


Allow me to introduce myself

▶ Economics professor at Brigham Young University in Utah

▶ 4 biological kids, 3 foster daughters, most of whom can now
run and mountain bike faster than me

▶ A big fan of causal inference in observational settings:

▶ Quasi-experimental evaluations of the effects of unions
(Frandsen 2016, 2017, 2021; Chen, Frandsen, Grabowski, Town,

Sojourner 2015)
▶ Distributional effects

(Frandsen and Lefgren 2018, 2021; Frandsen, Froelich, Melly 2012)

▶ And of exploring machine learning in applied economics:

▶ Teach Machine Learning for Economists at BYU
▶ Research on the power of ML in empirical strategies

(Angrist and Frandsen 2022)
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Effects Ex Machina: Where we’re going

Machine Learning + Heterogeneous Treatment Effects

▶ Causality primer/review

▶ Machine learning (ML) prediction primer/review
▶ Heterogeneous treatment effects

▶ When they matter
▶ Conceptual framework
▶ Using ML to predict treatment effects:

Random Causal Forests
▶ Python/R implementation

(Prequel to this course: Machine Learning and Causal
Inference)



Potential outcomes and treatment effects



Potential outcomes and treatment effects

$43M



Potential outcomes and treatment effects

$43M



Potential outcomes and treatment effects

$43M $700K



Potential outcomes and treatment effects

$43M $700K

Y(1) Y(0)

Potential outcomes

D = 1 D = 0



Potential outcomes and treatment effects

$43M $700K

Y(1) Y(0)- Treatment effect=

- $42.3M=



Potential outcomes and treatment effects

$43M $700K

Y(1) Y(0)- Treatment effect=

- $42.3M=

counterfactual



Potential outcomes and treatment effects

$43M $700K

Y(1) Y(0)- Treatment effect=

- $42.3M=



Potential outcomes and treatment effects



Potential outcomes and treatment effects



Potential outcomes and treatment effects



Potential outcomes and treatment effects

E[Y(1)] E[Y(0)]



Potential outcomes and treatment effects

E[Y(1)] E[Y(0)]- E[Y(1) – Y(0)]=
ATE



Potential outcomes and treatment effects



Potential outcomes and treatment effects



Potential outcomes and treatment effects



Potential outcomes and treatment effects

E[Y|D=1] E[Y|D=0]- E[Y(1) – Y(0)|D=1]

+ E[Y(0)|D=1] – E[Y(0)|D=0]
selection bias

=
ATT



Potential outcomes and treatment effects



Potential outcomes and treatment effects

E[Y(1)|   ] E[Y(0)|   ]

E[Y(1)|   ] E[Y(0)|   ]

E[Y(1)|   ] E[Y(0)|   ]



Potential outcomes and treatment effects

E[Y(1)|   ] E[Y(0)|   ]

E[Y(1)|   ] E[Y(0)|   ]

E[Y(1)|   ] E[Y(0)|   ]



Potential outcomes and treatment effects

E[Y(1)|   ] E[Y(0)|   ]

E[Y(1)|   ] E[Y(0)|   ]

E[Y(1)|   ] E[Y(0)|   ] E[Y(1)|   ]=E[Y(1)|   ]
E[Y(0)|   ]=E[Y(0)|   ]

As long as:

E[Y(1)|   ]=E[Y(1)|   ]
E[Y(0)|   ]=E[Y(0)|   ]

E[Y(1)|   ]=E[Y(1)|   ]
E[Y(0)|   ]=E[Y(0)|   ]



Potential outcomes and treatment effects

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=



Potential outcomes and treatment effects

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1) – Y(0)]



Potential outcomes and treatment effects

Y(1),Y(0) TT D|

Y(1),Y(0) TT D|

Y(1),Y(0) TT D|



Potential outcomes and treatment effects

Y(1),Y(0) TT D|

Y(1),Y(0) TT D|

Y(1),Y(0) TT D|

Selection on observables, 
“unconfoundedness”: Y(1),Y(0) TT D|X



Potential outcomes and treatment effects

Y(1),Y(0) TT D|

Y(1),Y(0) TT D|

Y(1),Y(0) TT D|

⁄

⁄

⁄



Potential outcomes and treatment effects

Pr(D=1|   ) = .75

Pr(D=1|   ) = .5

Pr(D=1|   ) = .25



Potential outcomes and treatment effects

Pr(D=1|   ) = .75

Pr(D=1|   ) = .5

Pr(D=1|   ) = .25

Common support, 
“overlap”:

0 < Pr(D=1|X ) < 1



Potential outcomes and treatment effects

Pr(D=1|   ) = .75

Pr(D=1|   ) = .5

Pr(D=1|   ) = .25



Potential outcomes and treatment effects

Pr(D=1|   ) = .75

Pr(D=1|   ) = .5

Pr(D=1|   ) = .25

Pr(D=1|   ) = 1

Pr(D=1|   ) = 0

!!

!!



Potential outcomes and treatment effects

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1)|   ] E[Y(0)|   ]- E[Y(1) – Y(0)|    ]=

E[Y(1) – Y(0)]



Basic causal inference summary

▶ Target (for now!):

ATE = E [Yi (1)− Yi (0)] = E [τi ]

▶ Key identifying assumption:

(Yi (0) ,Yi (1)) ⊥⊥ Di |Xi

▶ Estimation:
▶ Multiple linear regression (OLS)

Yi = β0 + τDi + β1X1i + · · ·+ βkXki + ε

▶ Matching
▶ Propensity score methods
▶ Machine-assisted:

▶ Post-Double Selection Lasso
▶ Double/De-biased Machine Learning

▶ Go to python!
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Prediction Methods

Supervised machine learning algorithms:

▶ Decision trees

▶ Random forests

▶ Penalized regression (ridge, lasso)

▶ Support vector machines



Prediction mechanics

▶ Goal: Predict an
out-of-sample
outcome Y

▶ as a function, f̂ (X ),
of features X =
(1,X1,X2, . . . ,XK )
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▶ Estimate the function
f̂ (aka “train the
model”) based on
training sample
{(Yi ,Xi ); i =
1, ...,N}
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What’s a “good” prediction?

▶ Want our prediction to be “close,” i.e. minimize the expected
mean squared error:

min
f (x)

E
[
(f (x)− Y )2

∣∣∣X = x
]

�𝑦𝑦 = 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 𝑥𝑥

dist of Y|X
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Decision Trees

Income<20k?

# kids < 12?educ < 16?

No Yes

YesNo YesNo

▶ Where to split:
Choose the feature from {x1, . . . , xp} and the value of that
feature to minimize MSE in the resulting child nodes

▶ Tuning parameters
▶ Max depth
▶ Min training obs per leaf
▶ Min improvement in fit in order to go ahead with a split



Forest for the Trees

▶ Value proposition: reduce variance by averaging together
multiple predictions

▶ The catch: individual trees need to be de-correlated
▶ Algorithm:

▶ Grow B trees, each on a different bootstrapped sample
▶ At each split, consider only a random subset of features
▶ Average together the individual predictions

▶ Let’s grow some trees in python!



Combining causal effects and ML: predicting
heterogeneous treatment effects

▶ What is the effect of job training on the probability of finding
a job . . .
▶ for more-educated vs. less-educated individuals?
▶ for men vs. women?
▶ for married vs. single?
▶ for high-earning vs. low-earning (prior to training)?
▶ for minorities vs. non-minorities?

▶ Why does it matter?

▶ Other examples where heterogeneity in treatment effects
matter?



Traditional heterogeneity analysis: Interacted regression
To estimate the overall average effect:

Yi = τDi + εi , i ∈ {1, . . . , n}

To explore heterogeneity by sex:

Yi = τ femaleDi + εi , i : Femalei = 1

Yi = τmaleDi + εi , i : Femalei = 0,

or, equivalently:

Yi = τmaleDi + βFemalei + γDi × Femalei + εi

τ female = τmale + γ.

More generally,

Yi = τDi + X ′
i β + DiX

′
i γ + εi ,

τ (x) = τ + x ′γ
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Challenges with traditional heterogeneity analysis

Yi = τDi + X ′
i β + DiX

′
i γ + εi

▶ Functional form: treatment effects may not vary linearly with
Xi

▶ Curse of dimensionality: when Xi includes many variables,
OLS impractical or infeasible

▶ These are problems ML was born to solve!



Predicting outcomes vs. treatment effects

Predicting outcomes Predicting treatment effects

Target: ŷ (x) = E [Yi |Xi = x ] Target: τ (x) = E [τi |Xi = x ]

Criterion:

minE
[
(ŷ (x)− Yi )

2 |Xi = x
] Criterion:

minE
[
(τ (x)− τi )

2 |Xi = x
]

Training data: {Yi ,Xi}ni=1 Training data: {τi ,Xi}ni=1

Why is training data a problem for predicting treatment
effecs?

▶ Consequence: can’t apply ML directly to predicting treatment
effects; have to adapt them
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Adapting ML to predict treatment effects
▶ Break it up:

E [τi |Xi ] := E [Yi (1)− Yi (0) |Xi ]

= E [Yi |Xi ,Di = 1]− E [Yi |Xi ,Di = 0]

(by what assumption?)

▶ Adjust the criterion: (why?)

min
n∑

i=1

(τ (Xi )− τi )
2 ⇐⇒ max

n∑
i=1

τ (Xi )
2

▶ Be honest: use one set of observations to select the tree
structure, and another to generate predictions

Y X1 X2 X3
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Predicting treatment effects using ML: Summary

▶ Target:
CATE := τ (x) = E [τi |Xi = x ]

▶ Key identifying assumption:

(Yi (0) ,Yi (1)) ⊥⊥ Di |Xi

▶ Estimation: Random Causal Forest
▶ Grow decision trees on many bootstrapped samples
▶ Choose splits using the training set to max

∑n
i=1 τ (Xi )

2

▶ Generate predictions in each leaf using the estimation set
▶ Average predictions over the trees in the forest

▶ Go to python!



Thank you!


