


Last Class

max
j∈Jt∪{0}

uijt = δjt + µijt + εijt

• In each market t ∈ T , individuals with types i ∈ It choose a j ∈ Jt ∪ {0}.

• Logit shocks εijt give mixed (over individual types) logit market shares.

• On day 1, we set µijt = 0 to get a conveniently linear estimating equation:

log
sjt
s0t

= δjt = αpjt + x′jtβ + ξjt

• Let’s go over your first coding exercise.
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Unrealistic Substitution Patterns

log
sjt
s0t

= δjt = αpjt + x′jtβ + ξjt

• In the price cut exercise, the pure logit model didn’t perform well. Why?

• Last week we derived the own-price elasticity. What about the cross-price one?

ηjkt =
∂ log qjt
∂ log pkt

=
∂qjt
∂pkt

pkt
qjt

=
∂sjt
∂pkt

pkt
sjt

= −α · pkt · skt

• Doesn’t depend on the characteristics of j!
→ Independence of Irrelevant Alternatives (IIA) property.
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Red Bus/Blue Bus Problem

• Most industrial organization examples are about cereals or automobiles.

• There are two options: buying a car or a blue bus. Each has a 50% market share.

• Introduce a second bus, but it’s red. Pure logit (IIA) predicts 33% market shares.
→ In your exercise, consumers substituted proportionally from each cereal.

• In reality, we’d expect the car to still have 50% and each bus to have 25%.
→ In your exercise, we’d hope for more substitution from more similar cereals.
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Red Bus/Blue Bus Solution

• Our solution will be to re-introduce non-logit preference heterogeneity.

uijt = δjt + µijt + εijt

• This will allow 50% of consumers to really like cars and 50% to really like buses.
→ When a new bus is introduced, this doesn’t really affect the car-lovers’ choice.

• Want µijt to dominate logit substitution from convenient but unrealistic εijt.
→ Want to add multiple dimensions of heterogeneity that really matter in our setting.
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Random Coefficients

uijt = x′jtβ + ξjt + εijt

• How to add preference heterogeneity to our pure logit model?
→ For simplicity, I’ll just let xjt denote all characteristics, including prices pjt.

• Intuitively, we want to replace β with random coefficients βit.
→ Random in that they’re drawn from a distribution of consumer types i ∈ It.
→ For xjt = carjt and It = {car-lovers, bus-lovers}, want βit ≫ 0 for car-lovers.

• Most common specification is βit ∼ N(β +Πyit,ΣΣ
′).

→ Π shifts preferences according to “observed” demographics yit ∼ census.
→ Σ shifts preferences according to “unobserved” preferences νit ∼ N(0, I).
→ Σ is the Cholesky root of the variance matrix. Usually diagonal with standard deviations.
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Random Coefficients in Practice

uijt = x′jtβ + ξjt︸ ︷︷ ︸
δjt

+x′jt(Σνit +Πyit)︸ ︷︷ ︸
µijt

+εijt

• In practice, we implement random coefficients by making a new dataset.
→ In PyBLP lingo, “product data” rows are (j, t)’s, and new “agent data” rows are (i, t)’s.

• In your coding exercise, you’ll just draw |It| = 100 types per market.
→ Draw νit ∼ N(0, I) from a random number generator.
→ Draw yit from census data on demographics: income, etc.
→ Each type is equally-likely, so use equal sampling weights wit = 1/|It|.

• The goal is to have a dataset that reflects the distribution of individuals.
→ Realism aside, this allows us to address distributional concerns.
→ E.g. will a tax or price change affect high- or low-income individuals differently?
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From Linear Regression to GMM

log
sjt
s0t

= δjt = x′jtβ + ξjt

• In your exercise, you estimated β by running the above regression.
→ Again, let xjt include price, a constant, any other characteristics.
→ Let zjt include our price IV and exogenous characteristics in xjt.

• Our exclusion restriction implies the moment condition E[ξjt · zjt] = 0.

• We’d get the exact same β̂ by optimizing the following GMM objective:

β̂ = argmin
β

g(β)Wg(β)′ where g(β) =
1

N

∑
t∈T

∑
j∈Jt

(δjt − x′jtβ) · zjt
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The BLP Contraction

• With preference heterogeneity, δjt = log
sjt
s0t

no longer holds.

• Instead, given a guess of (Σ,Π), we numerically find the δjt’s that solve:

sjt =
∑
i∈It

wit ·
exp[δjt + µijt(Σ,Π)]

1 +
∑

k∈Jt
exp[δkt + µikt(Σ,Π)]

for all j ∈ Jt

• Many ways to solve and speed up BLP’s (1995) contraction.
→ PyBLP will take care of this, but see Conlon and Gortmaker (2020) if interested.

• BLP’s (1995) big advancement was how to incorporate flexible preference heterogeneity.
→ Built on simulation estimator advancements (Pakes and Pollard, 1989; McFadden, 1989).
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The BLP Estimator

θ̂ = argmin
θ

g(θ)Wg(θ)′ where g(θ) =
1

N

∑
t∈T

∑
j∈Jt

(δjt(Σ,Π)− x′jtβ) · zjt

• BLP estimation consists of two nested loops.
1. In the “outer” loop, we optimize over θ = (β,Σ,Π).
2. In the “inner” loop, we solve the BLP contraction for δjt(Σ,Π).

• Actually, since g(θ) is linear in xjt, we can “concentrate out” β and optimize (Σ,Π).
→ Get β̂ by running an IV regression of δjt(Σ,Π) on xjt, like in the pure logit exercise.

• What about the GMM weighting matrix W ?
→ If you’re just-identified (dim zjt = dim θ), it doesn’t matter. You’ll get a zero objective.
→ Otherwise, you may want to repeat optimization with optimal the two-step GMM Ŵ .
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Motivation for Numerical Best Practices

6 5 4 3 2
Own-Price Elasticity

(Original Results)

0.0
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• Variation in BLP estimates across different optimization algorithms and starting values
has disillusioned some researchers (Knittel and Metaxoglou, 2014).

• But there are some numerical best practices that you can follow to avoid these kinds of
issues (Conlon and Gortmaker, 2020).
→ They’re likely to be useful for most computation-heavy structural estimation, not just BLP!

14 / 24



Motivation for Numerical Best Practices

6 5 4 3 2
Own-Price Elasticity

(Original Results)

0.0

0.1

0.2

0.3

Fr
ac

tio
n

6 5 4 3 2
Own-Price Elasticity

(Replication)

0.0

0.1

0.2

Fr
ac

tio
n

6 5 4 3 2
Own-Price Elasticity

(Best Practices)

0.0

0.5

1.0

Fr
ac

tio
n

• Variation in BLP estimates across different optimization algorithms and starting values
has disillusioned some researchers (Knittel and Metaxoglou, 2014).

• But there are some numerical best practices that you can follow to avoid these kinds of
issues (Conlon and Gortmaker, 2020).
→ They’re likely to be useful for most computation-heavy structural estimation, not just BLP!

14 / 24



Nonlinear Optimization

θ̂ = argmin
θ

Q(θ)

• Set box constraints θ ∈ [θ, θ] to preclude unrealistic and unstable guesses of θ.

• Check that 3-5 different starting values θ ∼ U(θ, θ) give the same θ̂.

• Prefer using gradient-based algorithms for “smooth” problems like BLP.

• Try to terminate on strict first-order conditions, e.g. ∥gradient∥∞ < 1e-8.

• Configure your optimizer! Defaults may not work for your setting.
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• Set box constraints θ ∈ [θ, θ] to preclude unrealistic and unstable guesses of θ.
→ E.g. huge Σ values can make the inner loop unstable.
→ Economic intuition and initial estimates will give a sense for reasonable bounds.
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Q(θ)

• Set box constraints θ ∈ [θ, θ] to preclude unrealistic and unstable guesses of θ.

• Check that 3-5 different starting values θ ∼ U(θ, θ) give the same θ̂.
→ For 2-step GMM, do this twice, once for each step (6-10 jobs total).
→ If you have access to a cluster, each can be a separate job, run in parallel.

• Prefer using gradient-based algorithms for “smooth” problems like BLP.

• Try to terminate on strict first-order conditions, e.g. ∥gradient∥∞ < 1e-8.
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• Set box constraints θ ∈ [θ, θ] to preclude unrealistic and unstable guesses of θ.

• Check that 3-5 different starting values θ ∼ U(θ, θ) give the same θ̂.

• Prefer using gradient-based algorithms for “smooth” problems like BLP.
→ Avoid derivative-free methods like Nelder-Mead/simplex, which tend to work worse.
→ I prefer trust-region algorithms, e.g. SciPy’s trust-constr or Knitro if you have it.

• Try to terminate on strict first-order conditions, e.g. ∥gradient∥∞ < 1e-8.
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• Check that 3-5 different starting values θ ∼ U(θ, θ) give the same θ̂.

• Prefer using gradient-based algorithms for “smooth” problems like BLP.

• Try to terminate on strict first-order conditions, e.g. ∥gradient∥∞ < 1e-8.
→ Inner loop should be tighter to prevent error “bubbling up.” PyBLP default is very tight.
→ Can also check second-order conditions, i.e. Hessian eigenvalues are positive.

• Configure your optimizer! Defaults may not work for your setting.
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Numerical Integration

sjt =
∑
i∈It

wit ·
exp(δjt + µijt)

1 +
∑

k∈Jt
exp(δkt + µikt)

• Individual types i are typically an approximation to a population distribution.

• Sometimes there are only a few types that we can integrate exactly.

• But usually we approximate the distribution with Monte Carlo integration.

• If you just need a few νit ∼ N(0, I)’s, try out Gauss-Hermite quadrature.

• Keep increasing |It| until your estimates stabilize across draws/starting values.
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• Individual types i are typically an approximation to a population distribution.

• Sometimes there are only a few types that we can integrate exactly.

• But usually we approximate the distribution with Monte Carlo integration.
→ Use a random number generator (RNG) to draw |It| ≈ 1,000 of (νit, yit)’s per market.
→ Even better than your default RNG are quasi-Monte Carlo sequences.
→ I recommend scrambled Halton sequences. R: Owen (2017). Python: SciPy or PyBLP.

• If you just need a few νit ∼ N(0, I)’s, try out Gauss-Hermite quadrature.
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• Sometimes there are only a few types that we can integrate exactly.

• But usually we approximate the distribution with Monte Carlo integration.

• If you just need a few νit ∼ N(0, I)’s, try out Gauss-Hermite quadrature.
→ 10-100× fewer carefully-chosen (wit, νit)’s that do just as well as Monte Carlo.
→ Chosen to exactly integrate a polynomial expansion of the integrand.

• Keep increasing |It| until your estimates stabilize across draws/starting values.
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What Typically Goes Wrong

• Can see how Q(θ) = g(θ)Wg(θ)′ varies with θ.

• Here, there’s a minimum but also some challenges.

→ Too few draws |It| makes the objective “choppy.”
→ Poorly-configured optimizers can stop too early.

• Different instruments give different objectives.

→ Even if they’re all valid, some may be weaker.
→ Weaker means flatter and harder to optimize.
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Adding Instruments

• For each new parameter in (Σ,Π), we need another instrument in zjt.
→ If you have fewer moments than parameters, you’re under-identified.

• In general, I recommend starting with one instrument per parameter.
→ Try to choose an instrument that “targets” that parameter.
→ For example, a single strong cost-shifter that “targets” α on pjt.

• This makes your estimation strategy clear, and makes optimization easier.
→ Just-identified models typically give Q(θ̂) ≈ 0 at the optimum.
→ This is regardless of your weighting matrix W , so you typically don’t need 2-step GMM.

• Later, adding more can help with weakness and testing exclusion restrictions.
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Linear Regression Approximation

• There’s a lot of confusion about what instruments are needed for BLP estimation.
→ Identification of nonlinear models like BLP can be challenging.
→ See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.

• Simplest case: 1 characteristic xjt (e.g. price), 1 demographic yit (e.g. income).

uijt = (β + σνit + πyit)xjt + ξjt + εijt

• Salanié and Wolak (2022) approximate the BLP model around σ, π ≈ 0:

log
sjt
s0t

≈ βxjt + σ2dxjt + πmy
t xjt + π2vyt d

x
jt︸ ︷︷ ︸

Defined on the next slide.

+ξjt

• Let’s use our stronger intuition about linear regression to think about instruments!
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Linear Regression Intuition

log
sjt
s0t

= βxjt + ξjt

• If we set σ = π = 0 like on day 1, we get our familiar pure logit regression.

• To target σ ̸= 0, need a measure of how “differentiated” j is in terms of xjt within t.

• To target π ̸= 0, we can interact xjt with mean within-market income my
t .
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→ Use the same IV as before to target β: if xjt = pjt, a price IV; if exogenous, xjt itself.
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• If we set σ = π = 0 like on day 1, we get our familiar pure logit regression.

• To target σ ̸= 0, need a measure of how “differentiated” j is in terms of xjt within t.
→ Can’t use dxjt itself because it depends on endogenous market shares skt.

→ Conventional choice was
∑

k ̸=j xkt, the BLP instruments from day 1.
→ A stronger choice is

∑
k ̸=j(xjt − xkt)

2 or similar from Gandhi and Houde (2020).
→ We want cross-market choice set variation, otherwise dxjt is collinear with x2

jt.
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• To target σ ̸= 0, need a measure of how “differentiated” j is in terms of xjt within t.
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→ We want cross-market demographic variation, otherwise my
t xjt is collinear with xjt.

→ Can technically identify π from higher-order variation, e.g. in variance vyt .
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• If we set σ = π = 0 like on day 1, we get our familiar pure logit regression.

• To target σ ̸= 0, need a measure of how “differentiated” j is in terms of xjt within t.

• To target π ̸= 0, we can interact xjt with mean within-market income my
t .

• In your exercise, you’ll target (β, σ, π) with zjt = (xjt,
∑

k ̸=j(xjt − xkt)
2,my

t xjt).
→ If xjt = pjt, can replace xjt with fitted values p̂jt from the price IV’s first stage.
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Optimal Instruments

• There are many valid instruments that satisfy exclusion restrictions E[ξjt | zjt] = 0.
→ E.g. zjt itself, z2jt, z3jt, or any function f(zjt) of zjt.

• But adding a ton of instruments will bias your estimator.
→ “Many weak IVs” problem is well-known for 2SLS (Angrist, Imbens and Krueger, 1999).
→ Similar for nonlinear GMM (Han and Phillips, 2006; Newey and Windmeijer, 2009).

• Optimal IVs overweight observations with ξjt very sensitive to θ (Chamberlain, 1987):

f∗(zjt) = E
[
∂ξjt
∂θ′

∣∣∣zjt]
• Can be a bit tricky to compute, but with PyBLP it’s just one line of code.

→ In practice, can update your IVs along with your weighting matrix for a second GMM step.
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Coding Exercise 2

• Try to do the second exercise before day 3’s class, when I’ll do it live.
1. Incorporating preference heterogeneity.
2. Mixed logit estimation.
3. Evaluating improvements to the price cut counterfactual.

• Think critically about the limitations of the model you estimate.
→ What dimensions of preference heterogeneity are missing?

• If you have time, try the supplemental exercises.
→ Numerical integration alternatives.
→ Optimal weights and instruments.
→ Supply-side restrictions.
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