Machine Learning and Heterogeneous Effects

MIXTAPE SESSION

Prof. Brigham Frandsen

Allow me to introduce myself

▶ Economics professor at Brigham Young University in Utah

Allow me to introduce myself

▶ Economics professor at Brigham Young University in Utah

▶ 4 biological kids, 3 foster daughters, most of whom can now

run and mountain bike faster than me

Allow me to introduce myself

- ► Economics professor at Brigham Young University in Utah
- ▶ 4 biological kids, 3 foster daughters, most of whom can now run and mountain bike faster than me
- ▶ A big fan of causal inference in observational settings:
 - Quasi-experimental evaluations of the effects of unions (Frandsen 2016, 2017, 2021; Chen, Frandsen, Grabowski, Town, Sojourner 2015)
 - ➤ Distributional effects (Frandsen and Lefgren 2018, 2021; Frandsen, Froelich, Melly 2012)
- And of exploring machine learning in applied economics:
 - Teach Machine Learning for Economists at BYU
 - Research on the power of ML in empirical strategies (Angrist and Frandsen 2022)

Effects Ex Machina: Where we're going

Machine Learning + Heterogeneous Treatment Effects

- Causality primer/review
- Machine learning (ML) prediction primer/review
- ► Heterogeneous treatment effects
 - When they matter
 - Conceptual framework
 - Using ML to predict treatment effects: Random Causal Forests
 - Python/R implementation

(Prequel to this course: Machine Learning and Causal Inference)

\$43M

$$E[Y(1)]$$
 - $E[Y(0)] = E[Y(1) - Y(0)]$
ATE

$$0 < Pr(D=1|X) < 1$$

Basic causal inference summary

► Target (for now!):

$$ATE = E[Y_i(1) - Y_i(0)] = E[\tau_i]$$

Key identifying assumption:

$$(Y_i(0), Y_i(1)) \perp D_i | X_i$$

- Estimation:
 - Multiple linear regression (OLS)

$$Y_i = \beta_0 + \tau D_i + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + \varepsilon$$

- Matching
- Propensity score methods
- Machine-assisted:
 - Post-Double Selection Lasso
 - ► Double/De-biased Machine Learning
- ► Go to python!

Prediction Target

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

Prediction Target

Prediction Methods

Supervised machine learning algorithms:

- Decision trees
- Random forests
- ► Penalized regression (ridge, lasso)
- Support vector machines

Prediction mechanics

► **Goal:** Predict an out-of-sample outcome *Y*

Prediction mechanics

- ► **Goal:** Predict an out-of-sample outcome *Y*
- ▶ as a function, $\hat{f}(X)$, of **features** $X = (1, X_1, X_2, \dots, X_K)'$.

Prediction mechanics

- ▶ Goal: Predict an out-of-sample outcome Y
- ▶ as a function, $\hat{f}(X)$, of **features** $X = (1, X_1, X_2, \dots, X_K)'$.
- Estimate the function f̂ (aka "train the model") based on training sample {(Y_i, X_i); i = 1, ..., N}

What's a "good" prediction?

Want our prediction to be "close," i.e. minimize the expected mean squared error:

$$\min_{f(x)} E\left[(f(x) - Y)^2 \middle| X = x \right]$$

Found a job Didn't find a job Prior Income Education

- ▶ Where to split: Choose the feature from $\{x_1, \ldots, x_p\}$ and the value of that feature to minimize MSE in the resulting child nodes
- Tuning parameters
 - Max depth
 - Min training obs per leaf
 - Min improvement in fit in order to go ahead with a split

Forest for the Trees

- Value proposition: reduce variance by averaging together multiple predictions
- The catch: individual trees need to be de-correlated
- Algorithm:
 - ► Grow *B* trees, each on a different bootstrapped sample
 - At each split, consider only a random subset of features
 - Average together the individual predictions
- Let's grow some trees in python!

Combining causal effects and ML: predicting heterogeneous treatment effects

- What is the effect of job training on the probability of finding a job . . .
 - ▶ for more-educated vs. less-educated individuals?
 - ▶ for men vs. women?
 - for married vs. single?
 - for high-earning vs. low-earning (prior to training)?
 - for minorities vs. non-minorities?
- Why does it matter?
- Other examples where heterogeneity in treatment effects matter?

To estimate the overall average effect:

$$Y_i = \tau D_i + \varepsilon_i, \quad i \in \{1, \ldots, n\}$$

To estimate the overall average effect:

$$Y_i = \tau D_i + \varepsilon_i, \quad i \in \{1, \ldots, n\}$$

To explore heterogeneity by sex:

$$Y_i = \tau^{female} D_i + \varepsilon_i, \quad i : Female_i = 1$$

$$Y_i = \tau^{\textit{male}} D_i + \varepsilon_i, \qquad i : \textit{Female}_i = 0,$$

To estimate the overall average effect:

$$Y_i = \tau D_i + \varepsilon_i, \quad i \in \{1, \ldots, n\}$$

To explore heterogeneity by sex:

$$egin{array}{lll} Y_i &=& au^{female}D_i + arepsilon_i, & i: Female_i = 1 \ Y_i &=& au^{male}D_i + arepsilon_i, & i: Female_i = 0, \end{array}$$

or, equivalently:

$$Y_i = \tau^{male} D_i + \beta Female_i + \gamma D_i \times Female_i + \varepsilon_i$$

 $\tau^{female} = \tau^{male} + \gamma.$

To estimate the overall average effect:

$$Y_i = \tau D_i + \varepsilon_i, \quad i \in \{1, \ldots, n\}$$

To explore heterogeneity by sex:

$$egin{array}{lll} Y_i &=& au^{female}D_i + arepsilon_i, & i: Female_i = 1 \ Y_i &=& au^{male}D_i + arepsilon_i, & i: Female_i = 0, \end{array}$$

or, equivalently:

$$Y_i = \tau^{male} D_i + \beta Female_i + \gamma D_i \times Female_i + \varepsilon_i$$

 $\tau^{female} = \tau^{male} + \gamma.$

More generally,

$$Y_i = \tau D_i + X_i' \beta + D_i X_i' \gamma + \varepsilon_i,$$

$$\tau (x) = \tau + x' \gamma$$

Challenges with traditional heterogeneity analysis

$$Y_i = \tau D_i + X_i' \beta + D_i X_i' \gamma + \varepsilon_i$$

- Functional form: treatment effects may not vary linearly with X_i
- Curse of dimensionality: when X_i includes many variables,
 OLS impractical or infeasible
- ▶ These are problems ML was born to solve!

Predicting outcomes vs. treatment effects

Predicting of	outcomes
---------------	----------

Predicting treatment effects

Target:
$$\hat{y}(x) = E[Y_i|X_i = x]$$
 Target: $\tau(x) = E[\tau_i|X_i = x]$

Target:
$$au\left(x
ight)=E\left[au_{i}|X_{i}=x
ight]$$

Criterion:

$$\min E\left[\left(\hat{y}\left(x\right)-Y_{i}\right)^{2}|X_{i}=x\right]\qquad \min E\left[\left(\tau\left(x\right)-\tau_{i}\right)^{2}|X_{i}=x\right]$$

$$\min E\left[\left(\tau\left(x\right)-\tau_{i}\right)^{2}|X_{i}=x\right]$$

Training data:
$$\{Y_i, X_i\}_{i=1}^n$$

Training data:
$$\{\tau_i, X_i\}_{i=1}^n$$

Predicting outcomes vs. treatment effects

Predicting outcor	mes
-------------------	-----

Predicting treatment effects

Target:
$$\hat{y}(x) = E[Y_i | X_i = x]$$
 Target: $\tau(x) = E[\tau_i | X_i = x]$

Target:
$$au\left(x
ight)=E\left[au_{i}|X_{i}=x
ight]$$

Criterion:

$$\min E\left[\left(\hat{y}\left(x\right)-Y_{i}\right)^{2}|X_{i}=x\right]\qquad \min E\left[\left(\tau\left(x\right)-\tau_{i}\right)^{2}|X_{i}=x\right]$$

$$\min E\left[\left(\tau\left(x\right)-\tau_{i}\right)^{2}|X_{i}=x\right]$$

Training data:
$$\{Y_i, X_i\}_{i=1}^n$$

Training data:
$$\{\tau_i, X_i\}_{i=1}^n$$

Why is training data a problem for predicting treatment effecs?

Predicting outcomes vs. treatment effects

Predicting	outcomes
------------	----------

Predicting treatment effects

Target:
$$\hat{y}(x) = E[Y_i | X_i = x]$$
 Target: $\tau(x) = E[\tau_i | X_i = x]$

Target:
$$au\left(x
ight)=E\left[au_{i}|X_{i}=x
ight]$$

Criterion:

$$\min E\left[\left(\hat{y}\left(x\right)-Y_{i}\right)^{2}|X_{i}=x\right]\qquad \min E\left[\left(\tau\left(x\right)-\tau_{i}\right)^{2}|X_{i}=x\right]$$

$$\min E\left[\left(\tau\left(x\right)-\tau_{i}\right)^{2}|X_{i}=x\right]$$

Training data:
$$\{Y_i, X_i\}_{i=1}^n$$

Training data:
$$\{\tau_i, X_i\}_{i=1}^n$$

Why is training data a problem for predicting treatment effecs?

Consequence: can't apply ML directly to predicting treatment effects; have to adapt them

Adapting ML to predict treatment effects

► Break it up:

$$E[\tau_{i}|X_{i}] := E[Y_{i}(1) - Y_{i}(0)|X_{i}]$$

$$= E[Y_{i}|X_{i}, D_{i} = 1] - E[Y_{i}|X_{i}, D_{i} = 0]$$
(by what assumption?)

Adapting ML to predict treatment effects

Break it up:

$$E[\tau_{i}|X_{i}] := E[Y_{i}(1) - Y_{i}(0)|X_{i}]$$

= $E[Y_{i}|X_{i}, D_{i} = 1] - E[Y_{i}|X_{i}, D_{i} = 0]$

(by what assumption?)

► Adjust the criterion: (why?)

$$\min \sum_{i=1}^{n} (\tau(X_i) - \tau_i)^2 \iff \max \sum_{i=1}^{n} \tau(X_i)^2$$

Adapting ML to predict treatment effects

► Break it up:

$$E[\tau_{i}|X_{i}] := E[Y_{i}(1) - Y_{i}(0)|X_{i}]$$

= $E[Y_{i}|X_{i}, D_{i} = 1] - E[Y_{i}|X_{i}, D_{i} = 0]$

(by what assumption?)

► Adjust the criterion: (why?)

$$\min \sum_{i=1}^{n} (\tau(X_i) - \tau_i)^2 \iff \max \sum_{i=1}^{n} \tau(X_i)^2$$

▶ Be honest: use one set of observations to select the tree structure, and another to generate predictions

Predicting treatment effects using ML: Summary

▶ Target:

$$CATE := \tau(x) = E[\tau_i | X_i = x]$$

Key identifying assumption:

$$(Y_i(0), Y_i(1)) \perp D_i | X_i$$

- Estimation: Random Causal Forest
 - Grow decision trees on many bootstrapped samples
 - ► Choose splits using the training set to $\max \sum_{i=1}^{n} \tau(X_i)^2$
 - ▶ Generate predictions in each leaf using the estimation set
 - Average predictions over the trees in the forest
- Go to python!

Thank you!