et al. (1995) problem. This is consistent with Brunner et al. (2017), who

find that simulation error contributes substantial instability to this particular configuration.

In other words, our best practices eliminate much of the difficulties encountered by Knittel and

Metaxoglou (2014). In line with our Monte Carlo experiments, when properly configured, the choice

of optimization routine (open-source or otherwise) does not seem to be particularly important for

the nested fixed point algorithm. To demonstrate this result graphically, in Figure 7 we present

histograms of own prices elasticities obtained from our replication exercise below the corresponding

figures from Knittel and Metaxoglou (2014). The “Best Practices” histograms exhibit essentially

no dispersion across optimization routines and starting values.

7. Conclusion

Our goal has been to review recent methodological developments related to the BLP problem, and to

collect and evaluate them not only in a single article, but also in a single software package, PyBLP.

We have provided a list of best practices with numerical evidence to support our recommendations,

and we have implemented them as defaults in PyBLP. Our hope is that these practices (and

estimation of BLP models in general) can now be made available to more researchers, and provide

a common platform that should facilitate replication. For researchers who wish to implement and

estimate similar models that are not among the wide range of BLP-type models supported by

PyBLP, we hope that this article and our well-documented code will serve as a good starting point.

In addition, we present some methodological results that we believe to be novel. We show

how with a slight reformulation of the nested fixed point problem, it is possible to include high

dimensional fixed effects in models with simultaneous supply and demand. We also provide a

too early. We replicate this behavior with loose L∞ gradient- and parameter-based tolerances of 1E-1.
101We use L∞ gradient- and parameter-based tolerances of 1E-4. In their online appendix, Knittel and Metaxoglou

(2014) also report that when using a tighter tolerance and a gradient-based routine, they manage to eliminate
essentially all dispersion for the problem in Nevo (2000b) but not Berry et al. (1995).
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somewhat different expression for optimal instruments than the prior literature (Reynaert and

Verboven, 2014), which makes clear the over-identifying restrictions implied by the supply side.

Also novel, we find that optimal instruments when combined with a correctly specified supply side

are extremely valuable. Consistent with prior work, we find the gains to optimal instruments to

be substantial such that they should nearly always be employed. Thankfully, we have made this

process extremely straightforward in PyBLP.

Somewhat reassuringly, we find that under our best practices, including correctly specified

supply restrictions and approximations to the optimal instruments, finite sample performance of

the BLP estimator appears to be quite good and perhaps better than previously believed.

50



Table 1: Model Notation

j Products pjt Price

t Markets cjt Marginal cost

i “Individuals” xjt Exogenous product characteristic

f Firms vjt Excluded demand-shifter

h Nesting groups wjt Excluded supply-shifter

N Set/number of products across all markets Uijt Indirect utility

T Set/number of markets δjt Mean utility

Jt Set/number of products in market t µijt Heterogeneous utility

It Set/number of individuals in market t εijt Idiosyncratic preference

Ft Set/number of firms in market t dijt Choice indicator

Jft Set/number of products of firm f in market t sijt Choice probability

H Set/number of nesting groups sjt Calculated market share

Jht Set/number of products in nest h and market t Sjt Observed market share

ξjt Demand-side structural error

θ Parameters with dimension K

θ1 Linear demand-side parameters with dimension K1 Ht Ownership or holdings matrix

θ2 Nonlinear common parameters with dimension K2 ∆t Intra-firm demand derivatives

θ3 Linear supply-side parameters with dimension K3 ηjt Multi-product Bertrand markup

ωjt Supply-side structural error

β θ1 excluding fixed effects

θ̃2 Parameters in θ2 governing heterogeneity Z Instruments

α Parameter in θ2 on price W Weighting matrix

γ θ3 excluding fixed effects g Sample moments

ρ Nesting parameter in θ2 q Objective function

Table 2: Various Forms of Instrumental Variables

ZOwnjt =
{

1, xjt, wjt, x
2
jt, w

2
jt, xjt · wjt

}
ZSumsjt =

{
ZOwnjt ,

∑
k∈Jft\{j}

1,
∑
k/∈Jft

1,
∑

k∈Jft\{j}
xkt,

∑
k/∈Jft

xkt

}

ZLocaljt =
{
ZOwnjt ,

∑
k∈Jft\{j}

1
(
|djkt| < SD(d)

)
,
∑
k/∈Jft

1
(
|djkt| < SD(d)

)}

ZQuadjt =
{
ZOwnjt ,

∑
k∈Jft\{j}

d2jkt,
∑
k/∈Jft

d2jkt

}

Optimal instruments, ZOpt,D
jt and ZOpt,D

jt in (31), are approximated

with Algorithm 2 using initial estimates from a single GMM step under

ZSums
jt . We define the difference in characteristic space from product

j as djkt = dkt − djt for each characteristic in xjt. For the Complex

simulation we also include a measure of expected price E[pjt|Zt] as

an additional xjt: fitted values from a linear regression of endogenous

prices onto all exogenous variables, including the above instruments.

For the RCNL simulation, we also include counts of products within

the same nest in each market.
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Table 3: Fixed Effect Absorption

Dimensions Levels Absorbed Seconds Megabytes

1 216 No 56 721

1 216 Yes 20 39

2 216 × 216 No 112 1,414

2 216 × 216 Yes 25 43

2 36 × 1,296 No 330 2,498

2 36 × 1,296 Yes 25 43

3 36 × 36 × 36 No 46 375

3 36 × 36 × 36 Yes 24 47

This table documents the impact of fixed effect (FE) absorp-

tion on estimation speed and memory usage during one GMM

step. Reported values are medians across 100 different simula-

tions. When not absorbed, FEs are included as dummy vari-

ables. A single FE is absorbed with de-meaning; multiple, with

iterative de-meaning, also known as the Method of Alternating

Projections (MAP). To accommodate FEs in the Simple sim-

ulation, we first set T = 64 and Ft = Jf = 6 so that there

are N = 66 = 46,656 products. We then randomly assign each

n ∈ {1, . . . , N} to a product and add FEs drawn from the stan-

dard uniform distribution. The 1-D case has βn mod 216. For

the “square” 2-D case, we add βn div 216. The “uneven” 2-D

case has βn mod 36 and βn div 36. The 3-D case has βn mod 36,

β(n div 36) mod 36, and βn div 216.

Table 4: Fixed Point Algorithms

Problem Median s0t Algorithm Jacobian Termination
Mean

Milliseconds
Mean

Evaluations
Percent

Converged

Simple Simulation (β0 = −7) 0.91 Iteration No Absolute L∞ 5.95 41.85 100.00%

Simple Simulation (β0 = −7) 0.91 DF-SANE No Absolute L∞ 3.43 16.27 100.00%

Simple Simulation (β0 = −7) 0.91 SQUAREM No Absolute L∞ 2.56 15.94 100.00%

Simple Simulation (β0 = −7) 0.91 SQUAREM No Relative L2 2.75 15.26 100.00%

Simple Simulation (β0 = −7) 0.91 Powell Yes Relative L2 3.48 16.33 28.56%

Simple Simulation (β0 = −7) 0.91 LM Yes Relative L2 2.31 8.91 100.00%

Simple Simulation (β0 = −1) 0.27 Iteration No Absolute L∞ 29.35 212.09 100.00%

Simple Simulation (β0 = −1) 0.27 DF-SANE No Absolute L∞ 7.10 35.28 100.00%

Simple Simulation (β0 = −1) 0.27 SQUAREM No Absolute L∞ 5.40 34.58 100.00%

Simple Simulation (β0 = −1) 0.27 SQUAREM No Relative L2 5.73 33.91 100.00%

Simple Simulation (β0 = −1) 0.27 Powell Yes Relative L2 3.67 17.21 11.38%

Simple Simulation (β0 = −1) 0.27 LM Yes Relative L2 2.35 8.92 100.00%

Complex Simulation (β0 = −7) 0.91 Iteration No Absolute L∞ 8.35 45.02 100.00%

Complex Simulation (β0 = −7) 0.91 DF-SANE No Absolute L∞ 4.52 17.67 100.00%

Complex Simulation (β0 = −7) 0.91 SQUAREM No Absolute L∞ 3.32 16.14 100.00%

Continued on the next page.
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Continued from the previous page.

Problem Median s0t Algorithm Jacobian Termination
Mean

Milliseconds
Mean

Evaluations
Percent

Converged

Complex Simulation (β0 = −7) 0.91 SQUAREM No Relative L2 3.50 15.50 100.00%

Complex Simulation (β0 = −7) 0.91 Powell Yes Relative L2 4.03 14.89 32.29%

Complex Simulation (β0 = −7) 0.91 LM Yes Relative L2 2.85 8.98 100.00%

Complex Simulation (β0 = −1) 0.28 Iteration No Absolute L∞ 39.35 216.80 100.00%

Complex Simulation (β0 = −1) 0.28 DF-SANE No Absolute L∞ 8.92 36.23 100.00%

Complex Simulation (β0 = −1) 0.28 SQUAREM No Absolute L∞ 7.03 34.75 100.00%

Complex Simulation (β0 = −1) 0.28 SQUAREM No Relative L2 7.51 34.09 100.00%

Complex Simulation (β0 = −1) 0.28 Powell Yes Relative L2 4.80 17.70 9.71%

Complex Simulation (β0 = −1) 0.28 LM Yes Relative L2 2.90 8.93 100.00%

RCNL Simulation (ρ = 0.5) 0.92 Iteration No Absolute L∞ 21.63 93.40 100.00%

RCNL Simulation (ρ = 0.5) 0.92 DF-SANE No Absolute L∞ 9.62 32.30 100.00%

RCNL Simulation (ρ = 0.5) 0.92 SQUAREM No Absolute L∞ 8.45 33.49 100.00%

RCNL Simulation (ρ = 0.5) 0.92 SQUAREM No Relative L2 8.53 31.33 100.00%

RCNL Simulation (ρ = 0.5) 0.92 Powell Yes Relative L2 4.67 14.44 60.65%

RCNL Simulation (ρ = 0.5) 0.92 LM Yes Relative L2 3.27 8.89 100.00%

RCNL Simulation (ρ = 0.8) 0.92 Iteration No Absolute L∞ 58.01 250.34 100.00%

RCNL Simulation (ρ = 0.8) 0.92 DF-SANE No Absolute L∞ 16.30 55.50 99.92%

RCNL Simulation (ρ = 0.8) 0.92 SQUAREM No Absolute L∞ 14.04 55.54 100.00%

RCNL Simulation (ρ = 0.8) 0.92 SQUAREM No Relative L2 13.95 51.70 100.00%

RCNL Simulation (ρ = 0.8) 0.92 Powell Yes Relative L2 6.48 20.16 61.48%

RCNL Simulation (ρ = 0.8) 0.92 LM Yes Relative L2 3.62 9.64 100.00%

Nevo Example 0.54 Iteration No Absolute L∞ 12.95 86.64 100.00%

Nevo Example 0.54 DF-SANE No Absolute L∞ 5.50 25.40 100.00%

Nevo Example 0.54 SQUAREM No Absolute L∞ 4.05 24.06 100.00%

Nevo Example 0.54 SQUAREM No Relative L2 4.26 22.80 100.00%

Nevo Example 0.54 Powell Yes Relative L2 3.84 17.06 29.20%

Nevo Example 0.54 LM Yes Relative L2 2.62 9.34 100.00%

BLP Example 0.89 Iteration No Absolute L∞ 152.72 203.04 100.00%

BLP Example 0.89 DF-SANE No Absolute L∞ 34.93 42.37 100.00%

BLP Example 0.89 SQUAREM No Absolute L∞ 31.54 40.61 100.00%

BLP Example 0.89 SQUAREM No Relative L2 31.43 39.38 100.00%

BLP Example 0.89 Powell Yes Relative L2 26.40 19.31 9.34%

BLP Example 0.89 LM Yes Relative L2 17.64 8.71 100.00%

This table documents the impact of algorithm choice on solving the nested fixed point. Reported values are medians across

100 different simulations and 10 identical runs of the example problems. We report the number of milliseconds and contraction

evaluations needed to solve the fixed point, averaged across all markets and one GMM step’s objective evaluations. We also

report each algorithm’s convergence rate: the percent of times no numerical errors were encountered and a limit of 1,000

iterations was not reached. We configure simple iteration with an absolute L∞ norm tolerance of 1E-14 and compare it with

DF-SANE and SQUAREM. The MINPACK (More et al., 1980) implementations of algorithms that do require a Jacobian—a

modification of the Powell hybrid method and Levenberg-Marquardt (LM)—only support relative L2 norm tolerances, so for

comparison’s sake we also include SQUAREM with the same termination condition. Simulations are configured as described

in Section 5, except for the coefficient on the constant term, β0, and the nesting parameter, ρ, which we vary to document the

effects of decreasing the outside share s0t and of dampening the contraction in the RCNL model. The example problems from

Nevo (2000b) and Berry et al. (1995, 1999) are the replications described in Section 6.
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Table 5: Alternative Instruments

True Value Median Bias Median Absolute Error

Simulation Supply Instruments Seconds α σx σp ρ α σx σp ρ α σx σp ρ

Simple No Own 0.6 -1 3 0.126 -0.045 0.238 0.257

Simple No Sums 0.6 -1 3 0.224 -0.076 0.257 0.208

Simple No Local 0.6 -1 3 0.181 -0.056 0.242 0.235

Simple No Quadratic 0.6 -1 3 0.206 -0.085 0.263 0.239

Simple No Optimal 0.8 -1 3 0.218 -0.049 0.250 0.174

Simple Yes Own 1.4 -1 3 0.021 0.006 0.226 0.250

Simple Yes Sums 1.5 -1 3 0.054 -0.020 0.193 0.196

Simple Yes Local 1.4 -1 3 0.035 -0.006 0.207 0.229

Simple Yes Quadratic 1.4 -1 3 0.047 -0.022 0.217 0.237

Simple Yes Optimal 2.2 -1 3 0.005 0.012 0.170 0.171

Complex No Own 1.1 -1 3 0.2 -0.025 0.000 -0.200 0.381 0.272 0.200

Complex No Sums 1.1 -1 3 0.2 0.225 -0.132 -0.057 0.263 0.217 0.200

Complex No Local 1.0 -1 3 0.2 0.184 -0.107 -0.085 0.274 0.236 0.200

Complex No Quadratic 1.0 -1 3 0.2 0.200 -0.117 -0.198 0.299 0.243 0.200

Complex No Optimal 1.6 -1 3 0.2 0.191 -0.119 0.001 0.274 0.195 0.200

Complex Yes Own 3.9 -1 3 0.2 -0.213 0.060 0.208 0.325 0.263 0.208

Complex Yes Sums 3.3 -1 3 0.2 0.018 -0.104 0.052 0.203 0.207 0.180

Complex Yes Local 3.4 -1 3 0.2 -0.043 -0.078 0.135 0.216 0.225 0.200

Complex Yes Quadratic 3.5 -1 3 0.2 -0.028 -0.067 0.116 0.237 0.227 0.200

Complex Yes Optimal 4.9 -1 3 0.2 -0.024 -0.036 -0.002 0.193 0.171 0.191

RCNL No Own 5.1 -1 3 0.5 0.423 -1.235 0.199 0.463 1.393 0.218

RCNL No Sums 3.4 -1 3 0.5 0.222 -0.187 0.013 0.237 0.300 0.034

RCNL No Local 3.4 -1 3 0.5 0.216 -0.194 0.016 0.247 0.324 0.039

RCNL No Quadratic 3.4 -1 3 0.5 0.211 -0.231 0.018 0.252 0.354 0.042

RCNL No Optimal 4.3 -1 3 0.5 0.217 -0.031 -0.008 0.230 0.155 0.021

RCNL Yes Own 9.7 -1 3 0.5 0.205 -0.955 0.162 0.301 1.201 0.189

RCNL Yes Sums 7.0 -1 3 0.5 0.047 -0.154 0.018 0.148 0.275 0.034

RCNL Yes Local 7.1 -1 3 0.5 0.038 -0.148 0.020 0.172 0.298 0.039

RCNL Yes Quadratic 7.1 -1 3 0.5 0.036 -0.169 0.022 0.168 0.330 0.042

RCNL Yes Optimal 10.0 -1 3 0.5 0.008 -0.003 0.002 0.111 0.136 0.017

This table documents bias and variance of parameter estimates over 1,000 simulated datasets for different instruments. Own instru-

ments are [1, xjt, wjt, x
2
jt, w

2
jt, xjt ·wjt]. Sums include own and competitor product characteristics. Local and Quadratic instruments

follow the definitions in Gandhi and Houde (2019). Optimal instruments are the “approximate” version from Algorithm 2. All

instruments are defined in Table 2. For all problems, we use a Gauss-Hermite product rule that exactly integrates polynomials of

degree 17 or less.
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Table 6: Optimization Algorithms

Percent of Runs Median, First GMM Step

Simulation Supply |θ2| Software Algorithm Gradient Termination Converged PSD Hessian Seconds Evaluations q = ḡ′Wḡ ||∇q||∞

Simple No 1 Knitro Interior/Direct Yes ||∇q||∞ 100.0% 100.0% 0.2 4 1.10E-08 8.30E-07

Simple No 1 SciPy L-BFGS-B Yes ||∇q||∞ 100.0% 100.0% 0.2 4 8.19E-09 7.28E-07

Simple No 1 SciPy BFGS Yes ||∇q||∞ 100.0% 100.0% 0.6 11 1.58E-08 1.03E-06

Simple No 1 SciPy TNC Yes ||θn2 − θ
n−1
2 ||∞ 99.9% 99.8% 0.6 10 3.89E-24 9.61E-15

Simple No 1 SciPy Nelder-Mead No ||θn2 − θ
n−1
2 ||∞ 66.5% 100.0% 19.6 115 1.08E-24 4.70E-15

Simple Yes 2 Knitro Interior/Direct Yes ||∇q||∞ 100.0% 100.0% 0.6 5 2.17E-06 3.54E-06

Simple Yes 2 SciPy L-BFGS-B Yes ||∇q||∞ 100.0% 100.0% 0.4 4 2.18E-06 3.32E-06

Simple Yes 2 SciPy BFGS Yes ||∇q||∞ 100.0% 100.0% 2.0 11 2.61E-06 5.26E-06

Simple Yes 2 SciPy TNC Yes ||θn2 − θ
n−1
2 ||∞ 99.8% 100.0% 2.2 18 2.15E-06 5.12E-11

Simple Yes 2 SciPy Nelder-Mead No ||θn2 − θ
n−1
2 ||∞ 53.3% 100.0% 31.7 251 2.14E-06 9.69E-13

Complex No 3 Knitro Interior/Direct Yes ||∇q||∞ 100.0% 96.9% 0.7 6 1.92E-07 4.11E-06

Complex No 3 SciPy L-BFGS-B Yes ||∇q||∞ 100.0% 93.6% 0.4 6 1.83E-07 3.59E-06

Complex No 3 SciPy BFGS Yes ||∇q||∞ 100.0% 96.5% 1.9 26 2.25E-07 5.14E-06

Complex No 3 SciPy TNC Yes ||θn2 − θ
n−1
2 ||∞ 100.0% 86.9% 1.8 20 5.08E-20 1.61E-12

Complex No 3 SciPy Nelder-Mead No ||θn2 − θ
n−1
2 ||∞ 54.0% 74.6% 30.1 275 1.18E-24 1.39E-14

Complex Yes 4 Knitro Interior/Direct Yes ||∇q||∞ 100.0% 93.7% 1.9 9 3.20E-06 6.11E-06

Complex Yes 4 SciPy L-BFGS-B Yes ||∇q||∞ 100.0% 94.1% 1.4 9 3.12E-06 5.57E-06

Complex Yes 4 SciPy BFGS Yes ||∇q||∞ 100.0% 94.2% 4.6 28 3.19E-06 6.36E-06

Complex Yes 4 SciPy TNC Yes ||θn2 − θ
n−1
2 ||∞ 99.5% 99.5% 5.7 31 2.87E-06 4.02E-10

Complex Yes 4 SciPy Nelder-Mead No ||θn2 − θ
n−1
2 ||∞ 45.5% 99.5% 64.6 480 2.80E-06 1.83E-12

RCNL No 2 Knitro Interior/Direct Yes ||∇q||∞ 100.0% 100.0% 1.7 10 1.67E-08 5.72E-06

RCNL No 2 SciPy L-BFGS-B Yes ||∇q||∞ 100.0% 99.9% 1.9 11 1.52E-09 1.47E-06

RCNL No 2 SciPy BFGS Yes ||∇q||∞ 100.0% 100.0% 4.3 25 2.64E-09 1.95E-06

RCNL No 2 SciPy TNC Yes ||θn2 − θ
n−1
2 ||∞ 100.0% 99.6% 4.1 22 3.56E-19 1.16E-11

RCNL No 2 SciPy Nelder-Mead No ||θn2 − θ
n−1
2 ||∞ 56.4% 98.7% 60.5 243 1.27E-25 2.53E-14

RCNL Yes 3 Knitro Interior/Direct Yes ||∇q||∞ 100.0% 100.0% 3.4 13 2.83E-06 9.95E-06

RCNL Yes 3 SciPy L-BFGS-B Yes ||∇q||∞ 100.0% 100.0% 3.2 12 2.66E-06 3.85E-06

RCNL Yes 3 SciPy BFGS Yes ||∇q||∞ 100.0% 100.0% 9.3 37 2.73E-06 4.41E-06

RCNL Yes 3 SciPy TNC Yes ||θn2 − θ
n−1
2 ||∞ 100.0% 100.0% 7.2 24 2.95E-06 2.24E-09

RCNL Yes 3 SciPy Nelder-Mead No ||θn2 − θ
n−1
2 ||∞ 39.0% 100.0% 115.2 423 2.93E-06 4.60E-12

This table documents optimization convergence statistics over 1,000 simulated datasets for different optimization algorithms. For comparison’s sake, we only

perform one GMM step and do not set parameter bounds. We report each algorithm’s convergence rate (the percent of times the algorithm reported that it

successfully found an optimum before reaching 1,000 iterations) and the percent of times the final Hessian matrix was positive semidefinite. We also report

medians for the number of seconds needed to solve each problem, the number of objective evaluations, the final GMM objective value, and the L∞ norm

of the gradient. We configure three algorithms to terminate with gradient-based L∞ norms of 1E-5: Interior/Direct from Knitro, along with L-BFGS-B

(limited-memory BFGS) and BFGS from SciPy. Because SciPy’s derivative-free Nelder-Mead algorithm does not support gradient-based termination, we

instead configure it to terminate with an absolute parameter-based L∞ norm of 1E-5 and for comparison’s sake use the same configuration for SciPy’s TNC

(truncated Newton) algorithm. For all problems, we use the “approximate” version of the feasible optimal instruments and a Gauss-Hermite product rule that

exactly integrates polynomials of degree 17 or less.

55



Table 7: Nevo (2000b) Replication

Published
Estimates Replication

Tighter

Tolerance
Best

Practices

Means Price -32.433 -32.404 -62.729 -27.489

(7.743) (7.729) (14.803) (4.383)

Standard Deviations Price 1.848 1.851 3.313 2.910

(1.075) (1.070) (1.340) (0.669)

Constant 0.377 0.376 0.558 0.196

(0.129) (0.129) (0.163) (0.085)

Sugar 0.004 0.003 0.006 0.028

(0.012) (0.012) (0.014) (0.008)

Mushy 0.081 0.080 0.093 0.324

(0.205) (0.204) (0.185) (0.110)

Interactions Price × Income 16.598 16.457 588.318 15.957

(172.334) (172.237) (270.441) (98.164)

Price × Income Squared -0.659 -0.655 -30.192 -1.282

(8.955) (8.951) (14.101) (5.119)

Price × Child 11.625 11.543 11.054 4.551

(5.207) (5.166) (4.123) (2.405)

Constant × Income 3.089 3.100 2.292 6.253

(1.213) (1.203) (1.209) (0.541)

Constant × Age 1.186 1.172 1.284 0.162

(1.016) (1.001) (0.631) (0.207)

Sugar × Income -0.193 -0.193 -0.385 -0.289

(0.005) (0.045) (0.121) (0.037)

Sugar × Age 0.029 0.030 0.052 0.046

(0.036) (0.036) (0.026) (0.014)

Mushy × Income 1.468 1.462 0.748 0.998

(0.697) (0.693) (0.802) (0.303)

Mushy × Age -1.514 -1.502 -1.353 -0.523

(1.103) (1.091) (0.667) (0.188)

Mean Own-Price Elasticity -3.700 -3.618 -3.685

Mean Markup 0.360 0.364 0.363

GMM Objective 6.60E-03 6.61E-03 2.02E-03 2.03E-04

GMM Objective Scaled by N 1.49E+01 1.49E+01 4.56E+00 4.59E-01

This table reports replication results for the model of Nevo (2000b) described in Section 6. From left

to right, we report estimates from the original article, our replication results, additional results for when

we reduce the BFGS optimization algorithm’s gradient-based L∞ norm from 1E-4 to a slightly tighter

1E-5, and a final set of results using best estimation practices: a tighter termination tolerance and the

“approximate” version of the feasible optimal instruments. Standard errors are in parentheses.
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Table 8: Berry et al. (1995, 1999) Replication

Published
Estimates Replication

Best
Practices

Means Constant -7.061 -7.284 -6.679

(0.941) (2.807) (1.304)

HP/Weight 2.883 3.460 2.774

(2.019) (1.415) (0.833)

Air 1.521 -0.999 0.572

(0.891) (2.101) (0.349)

MP$ -0.122 0.421 0.340

(0.320) (0.250) (0.098)

Size 3.460 4.178 3.920

(0.610) (0.658) (0.322)

Standard Deviations Constant 3.612 2.025 2.962

(1.485) (6.065) (1.637)

HP/Weight 4.628 6.101 1.388

(1.885) (2.200) (2.107)

Air 1.818 3.956 1.424

(1.695) (2.110) (0.435)

MP$ 1.050 0.254 0.072

(0.272) (0.549) (1.002)

Size 2.056 1.908 0.231

(0.585) (1.108) (3.837)

Term on Price ln(y − p) 43.501 44.842 45.898

(6.427) (9.216) (11.748)

Supply-Side Terms Constant 0.952 2.760 2.785

(0.194) (0.116) (0.104)

ln(HP/Weight) 0.477 0.897 0.731

(0.056) (0.072) (0.071)

Air 0.619 0.423 0.528

(0.038) (0.087) (0.040)

ln(MPG) -0.415 -0.525 -0.651

(0.055) (0.073) (0.071)

ln(Size) -0.046 -0.261 -0.472

(0.081) (0.210) (0.125)

Trend 0.019 0.027 0.018

(0.002) (0.003) (0.002)

Mean Own-Price Elasticity -3.928 -3.461

Mean Markup 0.316 0.346

GMM Objective 2.24E-01 1.06E-01

GMM Objective Scaled by N 4.97E+02 2.36E+02

This table reports replication results for the model of Berry et al. (1995, 1999)

described in Section 6. From left to right, we report estimates from the original article,

our replication results, and results using best estimation practices: 10,000 scrambled

Halton draws in each market and the “approximate” version of the feasible optimal

instruments. Standard errors are in parentheses and are clustered by automobile

model.
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Figure 1: Integration Error
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This plot documents the performance of different numerical integration methods in terms of root mean square error of
market shares. Reported values are medians across 100 different markets and are on a logarithmic scale. To document
the curse of dimensionality, as we increase the number of random coefficients K2, we also increase the number of
integration nodes It to match that of a Gauss-Hermite product rule that exactly integrates polynomials of degree 7
or less: It = 4K2 . To accommodate K2 > 1 dimensions of integration in the Simple simulation, we draw additional
exogenous characteristics from the standard uniform distribution. On these new characteristics, we add uncorrelated
and mean-zero random coefficients. For comparability’s sake, we use the unaltered Simple simulation’s market shares
Sjt for all K2, and set each random coefficient’s variance to 1/K2 so that the distribution of utility is invariant to K2.

We use 1 million pseudo-Monte Carlo (pMC) draws to precisely compute δt = D−1
t (St, θ̃2). With this, we compute

the integration error ||St − st(δt, θ̃2; It)||2 of sjt(δt, θ̃2; It) from (24) under various integration methods and nodes
It. In addition to a less-precise pMC rule, we also consider Modified Latin Hypercube Sampling (MLHS); Halton
draws where in each dimension we use a different prime (2, 3, etc.), discard the first 1,000 points, and scramble the
sequence according to the recipe in Owen (2017); importance sampling of Halton draws according to the Berry et al.

(1995) procedure described in Section 3 with θ̃2 and δt are replaced by their true values; a Gauss-Hermite product
rule that exactly integrates polynomials of degree 7 or less; and sparse grids with the same polynomial order (Heiss
and Winschel, 2008).
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Figure 2: Instrument Strength and Misspecification
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Each plot documents how bias of the linear parameter on price, α, decreases with the strength of the cost shifter
wjt, which is included as a demand-side instrument. To weaken or strengthen the instrument, we vary its supply-side
parameter from γw = 0 to γw = 1, and report the correlation this induces between wjt and prices pjt. Reported bias
values are medians across 1,000 different simulations. The top plot reports results for the simulation configurations
described in Section 5. In the bottom plot, we simulate data according to perfect competition (i.e., prices are set
equal to marginal costs instead of those that satisfy Bertrand-Nash first order conditions), but continue to estimate
the model under the assumption of imperfect competition. For all problems, we use the “approximate” version of the
feasible optimal instruments and a Gauss-Hermite product rule that exactly integrates polynomials of degree 17 or
less.
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Figure 3: Profiled GMM Objective with Alternative Instruments
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Each plot profiles the GMM objective with respect to a single parameter for the Simple simulation. We fix either α
or σx, re-optimize over other parameters, and plot median restricted objective values over 100 different simulations.
The left column profiles the objective over the price parameter α, whereas the right column profiles over the random
coefficient σx. The top row uses moments from demand alone, whereas the bottom row uses both supply and
demand moments. Own instruments are [1, xjt, wjt, x

2
jt, w

2
jt, xjt · wjt]. Sums include own and competitor product

characteristics. Local and Quadratic instruments follow the definitions in Gandhi and Houde (2019). Optimal
instruments are the “approximate” version from Algorithm 2. All instruments are defined in Table 2. For all
problems, we use a Gauss-Hermite product rule that exactly integrates polynomials of degree 17 or less.
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Figure 4: Problem Scaling
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These plots document how bias and variance of parameter estimates decrease with the number of markets T . The
top row plots median bias across 1,000 simulations, whereas the bottom row plots median absolute error across the
same simulations. The left column reports results for α and the right column reports results for σx. For all problems,
we use the “approximate” version of the feasible optimal instruments and a Gauss-Hermite product rule that exactly
integrates polynomials of degree 17 or less.
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Figure 5: Nevo (2000b) Replication Code

import numpy as np

import pandas as pd

import pyblp

problem = pyblp.Problem(

product_formulations=(

pyblp.Formulation('0 + prices', absorb='C(product_ids)'), # Linear demand

pyblp.Formulation('1 + prices + sugar + mushy'), # Nonlinear demand

),

agent_formulation=pyblp.Formulation('0 + income + income_squared + age + child'), # Demographics

product_data=pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION),

agent_data=pd.read_csv(pyblp.data.NEVO_AGENTS_LOCATION)

)

results = problem.solve(

sigma=np.diag([0.3302, 2.4526, 0.0163, 0.2441]), # Starting values for unobserved heterogeneity

pi=[

[ 5.4819, 0, 0.2037, 0 ], # Starting values for observed heterogeneity

[15.8935, -1.2000, 0, 2.6342],

[-0.2506, 0, 0.0511, 0 ],

[ 1.2650, 0, -0.8091, 0 ]

],

method='1s', # One-step GMM

optimization=pyblp.Optimization('bfgs', {'gtol': 1e-5}) # Gradient-based termination tolerance

)

elasticities = results.compute_elasticities()

markups = results.compute_markups()

This Python code demonstrates how to construct and solve the problem from Nevo (2000b) in PyBLP. Names in
the formulation objects correspond to variable names in the datasets, which are packaged with PyBLP and in this
example are loaded into memory with the Python package pandas. Although not an explicit dependency of PyBLP,
pandas is a convenient package for loading data into data frames, and comes pre-packaged in Anaconda installations.
In addition to pandas data frames, PyBLP can also handle other data types such as NumPy structured arrays or
simple dictionaries. Most estimation outputs are stored as attributes of the problem results class. Post-estimation
outputs such as elasticities and markups can be computed with class methods. Estimation results are reported in
Table 7.
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Figure 6: Berry et al. (1995, 1999) Replication Code

library(readr)

library(reticulate)

pyblp <- import('pyblp')

problem <- pyblp$Problem(

product_formulations = tuple(

pyblp$Formulation('1 + hpwt + air + mpd + space'), # Linear demand

pyblp$Formulation('1 + prices + hpwt + air + mpd + space'), # Nonlinear demand

pyblp$Formulation('1 + log(hpwt) + air + log(mpg) + log(space) + trend') # Supply

),

agent_formulation = pyblp$Formulation('0 + I(1 / income)'), # Price interaction

costs_type = 'log', # Log-linear costs

product_data = read_csv(pyblp$data$BLP_PRODUCTS_LOCATION),

agent_data = read_csv(pyblp$data$BLP_AGENTS_LOCATION)

)

results <- problem$solve(

sigma = diag(c(3.612, 0, 4.628, 1.818, 1.050, 2.056)), # Starting values for unobserved heterogeneity

pi = rbind(0, -43.501, 0, 0, 0, 0), # Starting value for the term on price

initial_update = TRUE, # Update weight matrix at starting values

costs_bounds = tuple(0.001, NULL), # Constrain marginal costs to be positive

W_type = 'clustered', # Cluster by automobile model

se_type = 'clustered'

)

elasticities = results$compute_elasticities()

markups = results$compute_markups()

instrument_results = results$compute_optimal_instruments(method = 'approximate')

updated_problem = instrument_results$to_problem()

This R code demonstrates how to construct and solve the problem from Berry et al. (1995, 1999) in PyBLP. Python
functions are called with the R package reticulate. Similar packages that allow for Python interoperability are
available in many other languages. Names in the formulation objects correspond to variable names in the datasets,
which are are packaged with PyBLP and in this example are loaded into memory with the R package readr. Most
estimation outputs are stored as attributes of the problem results class. Post-estimation outputs such as elasticities
and markups can be computed with class methods. Here, the “approximate” technique from Algorithm 2 is used to
construct feasible optimal instruments. This gives an optimal instruments results object that is converted into an
updated problem, which can be solved like any other. Estimation results are reported in Table 8.
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Figure 7: Knittel and Metaxoglou (2014) Histograms for Median Product Own-Price Elasticities

(a) Nevo (2000b) Problem
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All figures report the own price elasticity for the median product. The three figures on the left are for the problem
in Nevo (2000b). Figures on the right are for a demand-only version of the problem in Berry et al. (1995) described
in Knittel and Metaxoglou (2014). The top two figures are reproduced as fair use from Knittel and Metaxoglou
(2014). The bottom four are produced by PyBLP where each observation is one trial from 50 starting values and
seven optimization algorithm configurations supported by Knitro and SciPy. The middle figures replicate some of the
difficulties in Knittel and Metaxoglou (2014) by using loose optimization tolerances. The bottom two figures eliminate
these difficulties with best estimation practices. It suffices to use tight optimization tolerances for the problem in
Nevo (2000b). Difficulties for the demand-only version of the problem in Berry et al. (1995) can be eliminated by
additionally using a Gauss-Hermite product rule that exactly integrates polynomials of degree 11 of less instead of
50 pseudo-Monte Carlo draws in each market. For additional details, please consult Online Appendix OA1.
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Appendices

A. Derivations

A.1. Concentrating out Linear Parameters

Our objective is to concentrate out β̂(θ2) and γ̂(θ2). Define Y D
jt , Y S

jt , X
D
jt , and XS

jt as follows:

Y D
jt ≡ δ̂jt(θ2) + αpjt = [xjt, vjt]β + ξjt ≡ XD

jtβ + ξjt,

Y S
jt ≡ pjt − η̂jt(θ2) = [xjt, wjt]γ + ωjt ≡ XS

jtγ + ωjt.

(A1)

Stacking the system across observations yields:102

YD
YS


︸ ︷︷ ︸
2N×1

=

XD 0

0 XS


︸ ︷︷ ︸
2N×(K1+K3)

β
γ


︸︷︷︸

(K1+K3)×1

+

ξ
ω


︸︷︷︸
2N×1

. (A2)

Adding the N ×MD instruments for demand, ZD, and the N ×MS instruments for supply, ZS ,
yields M = MD +MS moment restrictions

E

ZD′jt (Y D
jt −XD

jtβ)

ZS′jt (Y S
jt −XS

jtγ)

 = 0, (A3)

which have sample analogues

1

N

Z ′D 0

0 Z ′S


︸ ︷︷ ︸

M×2N

YD
YS


︸ ︷︷ ︸
2N×1︸ ︷︷ ︸

Ỹ

− 1

N

Z ′DXD 0

0 Z ′SXS


︸ ︷︷ ︸

M×(K1+K3)︸ ︷︷ ︸
X̃

β
γ


︸︷︷︸

(K1+K3)×1

.

(A4)

102Note that cannot perform independent regressions unless we are willing to assume that Cov(ξjt, ωjt) = 0.
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Now we can simply perform a GMM regression of Ỹ on X̃ with the same M ×M weighting matrix
W used in the overall problem:

β̂(θ2)

γ̂(θ2)

 = (X̃ ′WX̃)−1X̃ ′WỸ . (A5)

A.2. Analytic Derivative Calculations

This derivation appears to be novel to the literature for the case of simultaneous estimation of supply
and demand.

The gradient of the GMM objective function is

∇q(θ2) = 2G(θ2)′Wg(θ2).

The challenging piece here is the Jacobian of the GMM objective :

G(θ2)︸ ︷︷ ︸
M×K2

=
1

N

Z ′D 0

0 Z ′S


︸ ︷︷ ︸

M×2N

 ∂ξ
∂θ2

∂ω
∂θ2

 .
︸ ︷︷ ︸
2N×K2

Because the residuals in (12) are linear, at the true θ2 we can write:103

 ∂ξ
∂θ2

∂ω
∂θ2

 =

 ∂δ
∂θ2

−f ′MC(·) ∂η∂θ2

 . (A6)

The f ′MC(·) in (A6) comes from (7) where fMC(·) is typically linear with f ′MC(cjt) = 1, or loga-
rithmic with f ′MC(cjt) = 1/cjt.

For the demand moments, after invoking the implicit function theorem, this has a convenient

103During optimization, this equality does not hold because we concentrate out the linear parameters. Abbreviating
(A6) as ∂L

∂θ2
= ∂R

∂θ2
and using notation from Appendix A.1, ∂L

∂θ2
= (I −X(X̃ ′WX̃)−1X̃ ′WZ′) ∂R

∂θ2
6= ∂R

∂θ2
. We thank

Luis Armona and Daniel Stackman for pointing this out. Fortunately, one can use orthogonality between L and the
projection matrix to show ∇q ∝ ∂L

∂θ2

′
ZWZ′L = ∂R

∂θ2

′
ZWZ′L, i.e. it is fine to use (A6) when computing the gradient.
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block structure that can be separated market by market t:104

∂δt
∂θ2

(θ2)︸ ︷︷ ︸
Jt×K2

= −
[
∂st
∂δt

(θ2)

]
︸ ︷︷ ︸

Jt×Jt

−1 [∂st
∂θ2

(θ2)

]
︸ ︷︷ ︸

Jt×K2

.

Differentiating the supply moments is challenging because demand derivatives
∂sjt
∂pkt

(ξt(θ2), θ2) in
the matrix ∆t(ξt(θ2), θ2) depend on both ξt(θ2) and θ2 directly. To avoid excessive tensor product
notation, consider the derivative with respect to an element within θ2 labeled θ`:

105

∂ηt
∂θ`︸︷︷︸
Jt×1

= −∆−1
t

∂∆t

∂θ`
∆−1
t st −∆−1

t

∂∆t

∂ξt

∂ξt
∂θ`

∆−1
t st + ∆−1

t

∂st
∂θ`︸︷︷︸

0

= − ∆−1
t︸︷︷︸

(Jt×Jt)

∂∆t

∂θ`︸︷︷︸
(Jt×Jt)

ηt︸︷︷︸
(Jt×1)

− ∆−1
t︸︷︷︸

(Jt×Jt)

∂∆t

∂ξt︸︷︷︸
(Jt×Jt×Jt)

∂ξt
∂θ`︸︷︷︸

(Jt×1)

ηt︸︷︷︸
(Jt×1)

.

This is expression is complicated because the supply-side structural error term ωt and the markup
ηt depend both directly on θ2 and indirectly on θ2 through ξt.

A.3. Quantity Dependent Marginal Costs

The original Berry et al. (1995) paper incorporates quantity dependent marginal costs, which allow
for increasing or decreasing returns to scale:

log(pjt − ηjt(θ2)) = log cjt = [xjt, wjt]γ + γq log qjt + ωjt.

The obvious problem is that log qjt is endogenous in that it depends on (ξt,ωt). A second question
is whether the firm takes into account the fact that selling an additional unit changes the marginal

104The matrix inverse of ∂st
∂δt

(θ2) is guaranteed by the diagonal dominance of system of equations with respect to

δjt. As long as the outside good has a positive share, we have that for each j, | ∂sjt
∂δjt
| >

∑
k 6=j |

∂skt
∂δjt
|. In practice, as

shares become small, there may still be numerical issues.
105In the markup ηjt, the st is data and thus does not depend on parameters.
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cost, which would imply an additional term in the first-order condition:

sjt(pt) +
∑
k∈Jft

∂skt
∂pjt

(pt) · (pkt − ckt)− skt(pt) ·
∂ckt
∂qkt

· ∂skt
∂pjt

(pt) ·Mt = 0,

sjt(pt) +
∑
k∈Jft

∂skt
∂pjt

(pt) ·
(
pkt − ckt −Mt · skt(pt)︸ ︷︷ ︸

qkt(pt)

·∂ckt
∂qkt

)
= 0,

sjt(pt) +
∑
k∈Jft

∂skt
∂pjt

(pt) ·
(
pkt − ckt · (1 + γq)

)
= 0.

If log qjt enters the (log) marginal cost function, the implied marginal costs are all increased pro-
portionally by (1 + γq). Otherwise the first order condition depends both on the functional form
fMC(·) and how qjt enters the equation:

sjt(pt) +
∑
k∈Jft

∂skt
∂pjt

(pt) ·
(
pkt − ckt − qkt

∂ckt
∂qkt

)
= 0.

This does not appear to be how the existing literature such as Berry et al. (1995, 1999) address
quantity dependent marginal costs. Instead, the first-order condition treats the marginal cost as
if it were constant (i.e., assuming ∂ckt

∂qkt
= 0 above), but then when the parameters γ are recovered

allows for an extra term on qjt or log qjt. Thus the firm treats marginal costs as if they were
constant when setting prices, but the marginal costs are still quantity dependent:106

fMC(pjt − ηjt(θ2)) = [xjt, wjt]γ + γq log qjt + ωjt.

Also note that qjt cannot be included in the set of instruments for supply, ZSt , and as an endogenous
variable, it increases the number of required instruments. The good news is that the conventional
quantity shifters (BLP instruments) should be relevant here.

106Allowing for extra term in the first-order condition also likely violates the conditions necessary for uniqueness of
the pricing equilibrium, particularly if γq is negative and there are increasing returns to scale.
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B. Additional Tables and Figures

Table B1: Fixed Point Tricks

Problem Median s0t
Overflow

Safe Type Initial δt
Mean

Milliseconds
Mean

Evaluations
Percent

Converged

Simple Simulation 0.91 Yes δt δ0t 2.56 15.94 100.00%

Simple Simulation 0.91 No δt δ0t 1.66 15.94 100.00%

Simple Simulation 0.91 Yes exp(δt) δ0t 2.57 15.94 100.00%

Simple Simulation 0.91 No exp(δt) δ0t 1.66 15.94 100.00%

Simple Simulation 0.91 Yes δt δn−1
t 1.78 13.93 100.00%

Complex Simulation 0.91 Yes δt δ0t 3.32 16.14 100.00%

Complex Simulation 0.91 No δt δ0t 2.32 16.15 100.00%

Complex Simulation 0.91 Yes exp(δt) δ0t 3.33 16.16 100.00%

Complex Simulation 0.91 No exp(δt) δ0t 2.34 16.15 100.00%

Complex Simulation 0.91 Yes δt δn−1
t 2.74 14.74 100.00%

RCNL Simulation 0.92 Yes δt δ0t 8.45 33.49 100.00%

RCNL Simulation 0.92 No δt δ0t 6.06 33.49 100.00%

RCNL Simulation 0.92 Yes exp(δt) δ0t 8.24 33.49 100.00%

RCNL Simulation 0.92 No exp(δt) δ0t 6.09 33.50 100.00%

RCNL Simulation 0.92 Yes δt δn−1
t 6.37 27.32 100.00%

Nevo Example 0.54 Yes δt δ0t 4.05 24.06 100.00%

Nevo Example 0.54 No δt δ0t 2.67 24.06 100.00%

Nevo Example 0.54 Yes exp(δt) δ0t 4.07 24.06 100.00%

Nevo Example 0.54 No exp(δt) δ0t 2.69 24.06 100.00%

Nevo Example 0.54 Yes δt δn−1
t 3.10 18.27 100.00%

BLP Example 0.89 Yes δt δ0t 31.54 40.61 100.00%

BLP Example 0.89 No δt δ0t 26.97 40.69 100.00%

BLP Example 0.89 Yes exp(δt) δ0t 31.64 40.61 100.00%

BLP Example 0.89 No exp(δt) δ0t 26.57 40.69 100.00%

BLP Example 0.89 Yes δt δn−1
t 29.08 37.95 100.00%

This table documents the impact of common tricks used in the literature on solving the nested fixed point.

Reported values are medians across 100 different simulations and 10 identical runs of the two example

problems. We report the number of milliseconds and contraction evaluations needed to solve the nested fixed

point, averaged across all markets and objective evaluations of one GMM step. We also report convergence

rates: the percent of times no numerical errors were encountered a limit of 1,000 iterations was not reached.

Overflow safe results are those that use the log-sum-exp (LSE) function. The two fixed point types are the

standard linear contraction over δjt and the exponentiated version over exp(δjt). An initial δ0t means that

the contraction always starts at the solution to the logit model, whereas δn−1
t is the “hot-start” version where

starting values are those that solved the fixed point for the previous guess of θ2. We use the SQUAREM

algorithm with an absolute L∞ norm tolerance of 1E-14. Simulations are configured as in Section 5. The

example problems from Nevo (2000b) and Berry et al. (1995, 1999) are the replications described in Section 6.
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Table B2: Impact of Alternative Integration Methods on Parameter Estimates

True Value Median Bias Median Absolute Error

Simulation Supply Integration It Seconds α σx σp ρ α σx σp ρ α σx σp ρ

Simple No Monte Carlo 100 1.0 -1 3 0.233 -0.691 0.298 0.691

Simple No Monte Carlo 1,000 3.1 -1 3 0.198 -0.132 0.251 0.191

Simple No MLHS 1,000 3.2 -1 3 0.188 -0.051 0.241 0.167

Simple No Halton 1,000 3.2 -1 3 0.186 -0.050 0.241 0.165

Simple No Importance 1,000 21.6 -1 3 0.181 0.018 0.242 0.169

Simple No Product Rule 91 0.8 -1 3 0.189 -0.039 0.245 0.169

Simple Yes Monte Carlo 100 2.7 -1 3 0.113 -0.705 0.243 0.705

Simple Yes Monte Carlo 1,000 8.8 -1 3 0.021 -0.102 0.180 0.182

Simple Yes MLHS 1,000 8.8 -1 3 0.020 -0.015 0.172 0.162

Simple Yes Halton 1,000 9.2 -1 3 0.020 -0.015 0.170 0.162

Simple Yes Importance 1,000 27.2 -1 3 -0.001 0.065 0.176 0.181

Simple Yes Product Rule 91 2.2 -1 3 0.015 0.003 0.172 0.172

Complex No Monte Carlo 100 1.9 -1 3 0.2 0.304 -0.776 -0.091 0.317 0.778 0.110

Complex No Monte Carlo 1,000 5.3 -1 3 0.2 0.193 -0.190 -0.012 0.253 0.223 0.098

Complex No MLHS 1,000 5.1 -1 3 0.2 0.191 -0.103 -0.018 0.254 0.182 0.102

Complex No Halton 1,000 5.7 -1 3 0.2 0.141 -0.120 0.033 0.241 0.190 0.121

Complex No Importance 1,000 28.3 -1 3 0.2 0.180 -0.017 -0.028 0.254 0.173 0.108

Complex No Product Rule 92 1.6 -1 3 0.2 0.172 -0.088 -0.011 0.250 0.177 0.169

Complex Yes Monte Carlo 100 5.2 -1 3 0.2 0.114 -0.702 -0.137 0.250 0.713 0.141

Complex Yes Monte Carlo 1,000 15.0 -1 3 0.2 0.029 -0.126 -0.040 0.194 0.204 0.106

Complex Yes MLHS 1,000 15.2 -1 3 0.2 0.015 -0.051 -0.050 0.195 0.171 0.146

Complex Yes Halton 1,000 17.1 -1 3 0.2 -0.025 -0.053 0.024 0.194 0.162 0.127

Complex Yes Importance 1,000 38.6 -1 3 0.2 -0.050 0.071 -0.020 0.208 0.190 0.112

Complex Yes Product Rule 92 4.7 -1 3 0.2 -0.020 -0.029 0.004 0.195 0.171 0.169

RCNL No Monte Carlo 100 5.7 -1 3 0.5 0.236 -0.645 0.046 0.268 0.645 0.051

RCNL No Monte Carlo 1,000 18.9 -1 3 0.5 0.182 -0.131 0.001 0.219 0.182 0.022

RCNL No MLHS 1,000 19.0 -1 3 0.5 0.177 -0.026 -0.007 0.216 0.160 0.021

RCNL No Halton 1,000 19.9 -1 3 0.5 0.174 -0.024 -0.008 0.214 0.155 0.021

RCNL No Importance 1,000 40.2 -1 3 0.5 0.086 0.854 -0.110 0.241 0.854 0.110

RCNL No Product Rule 91 4.3 -1 3 0.5 0.176 -0.017 -0.007 0.214 0.153 0.021

RCNL Yes Monte Carlo 100 12.5 -1 3 0.5 0.072 -0.573 0.046 0.124 0.573 0.048

RCNL Yes Monte Carlo 1,000 45.8 -1 3 0.5 0.020 -0.096 0.007 0.112 0.156 0.019

RCNL Yes MLHS 1,000 45.8 -1 3 0.5 0.008 -0.005 0.000 0.109 0.138 0.017

RCNL Yes Halton 1,000 47.6 -1 3 0.5 0.010 -0.008 0.000 0.109 0.139 0.017

RCNL Yes Importance 1,000 66.0 -1 3 0.5 -0.071 0.862 -0.099 0.130 0.863 0.099

RCNL Yes Product Rule 91 9.3 -1 3 0.5 0.002 -0.001 0.000 0.109 0.139 0.018

This table documents bias and variance of parameter estimates over 1,000 simulated datasets for different numerical integration methods and

numbers of integration nodes It. Importance sampling is based on Halton draws. For descriptions of the integration rules, please refer to

Figure 1. For all problems, we use the “approximate” version of the feasible optimal instruments.
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Table B3: Form of Feasible Optimal Instruments

True Value Median Bias Median Absolute Error

Simulation Supply Approach Seconds α σx σp ρ α σx σp ρ α σx σp ρ

Simple No Approximate 0.8 -1 3 0.189 -0.039 0.245 0.169

Simple No Asymptotic 4.8 -1 3 0.189 -0.038 0.245 0.169

Simple No Empirical 4.8 -1 3 0.188 -0.035 0.245 0.168

Simple Yes Approximate 2.2 -1 3 0.015 0.003 0.172 0.172

Simple Yes Asymptotic 18.1 -1 3 0.021 0.003 0.192 0.172

Simple Yes Empirical 18.2 -1 3 0.026 0.007 0.181 0.171

Complex No Approximate 1.6 -1 3 0.2 0.172 -0.088 -0.011 0.250 0.177 0.169

Complex No Asymptotic 6.5 -1 3 0.2 0.177 -0.084 -0.008 0.251 0.175 0.165

Complex No Empirical 6.5 -1 3 0.2 0.171 -0.085 -0.012 0.246 0.175 0.168

Complex Yes Approximate 4.7 -1 3 0.2 -0.020 -0.029 0.004 0.195 0.171 0.169

Complex Yes Asymptotic 29.7 -1 3 0.2 0.001 -0.085 -0.029 0.210 0.209 0.168

Complex Yes Empirical 29.5 -1 3 0.2 -0.008 -0.074 -0.016 0.211 0.199 0.168

RCNL No Approximate 4.3 -1 3 0.5 0.176 -0.017 -0.007 0.214 0.153 0.021

RCNL No Asymptotic 9.4 -1 3 0.5 0.175 -0.022 -0.007 0.214 0.153 0.021

RCNL No Empirical 9.6 -1 3 0.5 0.173 -0.020 -0.007 0.215 0.151 0.021

RCNL Yes Approximate 9.3 -1 3 0.5 0.002 -0.001 0.000 0.109 0.139 0.018

RCNL Yes Asymptotic 46.4 -1 3 0.5 0.010 0.005 -0.000 0.113 0.142 0.018

RCNL Yes Empirical 46.2 -1 3 0.5 0.011 -0.004 -0.000 0.113 0.145 0.017

This table documents bias and variance of parameter estimates over 1,000 simulated datasets for different forms of optimal instruments.

The “approximate” approach replaces the structural errors with their unconditional expectations of zero. For the “asymptotic”

approach we take 100 draws from the estimated normal distribution for (ξjt, ωjt) ∼ N(0, Ω̂). For the “empirical” approach we sample

with replacement from the joint distribution of (ξ̂jt, ω̂jt). For all problems, we use a Gauss-Hermite product rule that exactly integrates

polynomials of degree 17 or less.
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Figure B1: Impact of Supply-Side Moments on Optimal IV for Demand-Only Problems
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Each plot documents how bias of the linear parameter on price, α, decreases with the strength of the cost shifter
wjt. Reported bias values are medians across 1,000 different simulations. Unlike in Figure 2, once feasible optimal
instruments have been constructed, only demand moments are used during estimation. Here, dashed lines mean that
instruments were constructed only with demand moments, and solid lines mean that supply moments were used as
well when constructing instruments. In the bottom plot we simulate data according to perfect competition (i.e., prices
are set equal to marginal costs instead of those that satisfy Bertrand-Nash first order conditions), but continue to
construct feasible optimal instruments under the assumption of imperfect competition. For all problems, we use the
“approximate” version of the feasible optimal instruments and a Gauss-Hermite product rule that exactly integrates
polynomials of degree 17 or less.
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