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Abstract: In the Regression Discontinuity (RD) design, units are assigned a treatment based on whether
their value of an observed covariate is above or below a fixed cutoff. Under the assumption that the
distribution of potential confounders changes continuously around the cutoff, the discontinuous jump
in the probability of treatment assignment can be used to identify the treatment effect. Although a
recent strand of the RD literature advocates interpreting this design as a local randomized experiment,
the standard approach to estimation and inference is based solely on continuity assumptions that do
not justify this interpretation. In this article, we provide precise conditions in a randomization
inference context under which this interpretation is directly justified and develop exact finite-sample
inference procedures based on them. Our randomization inference framework is motivated by the
observation that only a few observations might be available close enough to the threshold where
local randomization is plausible, and hence standard large-sample procedures may be suspect. Our
proposed methodology is intended as a complement and a robustness check to standard RD inference
approaches. We illustrate our framework with a study of two measures of party-level advantage in U.S.
Senate elections, where the number of close races is small and our framework is well suited for the
empirical analysis.
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1 Introduction

Inference on the causal effects of a treatment is one of the basic aims of empirical research. In
observational studies, where controlled experimentation is not available, applied work relies on quasi-
experimental strategies carefully tailored to eliminate the effect of potential confounders that would
otherwise compromise the validity of the analysis. Originally proposed by Thistlethwaite and Campbell
[1], the regression discontinuity (RD) design has recently become one of the most widely used quasi-
experimental strategies. In this design, units receive treatment based on whether their value of an
observed covariate or “score” is above or below a fixed cutoff. The key feature of the design is that
the probability of receiving the treatment conditional on the score jumps discontinuously at the cutoff,
inducing variation in treatment assignment that is assumed to be unrelated to potential confounders.
Imbens and Lemieux [2], Lee and Lemieux [3] and Dinardo and Lee [4] give recent reviews, including
comprehensive lists of empirical examples.

The traditional inference approach in the RD design relies on flexible extrapolation (usually
nonparametric curve estimation techniques) using observations near the known cutoff. This approach
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follows the work of Hahn et al. [5], who showed that, when placement relative to the cutoff completely
determines treatment assignment, the key identifying assumption is that the conditional expectation of
a potential outcome is continuous at the threshold. Intuitively, since nothing changes abruptly at the
threshold other than the probability of receiving treatment, any jump in the conditional expectation of
the outcome variable at the threshold is attributed to the effects of the treatment. Modern RD analysis
employs local nonparametric curve estimation at either side of the threshold to estimate RD treatment
effects, with local-linear regression being the preferred choice in most cases. See Porter [6], Imbens
and Kalyanaraman [7] and Calonico et al. [8] for related theoretical results and further discussion.

Although not strictly justified by the standard framework, RD designs are routinely interpreted as
local randomized experiments, where in a neighborhood of the threshold treatment status is considered
as good as randomly assigned. Lee [9] first argued that if individuals are unable to precisely manipulate
or affect their score, then variation in treatment near the threshold approximates a randomized experi-
ment. This idea has been expanded in Lee and Lemieux [3] and Dinardo and Lee [4], where RD designs
are described as the “close cousins” of randomized experiments. Motivated by this common interpreta-
tion, we develop a methodological framework for analyzing RD designs as local randomized experiments
employing a randomization inference setup.1 Characterizing the RD design in this way not only has
intuitive appeal but also leads to an alternative way of conducting statistical inference. Building on
Rosenbaum [14, 15], we propose a randomization inference framework to conduct exact finite-sample
inference in the RD design that is most appropriate when the sample size in a narrow window around the
cutoff – where local randomization is most plausible – is small. Small sample sizes are a common
phenomenon in the analysis of RD designs, since the estimation of the treatment effect at the cutoff
typically requires that observations far from the cutoff be given zero or little weight; this may constrain
researchers’ ability to make inferences based on large-sample approximations. In order to increase the
sample size, researchers often include observations far from the cutoff and engage in extrapolation.
However, incorrect parametric extrapolation invalidates standard inferential approaches because point
estimators, standard errors and test statistics will be biased. In such cases, if a local randomization
assumption is plausible, our approach offers a valid alternative that minimizes extrapolation by relying
only on the few closest observations to the cutoff. More generally, our methodological framework offers a
complement and a robustness check to conventional RD procedures by providing a framework that
requires minimal extrapolation and allows for exact finite-sample inference.

To develop our methodological framework, we first make precise a set of conditions under which RD
designs are equivalent to local randomized experiments within a randomization inference framework. These
conditions are strictly stronger than the usual continuity assumptions imposed in the RD literature, but
similar in spirit to those imposed in Hahn et al. ([5], Theorem 2) for identification of heterogeneous
treatment effects. The key assumption is that, for the given sample, there exists a neighborhood around
the cutoff where a randomization-type condition holds. More generally, this assumption may be interpreted
as an approximation device to the conventional continuity conditions that allows us to proceed as if only
the few closest observations near the cutoff are randomly assigned. The plausibility of this assumption will
necessarily be context-specific, requiring substantive justification and empirical support. Employing these
conditions, we discuss how randomization inference tools may be used to conduct exact finite-sample
inference in the RD context.

Our resulting empirical approach consists of two steps. The first step is choosing a neighborhood or
window around the cutoff where treatment status is assumed to be as-if randomly assigned. We develop a
data-driven, randomization-based window selection procedure based on “balance tests” of pre-treatment
covariates and illustrate how this approach for window selection performs in our empirical illustration. The
second step is to apply established randomization inference tools, given a hypothesized treatment assign-
ment mechanism, to construct hypothesis tests, confidence intervals, and point estimates.

1 Recent work on treatment effect models using randomization inference techniques include Imbens and Rosenbaum [10], Ho
and Imai [11], Barrios et al. [12] and Hansen and Bowers [13].

2 M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design
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Our approach parallels the conventional nonparametric RD approach but makes a different tradeoff:
our randomization assumption (constitutes an approximation that) is likely valid within a smaller neigh-
borhood of the threshold than the one used in the flexible local polynomial approach, but allows for exact
finite-sample inference in a setting where large-sample approximations may be poor. Both approaches
involve choices for implementation: standard local polynomial RD estimation requires selecting (i) a
bandwidth and (ii) a kernel and polynomial order, while for our approach researchers need to choose
(i) the size of the window around the cutoff where randomization is plausible and (ii) a randomization
mechanism and test statistic. As is well known in the literature, bandwidth selection is difficult and
estimation results can be highly sensitive to its choice [8]. In our approach, selecting the window is also
crucial, and researchers should pay special attention to how it is chosen. On the other hand, selecting a
kernel and polynomial order is relatively less important, as is choosing a randomization mechanism and
test statistic in our approach.

We illustrate our methodological framework with a study of party-level advantages in U.S. Senate
elections, comparing future Democratic vote shares in states where the Democratic party barely won an
election to states where it barely lost. We find that the effect of barely winning an election for a seat has a
large and positive effect on the vote share in the following election for that seat, but a null effect on the
following election for the state’s other seat. Our null findings are consistent with the results reported by
Butler and Butler [16], who studied balancing and related hypotheses using standard RD methods, although
we find that these null results may be sensitive to the choice of window.

The rest of the paper is organized as follows. Section 2 sets up our statistical framework, formally states
the baseline assumptions required to apply randomization inference procedures to the RD design, and
describes these procedures briefly. Section 3 discusses data-driven methods to select the window around
the cutoff where the randomization assumption may be plausible. Section 4 briefly reviews the classical
notion of incumbency advantage in the Political Science literature and discusses its differences with RD-
based measures, while Section 5 presents the results of our empirical analysis. Section 6 discusses several
extensions and applications of our methodology, and Section 7 concludes.

2 Randomization inference in RD

Consider a setting with n units, indexed i ¼ 1; 2; . . . ; n, where the scalar Ri is the score observed for unit i,
with the n-vector R collecting the observations. In our application, Ri is the Democratic margin of victory (at
election t) for state i. We denote unit i’s “potential outcome” by yiðrÞ, where r is a given value of the vector
of scores. The outcome yiðrÞ is called a potential outcome because it denotes the outcomes that unit i would
exhibit under each possible value of the score vector r.2 In the randomization inference framework, the
potential outcome functions yiðrÞ are considered fixed characteristics of the finite population of n units, and
the observed vector of scores R is random.3 Thus, the observed outcome for unit i is Yi ; yiðRÞ and is
likewise a random variable with observations collected in the n-vector Y. The essential feature of the RD
design is embodied in a treatment variable Zi ¼ 1ðRi 5 r0Þ, which is determined by the position of the score
relative to the cutoff or threshold value r0. The n-vector of treatment status indicators is denoted Z, with
Zi ¼ 1 if unit i receives treatment and Zi ¼ 0 otherwise. We focus on the so-called sharp RD design, where
all units comply with their assigned treatment, but we extend our methodology to the so-called fuzzy
design, where treatment status is not completely determined by the score, in Section 6.1.

2 See Holland [17] for a thorough discussion of the potential outcomes framework.
3 In this framework, the potential outcomes are fixed and thus the n units are not seen as a sample from a larger population.
This could also be interpreted as a standard inference approach that conditions on the sampled observations. We focus on
inference about this fixed population because it enables us to conduct nonparametric exact finite-sample inference. However, as
pointed out by a reviewer, if researchers are interested in extrapolation outside the fixed sample within the window, our local
randomization assumption could be adapted and used with, for example, Neyman-type or Bayesian methods.

M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design 3

Brought to you by | University of Michigan
Authenticated

Download Date | 2/19/15 10:36 PM



Our approach begins by specifying conditions within a neighborhood of the threshold that allow us to
analyze the RD design as a randomized experiment. Specifically, we focus on an interval or window
W0 ¼ ½r; r� on the support of the score, containing the threshold value r0, where the assumptions described
below hold. We denote the subvector of R corresponding to units with Ri inside this window as RW0 , and
likewise for other vectors. In addition, we define FRijRi2W0

ðrÞ to be the conditional distribution function of
the score Ri given Ri 2 W0, for each unit i. Our main condition casts the RD design as a local randomized
experiment.

Assumption 1: Local Randomization. There exists a neighborhood W0 ¼ r;�r½ � with r< r0 <�r such that for
all i with Ri 2 W0:
(a) FRijRi2W0ðrÞ ¼ FðrÞ, and
(b) yiðrÞ ¼ yiðzW0Þ for all r.

The first part of Assumption 1 says that the distribution of the score is the same for all units inside W0,
implying that the scores can be considered “as good as randomly assigned” in this window. This is a strong
assumption and would be violated if, for example, the score were affected by the potential outcomes even
near the threshold – but may be relaxed, for instance, by explicitly modeling the relationship between Ri

and potential outcomes. The second part of this assumption requires that potential outcomes within the
window depend on the score only through treatment indicators within the window. This implicitly makes
two restrictions. First, it prevents potential outcomes of units inside W0 from being affected by the scores of
units outside (i.e., yiðrÞ ¼ yiðrW0Þ). Second, for units in W0, it requires that potential outcomes depend on
the score only through the treatment indicators but not the particular value of the scores (i.e.,
yiðrW0Þ ¼ yiðzW0Þ). This part of the assumption is plausible in many settings where, for example, Ri is
primarily an input into a mechanical formula allocating assignment to the treatment Zi. In our party
advantages application, this assumption implies that, in a small window around the cutoff, a party’s
margin of victory does not affect its vote share in the next election except through winning the previous
election.

The conditions in Assumption 1 are stronger than those typically required for identification and
inference in the classical RD literature. Instead of only assuming continuity of the relevant population
functions at r0 (e.g., conditional expectations, distribution functions), our assumption implies that, in the
window W0, these functions are not only continuous but also constant as a function of the score.4 But
Assumption 1 can also be viewed as an approximation to the standard continuity conditions in much the
same way the nonparametric large-sample approach approximates potential outcomes as locally linear.
This connection is made precise in Section 6.5. Assumption 1 has two main implications for our approach.
First, it means that near the threshold we can ignore the score values for purposes of statistical inference
and focus on the treatment indicators ZW0 . Second, since the distribution of ZW0 does not depend on
potential outcomes, comparisons of observed outcomes across the threshold have a causal interpretation.

In most settings, Assumption 1 is plausible only within a narrow window of the threshold, leaving only
a small number of units for analysis. Thus, the problems of estimation and inference using this assumption
in the context of RD are complicated by small-sample concerns. Following Rosenbaum [14, 15], we propose
using exact randomization inference methods to overcome this potential small-sample problem. In the
remainder of this section, we maintain Assumption 1 and take as given the window W0, but we discuss
explicitly empirical methods for choosing this window in Section 3.

4 This assumption could be relaxed to FRi jRi2W0 ðrÞ ¼ FiðrÞ, allowing each unit to have different probabilities of treatment
assignment. However, in order to conduct exact-finite sample inference based on this weaker assumption, further parametric or
semiparametric assumptions are needed. See footnote 5 for further discussion on this point.

4 M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design
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2.1 Hypothesizing the randomization mechanism

The first task in applying randomization inference to the RD design is to choose a randomization
mechanism for ZW0 that is assumed to describe the data generating process that places units on
either side of the threshold. A natural starting place for a setting in which Zi is an individual-level
variable (as opposed to a group-level characteristic) assumes Zi is a Bernoulli random variable with
parameter π. In this case, the probability distribution of ZW0 is given by PrðZW0 ¼ zÞ ¼ πz

01ð1� πÞð1�zÞ01,
for all vectors z in ΩW0 , which in this case consists of the 2nW0 possible vectors of zeros and ones, where nW0

is the number of units in W0 and 1 is a conformable vector of ones. This randomization distribution is fully
determined up to the value π, which is typically unknown in the context of RD applications. A natural
choice for π would be π̂ ¼ Z0

W0
1=nW0 , the fraction of units within the window with scores exceeding the

threshold.5

While the simplicity of this Bernoulli mechanism is attractive, a practical disadvantage is that it results
in a positive probability of all units in the window being assigned to the same group. An alternative

mechanism that avoids this problem, and is also likely to apply in settings where Zi is an individual-level
variable, is a random allocation rule or “fixed-margins randomization” in which the number of units within

the window assigned to treatment is fixed at mW0 . Under this mechanism, ΩW0 consists of the
nW0

mW0

� �

possible nW0 -vectors with mW0 ones and nW0 �mW0 zeros. The probability distribution is

PrðZW0 ¼ zÞ ¼ nW0

mW0

� ��1

, for all z 2 ΩW0 .

When Zi is a group-level variable, or where additional variables are known to affect the probability of
treatment, other mechanisms approximating a block-randomized or stratified design will be more
appropriate.

2.2 Test of no effect

Having chosen an appropriate randomization mechanism, we can test the sharp null hypothesis of no

treatment effect under Assumption 1. No treatment effect means observed outcomes are fixed regardless of
the realization of ZW0 . Under this null hypothesis, potential outcomes are not a function of treatment status
inside W0; that is, yiðzÞ ¼ yi for all i within the window and for all z 2 ΩW0 , where yi is a fixed scalar. The
distribution of any test statistic TðZW0 ; yW0

Þ is known, since it depends only on the known distribution of

ZW0 , and yW0
, the fixed vector of observed responses. The test thus consists of computing a significance

level for the observed value of the test statistic. The one-sided significance level is simply the sum of the

probabilities of assignment vectors z leading to values of Tðz; yW0
Þ at least as large as the observed value ~T,

that is, PrðTðZW0 ; yW0
Þ5 ~TÞ ¼ P

z2ΩW0
1ðTðz; yW0

Þ5 ~TÞ � PrðZW0 ¼ zÞ, where PrðZW0 ¼ zÞ follows the

assumed randomization mechanism.
Any test statistic may be used, including difference-in-means, the Kolmogorov–Smirnov test statistic, and

difference-in-quantiles. While in typical cases the significance level of the test may be approximated when a
large number of units is available, randomization-based inference remains valid (given Assumption 1) even
for a small number of units. This feature is particularly important in the RD design where the number of units
within W0 is likely to be small.

5 Under the generalization discussed in footnote 4, the parameter π in the Bernoulli randomization mechanism becomes πi
(different probabilities for different units), which could be modeled, for instance, as πi ¼ πðriÞ for a parametric choice of the
function πð�Þ.
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2.3 Confidence intervals and point estimates

While the test of no treatment effect is often an important starting place, and appealing for the minimal
assumptions it relies on, in most applications we would like to construct confidence intervals and point
estimates of treatment effects. This requires additional assumptions. The next assumption we introduce is
that of no interference between units.

Assumption 2: Local stable unit treatment value assumption. For all i with Ri 2 W0: if zi ¼ ~zi then
yiðzW0Þ ¼ yið~zW0Þ.

This assumption means that unit i’s potential outcome depends only on zi, which, together with
Assumption 1, allows us to write potential outcomes simply as yið0Þ and yið1Þ for units in W0.
Assumptions 1–2 enable us to characterize the effects of treatment through inference on the distribution
or quantiles of the population of nW0 potential outcomes in W0, fyiðzÞ : Ri 2 W0g, as in Rosenbaum ([14],

Chapter 5). The goal is to construct a confidence interval ½aðqÞ; bðqÞ� that covers with at least some specified

probability the q-quantile of fyið1Þ : Ri 2 W0g, denoted Q1ðqÞ, which is simply the dq� nW0e-th order

statistic of fyið1Þ : Ri 2 W0g for units within the window W0, and a similar confidence interval for Q0ðqÞ.
The confidence interval for Q1ðqÞ consists of the observed treated values x above the threshold (but in the

window) such that the hypothesis H0 : Q1ðqÞ ¼ x is not rejected by a test of at most some specified size.

The test statistic is JðxÞ ¼ Z0
W0

1ðYW0 4 xÞ, the number of units above the threshold whose outcomes are

less than or equal to x, and has distribution PrðJðxÞ ¼ jÞ ¼ dq� nW0e
j

� �
nW0 � dq� nW0e

mW0 � j

� �
=

nW0

mW0

� �

under a fixed-margins randomization mechanism where mW0 denotes the number of treated units inside

W0. Inference on the quantile treatment effect Q1ðqÞ � Q0ðqÞ can be based on confidence regions for Q1ðqÞ
and Q0ðqÞ.

Point estimates and potentially shorter confidence intervals for the treatment effect can be obtained at
the cost of a parametric model for the treatment effect. A simple (albeit restrictive) model that is commonly
used is the constant treatment effect model described below.

Assumption 3: Local constant treatment effect model. For all i with Ri 2 W0: yið1Þ ¼ yið0Þ þ τ, for some
τ 2 R .

Under Assumptions 1–3, and hypothesizing a value τ ¼ τ0 for the treatment effect, the adjusted responses,
Yi � τ0Zi ¼ yið0Þ, are constant under alternative realizations of ZW0 . Thus, under this model, a test of the
hypothesis τ ¼ τ0 proceeds exactly as the test of the sharp null discussed above, except that now the
adjusted responses are used in place of the raw responses. The test statistic is therefore
TðZW0 ;YW0 � τ0ZW0Þ, and the significance level is computed as before. Confidence intervals for the treat-
ment effect can be found by finding all values τ0 such that the test τ ¼ τ0 is not rejected, and Hodges–
Lehmann-type point estimates can also be constructed finding the value of τ0 such that the observed test
statistic TðZW0 ;YW0 � τ0ZW0Þ equals its expectation under the null hypothesis.

We discuss this constant and additive treatment effect model because it allows us to illustrate
how confidence intervals can be easily derived by inverting hypothesis tests about a treatment effect
parameter. But there is nothing in the randomization inference framework that we have adopted
that necessitates Assumption 3. This assumption can be easily generalized to allow for non-constant
treatment effects, such as Tobit or attributable effects (see Rosenbaum [15], Chapter 2). Indeed, the
technique of constructing adjusted potential outcomes and inverting hypothesis tests of the sharp null
hypothesis is general and allows for arbitrarily heterogeneous models of treatment effects. Furthermore, the
confidence intervals for quantile treatment effects described above do not require a parametric treatment
effect model.

6 M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design
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3 Window selection

If there exists a window W0 ¼ ½r;�r� where our randomization-type condition Assumption 1 holds, and this
window is known, applying randomization inference procedures to the RD design is straightforward. In
practice, however, this window will be unknown and must be chosen by the researcher. This is the main
methodological challenge of applying a randomization inference approach to RD designs and is analogous
to the problem of bandwidth selection in conventional nonparametric RD approaches [7, 8].

Imposing Assumption 1 throughout, we propose a method to select W0 based on covariates. These
could be either predetermined covariates (determined before treatment is assigned and thus, by construc-
tion, unaffected by it) or placebo covariates (determined after treatment is assigned but nonetheless
expected to be unaffected by treatment given prior theoretical knowledge about how the treatment
operates). In most RD empirical applications, researchers have access to predetermined covariates and
use them to assess the plausibility of the RD assumptions and/or to reduce sampling variability. A typical
strategy to validate the design is to test whether there is a treatment effect at the discontinuity for these
covariates, and absence of such effect is interpreted as supporting evidence for the RD design.

Our window selection procedure is inspired by this common empirical practice. In particular, we assume
that there exists a covariate for each unit, denoted xiðrÞ, which is unrelated to the score inside W0 but related
to it outside ofW0. This implies that for a windowW � W0, the score and covariate will be associated for units
with Ri 2 W �W0 but not for units with Ri 2 W0. This means that if the sharp null hypothesis is rejected in a
given window, that window is strictly larger than W0, which leads naturally to a procedure for selecting W0:
perform a sequence of “balance” tests for the covariates, one for each window candidate, beginning with the
largest window and sequentially shrinking it until the test fails to reject “balance”.

The first step to formalize this approach is to assume that the treatment effect on the covariate x is zero
inside the window where Assumption 1 holds. We collect the covariates in X ¼ ðX1;X2; � � � ;XnÞ0 where, as
before, Xi ¼ xiðRÞ.

Assumption 4: Zero treatment effect for covariate. For all i with Ri 2 W0: the covariate xiðrÞ satisfies
xiðrÞ ¼ xiðzW0Þ ¼ xi for all r.

Assumption 4 states that the sharp null hypothesis holds for Xi in W0. This assumption simply states what
is known to be true when the available covariate is determined before treatment: treatment could not have
possibly affected the covariates and therefore its effect is zero by construction. Note that if Xi is a
predetermined covariate, the sharp null holds everywhere, not only in W0. However, we require the weaker
condition that it holds only in W0 to include placebo covariates.

The second necessary step to justify our procedure for selecting W0 based on covariate balance is to
require that the covariate and the score be correlated outside of W0. We formalize this requirement in the
following assumption, which is stronger than needed, but justifies our proposed window selection proce-
dure in an intuitive way, as further discussed below. Define ~W ¼ ½ρ; rÞ¨ð�r; �ρ� for a pair ðρ; �ρÞ satisfying
ρ< r<�r< �ρ, and recall that r0 2 W0 ¼ ½r;�r�.

Assumption 5: Association outside W0 between covariate and score. For all i with Ri 2 ~W and for all
r 2 ~W:
(a) FRijRi2 ~WðrÞ ¼ Fðr; xiðrÞÞ, and
(b) For all j� k, either (i) xj > xk ) Fðr; xjÞ< Fðr; xkÞ or (ii) xj > xk ) Fðr; xjÞ> Fðr; xkÞ.

Assumption 5 is key to obtain a valid window selector, since it requires a form of non-random selection
among units outside W0 that leads to an observable association between the covariate and the score for
those units with Ri‚W0, i.e., between the vectors X ~W and R ~W . In other words, under Assumption 5 the
vectors XW and RW will be associated for any window W such that W � W0. Since x is predetermined or
placebo, this association cannot arise because of a direct effect of r on x. Instead, it may be that x affects r

M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design 7
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(e.g., higher campaign contributions at t � 1 lead to higher margin of victory at t) or that some observed or
unobserved factor affects both x and r (e.g., more able politicians are both more likely to raise high
contributions and win by high margins). In other words, Assumption 5 leads to units with high Ri having
high (or low) Xi, even when Xi is constant for all values of r.

Assumptions 1, 4 and 5 justify a simple procedure to find W0. This procedure finds the widest window
for which the covariates and scores are not associated inside this window, but are associated outside of it.
We base our procedure on randomization-based tests of the sharp null hypothesis of no effect for each
available covariate x. Given Assumption 4 above, for units with Ri 2 W0, the treatment assignment vector
ZW0 has no effect on the covariate vector XW0 . Under this assumption, the size of the test of no effect is
known, and therefore we can control the probability with which we accept a window where the assump-
tions hold. In addition, under Assumption 5 (or a similar assumption), this procedure will be able to detect
the true window W0. Such a procedure can be implemented in different ways. A simple approach is to begin
by considering all observations (i.e., choosing the largest possible window W0), test the sharp null of no
effect of Zi on Xi for these observations and, if the null hypothesis is rejected, continue by decreasing the
size of the window until the resulting test fails to reject the null hypothesis.

The procedure depends crucially on sequential testing in nested windows: if the sharp null hypothesis
is rejected for a given window, then this hypothesis will also be rejected in any window that contains it
(with a test of sufficiently high power). Thus, the procedure searches windows of different sizes until it finds
the largest possible window such that the sharp null hypothesis cannot be rejected for any window
contained in it. This procedure can be implemented as follows.

Window selection procedure based on predetermined covariates. Select a test statistic of interest,
denoted TðX;RÞ. Let RðjÞ be the jth order statistic of R in the sample of all observations indexed by
i ¼ 1; . . . ; n.
Step 1: Define Wðj0; j1Þ ¼ ½Rðj0Þ;Rðj1Þ�, and set j0 ¼ 1, j1 ¼ n. Choose minimum values j0;min and j1;min

satisfying j0;min < r0 < j1;min, which set the minimum number of observations required in Wðj0;min; j1;minÞ.
Step 2: Conduct a test of no effect using TðXWðj0;j1Þ;RWðj0;j1ÞÞ.
Step 3: If the null hypothesis is rejected, increase j0 and decrease j1. If j0 < j0;min and j1;min > j1 go back to

Step 2, else stop and conclude that lower and upper ends for W0 cannot be selected. If the null
hypothesis is not rejected, keep R½j0� and R½j1� as the ends of the selected window.

An important feature of this approach is that, unlike conventional hypothesis testing, we are particularly
concerned about the possibility of failing to reject the null hypothesis when it is false (Type II error).
Usually, researchers are concerned about controlling Type I error to avoid rejecting the null hypothesis too
often when it is true, and thus prefer testing procedures that are not too “liberal”. In our context, however,
rejecting the null hypothesis is used as evidence that the local randomization Assumption 1 does not hold,
and our ultimate goal is to learn whether the data support the existence of a neighborhood around the
cutoff where our null hypothesis fails to be rejected. In this sense, the roles of Type I and Type II error are
interchanged in our context.6 This has important implications for the practical implementation of our
approach, which we discuss next.

3.1 Implementation

Implementing the procedure proposed above requires three choices: (i) a test statistic, (ii) the minimum
sample sizes (j0;min, j1;min), and (iii) a testing procedure and associated significance level α. We discuss here

6 An alternative is to address this issue directly by changing the null hypothesis to be the existence of a treatment effect. This
could be implemented with sensitivity analysis [14] or equivalence tests [18].
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how these choices affect our window selector, and give guidelines for researchers who wish to use this
procedure in empirical applications.

3.1.1 Choice of test statistic

This choice is important because different test statistics will have power against different alternative
hypotheses and, as discussed above, we prefer tests with low type II error. In our procedure, the sharp
null hypothesis of no treatment effect could employ different test statistics such as difference-in-means,
Wilcoxon rank sum or Kolmogorov–Smirnov, because the null randomization distribution of any of them is
known. Lehmann [19] and Rosenbaum [14, 15] provide a discussion and comparison of alternative test
statistics. In our application, we employ the difference-in-means test statistic.

3.1.2 Choice of minimum sample size

The main goal of setting a minimum sample size is to prevent the procedure from having too few
observations when conducting the hypothesis test in the smallest possible window. These constants should
be large enough so that the test statistic employed has “good” power properties to detect departures from
the null hypothesis. We recommend setting j0;min and j1;min so that roughly at least 10 observations are
included at either side of the threshold. One way of justifying this choice is by considering a two-sample
standard normal shift model with a true treatment effect of one standard deviation and 10 observations in
each group, in which case a randomization-based test of the sharp null hypothesis of no treatment effect
using the difference-in-means statistic has power of roughly 80% with significance level of 0.15 (and 60
percent with significance level of 0.05). Setting j0;min and j1;min at higher values will increase the power to
detect departures from Assumption 1 and will lead to a more conservative choice of W0 (assuming the
chosen window based on those higher values is feasible, that is, has positive length).

3.1.3 Choice of testing procedure and α

First, our procedure performs hypothesis tests in a sequence of nested windows and thus involves multiple
hypothesis testing (see Efron [20] for a recent review). This implies that, even when the null hypothesis is
true, it will be rejected several times (e.g., if the hypotheses are independent, they will be rejected roughly
as many times as the significance level times the number of windows considered). For the family-wise error
rate, multiple testing implies that our window selector will reject more windows than it should, because the
associated p-values will be too small. But since we are more concerned about failing to reject a false null
hypothesis (type II error) than we are about rejecting a true one (type I error), this implies that our
procedure will be more conservative, selecting a smaller window than the true window (if any) where the
local randomization assumption is likely to hold. For this reason, we recommend that researchers do not
adjust p-values for multiple testing.7 Second, we must choose a significance level α to test whether the local
randomization assumption is rejected in each window. As our focus is on type II error, this value should be
chosen to be higher than conventional levels for a conservative choice for W0. Based on the power
calculations discussed above, a reasonable choice is to adopt α ¼ 0:15; higher values will lead to a more
conservative choice of W0 if a feasible window satisfies the stricter requirement. Nonetheless, researchers
should report all p-values graphically so that others can judge how varying α would alter the size of the
chosen window. Finally, when the sharp null is tested for multiple covariates in every candidate window,

7 An alternative approach is to select a false discovery rate among all windows such that the non-discovery rate, an analog of
type II error in multiple testing contexts, is low enough [21].
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the results of multiple tests must be aggregated in a single p-value. To be as conservative as possible, we
choose the minimum p-value across all tests in every window.

In the upcoming sections, we illustrate how our methodological framework works in practice with a
study of party advantages in U.S. Senate elections.

4 Regression discontinuity and the party incumbency advantage

Political scientists have long studied the question of whether the incumbent status of previously elected
legislators translates into an electoral or incumbency advantage. This advantage is believed to stem from a
variety of factors, including name recognition, the ability to perform casework and cultivate a personal
vote, the ability to deter high-quality challengers, the implementation of pro-incumbent redistricting plans,
and the availability of the incumbency cue amidst declining party attachments. Although the literature
is vast, it has focused overwhelmingly on the incumbency advantage of members of the U.S. House of
Representatives.8

Estimating the incumbency advantage is complicated by several factors. One is that high-quality
politicians tend to obtain higher vote shares than their low-quality counterparts, making them more likely
both to become incumbents in the first place and to obtain high vote shares in future elections. Another is
that incumbents tend to retire strategically when they anticipate a poor performance in the upcoming
election, making “open seats” (races where no incumbent is running) a dubious baseline for comparison.
Any empirical strategy that ignores these methodological issues will likely overestimate the size of the
incumbency advantage.

Recently, Lee [9] proposed using a regression discontinuity design based on the discontinuous relation-
ship between the incumbency status of a party in a given election and its vote share in the previous
election: in a two-party system, a party enjoys incumbency status when it obtains 50% of the vote or more
in the previous election, but loses incumbency status to the opposing party otherwise. In this RD design, the
score is the vote share obtained by a party at election t, the cutoff is 50%, and the treatment (incumbent
status) is assigned deterministically based on whether the vote share at t exceeds the cutoff. The outcome of
interest is the party’s vote share in the following election, at t þ 1. The design compares districts where the
party barely won election t to districts where the party barely lost election t, and computes the difference in
the vote share obtained by the party in the following election, at t þ 1. This difference is the boost in the
party’s vote share obtained by barely winning relative to barely losing, and it is related but different from
the classical notions of incumbency advantage in the Political Science literature. Caughey and Sekhon [26,
p. 402] discuss the connection between a global polynomial RD estimator and the classical Gelman and
King [23] estimator, and Erikson and Titiunik [25] discuss the relationship between the RD estimand and the
personal incumbency advantage.

4.1 RD design in U.S. Senate elections: two estimands of party advantage

Our application of the RD design to U.S. Senate elections focuses on two specific estimands that capture
local electoral advantages and disadvantages at the party level. The first estimand, which we call the
incumbent-party advantage, focuses on the effect of the Democratic party winning a Senate seat on its vote
share in the following election for that seat. The other estimand, which we call the opposite-party
advantage following Alesina et al. [27], is unrelated to the traditional concept of the incumbency advantage
and reveals the disadvantages faced by the party that tries to win the second seat in a state’s Senate

8 See, for example, Erikson [22], Gelman and King [23], Ansolabehere and Snyder [24], Erikson and Titiunik [25] and references
therein.
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delegation. Establishing whether the opposite-party advantage exists has been of central importance to
theories of split-party Senate delegations, and there are different explanations of why it may arise.9

Both estimands, formally defined in terms of potential outcomes below, are derived from applying an
RD design to the staggered structure of Senate elections, which we now describe briefly. Term length in the
U.S. Senate is 6 years and there are 100 seats. These Senate seats are divided into three classes of roughly
equal size (Class I, Class II and Class III), and every 2 years only the seats in one class are up for election. As
a result, the terms are staggered: in every general election, which occurs every 2 years, only one third of
Senate seats are up for election. Each state elects two senators in different classes to serve a 6-year term in
popular statewide elections. Since its two senators belong to different classes, each state has Senate
elections separated by alternating 2-year and 4-year intervals. Moreover, in any pair of consecutive
elections, each election is for a different senate seat – that is, for a seat in a different class.10

Following Butler and Butler [16], we apply the RD design in the U.S. Senate analogously to its previous
applications in the U.S. House, comparing states where the Democratic party barely won election t to states
where the Democratic party barely lost. But in the Senate, the staggered structure of terms adds a layer of
variability that allows us to both study party advantages and validate our design in more depth than would
be possible in a non-staggered legislature such as the House. Using t, t þ 1 and t þ 2 to denote three
successive elections, the staggered structure of the Senate implies that the incumbent elected at t, if he or
she decides to run for reelection, will be on the ballot at t þ 2, but not at t þ 1, when the Senate election will
be for the other seat in the state. As summarized in Table 1, this staggered structure leads to two different
research designs analyzing two separate effects.

The first design (Design I) focuses on the effect of party P’s barely winning at t on its vote share at t þ 2, the
second election after election t, and defines the first RD estimand we study. As illustrated in the third row of
Table 1, in Design I elections t and t þ 2 are for the same Senate seat, and this incumbent-party effect
captures the added vote share received by the Democratic party due to having won (barely) the seat’s
previous election. The second research design (Design II), illustrated in the second row of Table 1, allows us
to analyze the effect of party P’s barely winning election t on the vote share it receives in election t þ 1 for
the state’s other seat, when the incumbent candidate elected at t is, by construction, not contesting the
election. Thus, Design II defines the second RD estimand, the opposite-party advantage, which will be
negative when the party of the sitting senator (elected at t) is at a disadvantage relative to the opposing
party in the election for the other seat (which occurs at t þ 1).

Table 1: Three consecutive Senate elections in a hypothetical state.

Election Seat A Seat B Design and outcomes

t Election held. Candidate C
from party P wins

No election held –

t þ 1 No election held Election held. (Candidate C
is not a contestant in this race)

Design II: Effect of P winning Seat A at
t on P’s vote share for Seat B at t þ 1
(Opposite-party advantage)

t þ 2 Election held. Candidate C
may or may not be P’s
candidate

No election held Design I: Effect of P winning Seat A at
t on P’s vote share for Seat A at t þ 2
(Incumbent-party advantage)

9 See, for example, Alesina et al. [27], Jung et al. [28] and Segura and Nicholson [29].
10 For example, Florida’s two senators belong to Class I and III. The senator in Class I was elected in 2000 for 6 years and was
up for reelection in 2006, while the senator in Class III was elected in 2004 for 6 years and was up for reelection in 2010. Thus,
Florida had Senate elections in 2000 (Class I senator), 2004 (Class III senator), 2006 (Class I senator), and 2010 (Class III
senator).

M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design 11
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Using the notation introduced in Section 2, we consider two estimands defined by Designs I and II. We
define the treatment indicator as Zit ¼ 1ðRit 5 r0Þ and the potential outcomes in elections t þ 2 and t þ 1,
respectively, as yitþ2ðZitÞ and yitþ1ðZitÞ.11 Thus, the incumbent-party advantage for an individual state i is
defined as τIPi ¼ yitþ2ð1Þ � yitþ2ð0Þ and the opposite-party advantage as τOPi ¼ yitþ1ð1Þ � yitþ1ð0Þ. Our
randomization inference approach to RD offers hypothesis testing and point-type estimators (e.g.,
Hodges–Lehmann) of these parameters, possibly restricted by a treatment effect model, for the units in
the window W0 where local randomization holds.

5 Results: RD-based party advantages in U.S. Senate elections

We analyze U.S. Senate elections between 1914 and 2010. This is the longest possible period to study
popular U.S. Senate elections, as before 1914 Senate members were elected indirectly by state legislatures.
We combine several data sources. We collected election returns for the period 1914–1990 from The
Interuniversity Consortium for Political and Social Research (ICPSR) Study 7757, and for the period 1990–
2010 from the CQ Voting and Elections Collection. We obtained population estimates at the state level from
the U.S. Census Bureau. We also used ICPSR Study 3371 and data from the Senate Historical Office to
establish whether each individual senator served the full 6 years of his or her term, and exclude all
elections in which a subsequent vacancy occurs. We exclude vacancy cases because, in most states,
when a Senate seat is left vacant the governor can appoint a replacement to serve the remaining time in
the term or until special elections are held, and in most states appointed senators need not be of the same
party as the incumbents they replace, leaving the “treatment assignment” of the previous election
undefined.12

5.1 Selecting the window

We selected our window using the method based on predetermined covariates presented in Section 3. The
largest window we considered was ½�100; 100�, covering the entire support of our running variable. Based
on power considerations discussed above, the minimum window we considered was ½�0:5;0:5�, because
within this window there are 9 and 14 outcome observations to the left and right of the cutoff, respectively,
and we wanted to set j0;min and j1;min to be approximately equal to 10. Using our notation in Section 3, this
means we set ½Rðj0;minÞ;Rðj1;minÞ� ¼ ½�0:50;0:50� and ½Rð1Þ;RðnÞ� ¼ ½�100; 100�. We analyzed all symmetric
windows around the cutoff between ½�0:5;0:5� and ½�100; 100� in increments of 0.125 percentage points.
In each window, we performed randomization-based tests of the sharp null hypothesis of no treatment
effect for each of eight predetermined covariates: state-level Democratic percentage of the vote in the past
presidential election, state population, Democratic percentage of the vote in the t � 1 Senate election,
Democratic percentage of the vote in the t � 2 Senate election, indicator for Democratic victory in the t � 1
Senate election, indicator for Democratic victory in the t � 2 Senate election, indicator for open Senate seat
at t, indicator for midterm (non-presidential) election at t and indicator for whether the president of the U.S.
at t is Democratic. As discussed above, we set α ¼ 0:15, and use the difference-in-means as the test statistic
in our randomization-based tests. These tests (and similar tests for the outcomes presented below) are
based on 10,000 simulations of the randomization distribution of ZW0 assuming a fixed-margins assign-
ment mechanism. For each window, we chose the minimum p-value across these eight covariates.

11 Since our running variable is the Democratic victory at election t and our outcomes of interest occur later in elections t þ 1
and t þ 2, we add a subscript t to Ri and Zi to clarify that they are determined before the outcomes.
12 Dropping these observations is equivalent to the routine practice of dropping redistricting years in RD party incumbency
analysis of the U.S. House, where incumbency is undefined after redistricting plans are implemented.

12 M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design
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Figure 1 summarizes graphically the results of our window selector. For every symmetric window consid-
ered (x-axis), we plot the minimum p-value found in that window (y-axis). The x-axis is the absolute value
of our running variable, the Democratic margin of victory at election t, which is equivalent to the upper
limit of each window considered (since we only consider symmetric windows) and ranges from 0 to 100. For
example, the point 20 on the x-axis corresponds to the ½�20; 20� window. The figure also shows the
conventional significance level of 0.05 and the significance level of 0.15 that we use for implementation.
There are a few notable patterns in this figure. First, for most of the windows considered, the minimum
p-value is indistinguishable from zero, which means that there is strong evidence against Assumption 1 in
most of the support of our running variable. Second, the minimum p-value is above the conventional 5%
significance level in very few windows (15 out of the total 797 windows considered). Third, the decrease in
p-values is roughly monotonic and very rapid, suggesting that Assumption 1 is implausible except very
close to the cutoff. Using α ¼ 0:15, our chosen window is ½�0:75;0:75�, the third smallest window we
considered, since this is the largest window where the minimum p-value exceeds 15% in that window and
all the windows contained in it.

Table 2 shows the minimum p-values for the first five consecutive windows we considered and also for
the windows ½�1:5; 1:5�, ½�2; 2�, ½�10; 10� and ½�20; 20�. The minimum p-value in our chosen window is
0.2682, and the minimum p-value in the next largest window, ½�0:875;0:875�, is 0.0842. P-values
decrease rapidly after that and, with some exceptions such as around window ½�1:50; 1:50�, do so mono-
tonically. Note also that had we set α ¼ 0:10, our chosen window would still have been ½�0:75;0:75�. And if
we had set α ¼ 0:05, our chosen window would have been ½�0:875;0:875�, barely larger than our final
choice, which shows the steep decline of the minimum p-value as we include observations farther from the
cutoff.

Our window selection procedure suggests that Assumption 1 is plausible in the window ½�0:75;0:75�.
Further inspection and analysis of the 38 observations in this window (23 treated and 15 control) shows that
these observations are not associated in any predictable way. These electoral races are not concentrated in
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Figure 1: Window selector based on predetermined covariates.
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a particular year or geographic area: these 38 races are spread across 24 different years with no more than 3
occurring in the same year, and 26 different states with at most 4 occurring in the same state. This empirical
finding further supports the idea that these observations might be treated as-if randomly assigned.
Moreover, an important implication of this finding is that there is no observable clustering structure in
the sample inside the window ½�0:75;0:75�, which in turn implies that standard randomization inference
techniques are directly applicable. Finally, we also performed standard density tests for sorting and found
no evidence of any systematic discrepancy between control and treatment units.13 Thus, below we proceed
to make inferences about the treatment effects of interest under Assumption 1 in this window.

5.2 Inference within the selected window

We now show that the results obtained by conventional methods are robust to our randomization-based
approach in both Design I and Design II. Randomization-based results within the window imply a sizable
advantage when a party’s same seat is up for election (Design I) that is very similar to results based on
conventional methods. Randomization results on outcomes when the state’s other seat is up for reelection
(Design II) show a null effect, also in accordance with conventional methods. However, as we discuss
below, the null opposite advantage results from Design I are sensitive to our window choice, and
a significant opposite-party advantage appears in the smallest window contained within our chosen
window.

Our randomization-based results include a Hodges–Lehmann estimate, a treatment effect confidence
interval obtained inverting hypothesis tests based on a constant treatment effect model, a quantile treat-
ment effect confidence interval, and a sharp null hypothesis p-value calculated as described in the window
selection section above. Table 3 contrasts the party advantage estimates and tests obtained using our
randomization-based framework, reported in column (3), to those obtained from two classical approaches:
a 4th-order parametric fit as in Lee [9] reported in column (1), and a nonparametric local-linear regression
with a triangular kernel as suggested by Imbens and Lemieux [2], using a mean-squared-error (MSE)
optimal bandwidth implementation described in Calonico et al. [8], reported in column (2). For both
approaches, we show conventional confidence intervals; for the local linear regression results, we also
show the robust confidence intervals developed by Calonico et al. [8], since the MSE optimal bandwidth is
too large for conventional confidence intervals to be valid.14 Panel A presents results for Design I on the

Table 2: Window selector based on pretreatment covariates: randomization-based p-values
from balance tests for different windows.

Window Minimum p-value Covariate with minimum p-value

½�0:500;0:500� 0.2639 Dem Senate Vote t– 2
½�0:625;0:625� 0.4260 Open Seat t
½�0:750;0:750� 0.2682 Open Seat t
½�0:875;0:875� 0.0842 Open Seat t
½�1:000; 1:000� 0.0400 Open Seat t
½�1:500; 1:500� 0.0958 Midterm t
½�2:000; 2:000� 0.0291 Midterm t
½�10:00; 10:00� 0.0008 Open Seat t
½�20:00; 20:00� 0.0000 Dem Senate Vote t– 1

13 The p-value of the McCrary test is 0.39; the null hypothesis of this test is that there is no discontinuity in the density of the
running variable around the cutoff (see McCrary [30] for details). In addition, we cannot reject that our treated and control
groups were generated from 38 trials of a Bernoulli experiment with probability of success equal to 0.5 (p-value 0.2559).
14 Local polynomial results are estimated with the command rdrobust described in Calonico et al. [31, 32].

14 M. D. Cattaneo et al.: Randomization Inference in the Regression Discontinuity Design
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incumbent-party advantage, in which the outcome is the Democratic vote share in election t þ 2. Panel B
presents results for Design II on the opposite-party advantage, in which the outcome is the Democratic vote
share in election t þ 1. Our randomization-based results are calculated in the window ½�0:75;0:75� chosen
above. Note that, as mentioned above, there is no need for clustering in our window, nor is clustering
empirically possible.

The point estimates in the first row of Panel A show an estimated incumbent-party effect of around 7 to
9 percentage points for standard RD methods and 9 percentage points for the randomization-based
approach. These estimates are highly significant (p-values for all three approaches fall well below conven-
tional levels) and point to a substantial advantage to the incumbent party when the party’s seat is up for re-
election. In other words, our randomization-based approach shows that the results obtained with standard
methods are remarkably robust: a local or global approximation that uses hundreds of observations far
away from the cutoff yields an incumbent-party advantage that is roughly equivalent to the one estimated
with the 38 races decided by three quarters of a percentage point or less. This robustness is illustrated in the
top panel of Figure 2. Figure 2(a) displays the fit of the Democratic Vote Share at t þ 2 from a local linear
regression on either side of the optimal bandwidth and shows a clear jump at the cutoff of roughly
7.4 percentage points (dots are binned means). Figure 2(b) on the right displays the mean of the
Democratic Vote Share at t þ 2 on either side of our chosen ½�0:75;0:75� window (dots are individual
data points) and shows a similar (slightly larger) positive jump at the cutoff.

Table 3: Incumbent- and opposite-party advantage in the U.S. Senate using an RD design.

Conventional approaches Randomization-based
approach

Parametric Nonparametric
(1) (2) (3)

A. Design I (outcome ¼ Dem Vote Share at tþ2)
Point estimate 9.41 7.43 9.32
p-value 0.0000 0.0000 0.0004
95% CI [6.16, 12.65] [4.49, 10.36] [4.60, 14.78]
95% CI robust – [4.07, 10.98] –
0.25-QTE 95% CI – – [–2.00, 21.12]
0.75-QTE 95% CI – – [3.68, 18.94]
Bandwidth/Window – 16.79 [–0.75, 0.75]
Sample size treated 702 310 22
Sample size control 595 343 15

B. Design II (outcome ¼ Dem Vote Share at tþ 1)
Point estimate 0.64 0.35 –0.79
p-value 0.79 0.82 0.62
95% CI [–3.16, 4.44] [–2.69, 3.39] [–8.25, 5.03]
95% CI robust – [–2.83, 4.13] –
0.25-QTE 95% CI – – [–8.75, 9.96]
0.75-QTE 95% CI – – [–11.15, 11.31]
Bandwidth/Window – 23.27 [–0.75, 0.75]
Sample size treated 731 397 23
Sample size control 610 428 15

Notes: Results based on U.S. Senate elections from 1914 to 2010. Point estimate is from Hodges–Lehmann estimator.
Treatment effect confidence intervals are obtained by inverting a test of a constant treatment effect model, using the
difference-in-means test statistic and assuming a fixed margins randomization mechanism. P-values are randomiza-
tion-based and correspond to a test of the sharp null hypothesis of no treatment effect, assuming a fixed-margins
randomization mechanism. CI denotes 95% confidence intervals (CI). The quantities “0.25-QTE CI” and “0.75-QTE CI”
denote the 95% CI for the 25th-quantile and 75th-quantile treatment effects, respectively, and are constructed as
described in the text. For the conventional approaches, local polynomial results are estimated with the R and Stata
software rdrobust developed by Calonico et al. [31, 32].
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In our data-driven window, estimates of the opposite-party party advantage also appear robust to the
method of estimation employed. In Panel B, estimates on Democratic Vote Share at t þ 1 based on
conventional methods show very small, statistically insignificant effects of around 0.64 to 0.35 in columns
(1) and (2). These standard methods of inference for RD are therefore unable to reject the hypothesis of a
null effect, and would suggest that, contrary to balancing and constituency-based theories, there is no
opposite-party advantage in U.S. Senate elections. Our randomization-based approach, presented in
column (3) of Panel B, arrives at a similar conclusion, finding a negative point estimate but a sharp null
p-value above 0.80 and a 95% confidence interval for a constant treatment effect that ranges roughly
between –8 and 5. Similarly, the 95% confidence intervals for the 25th and 75th quantile treatment effects
are roughly centered around zero and are consistent with a null opposite-party advantage.

These results are illustrated in the bottom row of Figure 2, where Figure 2(c) and 2(d) are analogous to
Figure 2(a) and 2(b), respectively. The effect of winning an election by 0.75% appears roughly equivalent to
the effect estimated by standard methods. In our randomization-based window, the mean of the control
group is slightly larger than the mean of the treatment group, but as shown in Table 3 we do not find
statistically significant evidence of an opposite-party advantage.

DESIGN II: DEMOCRATIC VOTE SHARE AT t + 1

DESIGN I: DEMOCRATIC VOTE SHARE AT t + 2
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Figure 2: RD design in U.S. Senate elections, 1914–2010 – standard local-linear approach vs. randomization-based approach.
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Taken together, our results provide interesting evidence about party-level electoral advantages in the
U.S. Senate. First, our results show that there is a strong and robust incumbent-party effect, with the party
that barely wins a Senate seat at t receiving on average seven to nine additional percentage points in the
following election for that seat. Second, our randomization-based approach confirms the previous finding
of Butler and Butler [16], according to which there is no opposite-party advantage in the U.S. Senate. As we
show below, however, and in contrast to the incumbent-party advantage results, the opposite-party
advantage result is sensitive to our window choice and becomes large and significant as predicted by
theory inside a smaller window.

5.3 Sensitivity of results to window choice and test statistics

We study the sensitivity of our results to two choices: the window size and the test statistic used to conduct
our tests. First, we replicate the randomization-based analysis presented above for different windows, both
larger and smaller than our chosen ½�0:75;0:75� window. We consider one smaller window, ½�0:5;0:5�, and
two larger windows, ½�1:0; 1:0� and ½�2:0; 2:0�. We note that, given the results in Table 2, we do not believe
that Assumption 1 is plausible in windows larger than ½�0:75;0:75� and we therefore would not interpret a
change in results in larger windows as evidence against our chosen window. Nonetheless, it is valuable to
know if our findings would continue to hold even under departures from Assumption 1 in larger windows.
This observation, however, does not apply when considering smaller windows contained in ½�0:75;0:75�,
since if Assumption 1 holds inside our chosen window, it also must hold in all windows contained in it.
Thus, analyzing the smaller window ½�0:5;0:5� can provide evidence on whether there is heterogeneity in
the results found in the originally chosen window.

Second, we perform the test of the sharp null using different test statistics. Under Assumption 1, there is
no relationship between the outcome and the score on either side of the threshold within W0. In this
situation, performing randomization-based tests using the difference-in-means as a test statistic should
yield the same results as using other test statistics that allow for a relationship between the conditional
regression function and the score. This suggests using different test statistics in the same window as a
robustness check. Let the window considered be ½wl;wr� and recall that the cutoff is r0. In a similar spirit to
conventional parametric and nonparametric RD methods, we consider two different additional test-statis-
tics: the difference in the predicted values Ŷi from two regressions of Yi on Ri � r0 on either side of the cutoff
evaluated at Ri ¼ r0, and the difference in the predicted values Ŷi from two regressions of Yi on Ri � r0 and
ðRi � r0Þ2 on either side of the cutoff evaluated at Ri ¼ r0. Below, we call the p-values based on these test
statistics “p-value linear” and “p-value quadratic”, respectively.

Table 4 presents the results from our sensitivity analysis. Panel A shows results for Democratic Vote
Share at t þ 2 (Design I), and Panel B for Democratic Vote Share at t þ 1 (Design II). For each panel, we
reproduce the results in our chosen ½�0:75;0:75� window and show results for the three additional windows
mentioned above: ½�0:5;0:5�, ½�1:0; 1:0� and ½�2:0; 2:0�. All results are calculated as in Table 3. The “p-
value diffmeans” is equivalent to the p-value reported in Table 3, which corresponds to a test of the sharp
null hypothesis based on the difference-in-means test statistic. The two additional p-values reported
correspond to a test of the sharp-null hypothesis based on the two additional test statistics described
above. All p-values less than or equal to 0.05 are shown in bold in the table.

There are important differences between our two outcomes. The results in Design I (Panel A) are robust
to the choice of the test statistic in the originally chosen ½�0:75;0:75� window and in the smaller
½�0:50;0:50� window. The results are also insensitive to increasing the window, as seen in the last two
columns of Panel A. In contrast, the null results found in Design II seem more fragile. First, the sharp null
hypothesis is rejected in some larger windows when alternative test statistics are considered. Second, in our
chosen window, the sharp null hypothesis is rejected with the linear regression test statistic, but not with
the quadratic regression test statistic. As we showed before in Table 3 and reproduce in Table 4, this does
not translate into a statistically significant constant or quantile treatment effect – all confidence intervals
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are roughly centered around zero. An interesting phenomenon that might explain this pattern occurs when
we consider the smaller ½�0:5;0:5� window. In this window, the point estimate and confidence intervals
show a negative effect and provide support for the opposite-party advantage hypothesis. The Hodges–
Lehmann point estimate is about –8 percentage points, more than a 10-fold increase in absolute value with
respect to the conventional estimates, and we reject the sharp null hypothesis of no effect at the 5% level
with two of the three different test statistics considered. Our randomization-based confidence interval of the
constant treatment effect ranges from –16.66 to –0.08, ruling out a non-negative effect. The confidence
interval for the 25th quantile treatment effect also excludes zero and again provides support for the
opposite-party advantage.

To investigate this issue further, Figure 3 plots the empirical cumulative distribution functions (ECDF)
of our two outcomes in two different windows: the small ½�0:5;0:5� window and the window defined by
½�0:75;�0:50Þ¨ ð0:5;0:75�. The union of these two windows is our chosen ½�0:75;0:75� window. Figure 3(a)
shows that for Democratic Vote Share t þ 2, the ECDF of the treatment group is shifted to the right of the
ECDF of the control group everywhere in both windows, showing that the treated quantiles are larger than

Table 4: Sensitivity of randomization-based RD results: incumbent-party and opposite-party advantages in the U.S. Senate for
different window choices.

A. Design I (outcome ¼ Dem Vote Share at tþ 2)

Window Smaller window Chosen Window Larger Windows

[–0.50, 0.50] [–0.75, 0.75] [–1.00, 1.00] [–2.00, 2.00]

Point estimate 10.16 9.32 9.61 8.90
p-value diffmeans 0.0037 0.0004 0.0000 0.0000
p-value linear 0.0001 0.0000 0.0000 0.0000
p-value quadratic 0.0089 0.0000 0.0000 0.0000
Treatment effect CI [3.62, 17.14] [4.60, 14.78] [5.85, 15.17] [6.38, 13.98]
0.25-QTE CI [–2.75, 19.42] [–2.00, 21.12] [4.13, 21.25] [4.88, 18.57]
0.75-QTE CI [1.93, 17.87] [3.68, 18.94] [1.78, 17.53] [0.42, 13.69]
Sample size treated 14 22 25 47
Sample size control 9 15 18 49

B. Design II (outcome ¼ Dem Vote Share at tþ 1)

Window Smaller window Chosen Window Larger Windows

[–0.50, 0.50] [–0.75, 0.75] [–1.00, 1.00] [–2.00, 2.00]

Point estimate –8.17 –0.79 2.32 0.56
p-value diffmeans 0.0479 0.6228 0.5093 0.7252
p-value linear 0.6455 0.0000 0.0000 0.2876
p-value quadratic 0.0116 0.7297 0.4835 0.0599
Treatment effect CI [–16.66, –0.08] [–8.25, 5.03] [–4.89, 9.66] [–3.87, 5.60]
0.25-QTE CI [–13.82, –0.16] [–8.75, 9.96] [–8.63, 14.65] [–4.14, 4.85]
0.75-QTE CI [–25.92, 12.63] [–11.15, 11.31] [–10.72, 16.23] [–8.26, 12.63]
Sample size treated 15 23 27 50
Sample size control 9 15 18 49

Notes: Results based on U.S. Senate elections from 1914 to 2010. Point estimate is from Hodges–Lehmann estimator. Treatment effect
confidence intervals are obtained by inverting a test of a constant treatment effect model, using the difference-in-means test statistic
and assuming a fixed-margins randomization mechanism. p-Values are randomization-based and correspond to a test of the sharp null
hypothesis of no treatment effect, assuming a fixed-margins randomization mechanism. Each p-value reported corresponds to a test
based on a different test statistic: “p-value diffmeans” uses the difference-in-means; “p-value linear” uses the difference in intercepts
in two linear polynomials of the outcome on the (normalized) score fitted on either side of the cutoff; “p-value quadratic” uses the
difference in intercepts in two quadratic polynomials of outcome on the normalized score fitted on either side of the cutoff. All p-values
less than or equal to 0.05 are bold. CI denotes 95% confidence intervals (CI). The quantities “0.25-QTE CI” and “0.75-QTE CI” denote the
95% CI for the 25th-quantile and 75th-quantile treatment effects, respectively, and are constructed as described in the text.
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the control quantiles. Since the treated outcome dominates the control outcome in both windows, combin-
ing the observations into our chosen window produces the robust incumbent-party advantage results that
we see in the first two columns of Table 4.

In contrast, for Democratic Vote Share t þ 1, the outcome in Design I, the smaller ½�0:5;0:5� window
exhibits a very different pattern from the ½�0:75;�0:50Þ¨ ð0:5;0:75� window. The left plot in Figure 3(b)
shows that the ECDF of the control group is shifted to the right of the ECDF of the treatment group
everywhere, showing support for the negative effect (opposite-party advantage) reported in the first column
of Table 4. But the right plot in Figure 3(b) shows that this situation reverses in the window
½�0:75;�0:50Þ¨ ð0:5;0:75�, where treated quantiles are larger than control quantiles almost everywhere.
The combination of the observations in both windows is what produces the null effects in our chosen
½�0:75;0:75� window. In sum, the results in ½�0:5;0:5� suggest some support for the opposite-party
advantage and show that our chosen window combines possibly heterogeneous treatment effects for Vote
Share t þ 1 (but not for Vote Share t þ 2).

All in all, our sensitivity and robustness analysis in this section shows that the incumbent-party
advantage results are robust but our opposite-party advantage results are more fragile and suggest some
avenues for future research.

6 Extensions, applications and discussion

We introduced a framework to analyze regression discontinuity designs employing a “local” randomization
approach and proposed using randomization inference techniques to conduct finite-sample exact inference.
In this section, we discuss five natural extensions focusing on fuzzy RD designs, discrete-valued and
multiple running variables, matching techniques and sensitivity analysis. In addition, we discuss a con-
nection between our approach and the conventional large-sample RD approach.

6.1 Fuzzy RD with possibly weak instruments

In the sharp RD design, treatment assignment is equal to Zi ¼ 1ðRi 5 r0Þ, and treatment assignment is equal
to actual treatment status. In the fuzzy design, treatment status Di, with observations collected in n-vector D
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Figure 3: Empirical CDFs of outcomes for treated and control in different windows – U.S. Senate elections, 1914–2010. (a)
Democratic vote share at t þ 2. (b) Democratic vote share at t þ 1.
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as above, is not completely determined by placement relative to r0, so Di may differ from Zi. Our framework
extends directly to the fuzzy RD designs, offering a robust inference alternative to the traditional
approaches when the instrument (i.e., the relationship between Di and Zi) is regarded as “weak”.

Let diðrÞ be unit i’s potential treatment status when the vector of scores is R ¼ r. Similarly, we let
yiðr;dÞ be unit i’s potential outcome when the vector of scores is R ¼ r and the treatment status vector is
D ¼ d. Observed treatment status and outcomes are Di ¼ diðRÞ and Yi ¼ yiðR;DÞ. This generalization leads
to a framework analogous to an experiment with non-compliance, where Zi is used as an instrument for Di

and randomization-based inferences are based on the distribution of Zi. Assumption 1 generalizes as
follows.

Assumption 1′: Local randomized experiment. There exists a neighborhood W0 ¼ ½r;�r� with r< r0 <�r
such that for all i with Ri 2 W0:
(a) FRijRi2W0ðrÞ ¼ FðrÞ, and
(b) diðrÞ ¼ diðzW0Þ and yiðr;dÞ ¼ yiðzW0 ;dW0Þ for all r;d.

This assumption permits testing the null hypothesis of no effect exactly as described above, although the
interpretation of the test differs, as now it can only be considered a test of no effect of treatment among
those units whose potential treatment status diðzW0Þ varies with zW0 . Constructing confidence intervals and
point estimates in the fuzzy design requires generalizing Assumption 2 and introducing an additional
assumption.

Assumption 2′: Local SUTVA (LSUTVA). For all i with Ri 2 W0:
(a) If zi ¼ ~zi, then diðzW0Þ ¼ dið~zW0Þ, and
(b) If zi ¼ ~zi and di ¼ ~di, then yiðzW0 ;dW0Þ ¼ yið~zW0 ;

~dW0Þ.

Assumption 6: Local exclusion restriction. For all i with Ri 2 W0: yiðz;dÞ ¼ yið~z;dÞ for all ðz; ~zÞ and for all d.

Assumption 6 means potential responses depend on placement with respect to the threshold only through
its effect on treatment status. Under assumptions 10 � 20 and Assumption 6, we can write potential
responses within the window as yiðz;dÞ ¼ yiðdiÞ. Furthermore, under the constant treatment effect model
in Assumption 3, estimation and inference proceeds exactly as before, but defining the adjusted responses
as YW0 � τ0DW0 . Inference on quantiles in the fuzzy design also requires a monotonicity assumption (e.g.,
Frandsen et al. [33]).

Fuzzy RD designs are local versions of the usual instrumental variables (IV) model and thus concerns
about weak instruments may arise in this context as well [34]. Our randomization inference framework,
however, circumvents this concern because it enables us to conduct exact finite-sample inference, as
discussed in Imbens and Rosenbaum [10] for the usual IV setting. Therefore, our framework also offers
an alternative, robust inference approach for fuzzy RD designs under possibly weak instruments.

6.2 Discrete and multiple running variables

Another feature of our framework is that it can handle RD settings where the running variable is not
univariate and continuous. Our results provide an alternative inference approach when the running
variable is discrete or has mass points in its support (see, for example Lee and Card [35]). While conven-
tional, nonparametric smoothing techniques are usually unable to handle this case without appropriate
technical modifications, our randomization inference approach applies immediately to this case and offers
researchers a fully data-driven approach for inference when the running variable is not continuously
distributed. Similarly, our approach extends naturally to settings where multiple running variables are
present (see, e.g., Keele and Titiunik [36] and references therein). For example, in geographic RD designs,
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which involve two running variables, Keele et al. [37] discuss how the methodological framework intro-
duced herein can be used to conduct inference employing geographic RD variation.

6.3 Matching and parametric modeling

Conventional approaches to RD employ continuity of the running variable and large-sample approxima-
tions, and typically do not emphasize the role of covariates and parametric modeling, relying instead on
nonparametric smoothing techniques local to the discontinuity. However, in practice, researchers often
incorporate covariates and employ parametric models in a “small” neighborhood around the cutoff when
conducting inference. Our framework gives a formal justification (i.e., “local randomization”) and an
alternative inference approach (i.e., randomization inference) for this common empirical practice. For
example, our approach can be used to justify (finite-sample exact) inference in RD contexts using panel
or longitudinal data, specifying nonlinear models or relying on flexible “matching” on covariates techni-
ques. For a recent example of such an approach, see Keele et al. [37].

6.4 Sensitivity analysis and related techniques

In the context of randomization-based inference, a useful tool to asses the plausibility of the results is a
sensitivity analysis that considers how the results vary under deviations from the randomization assump-
tion. Rosenbaum [14, 15] provides details of such an approach when the treatment is assumed to be
randomly assigned conditionally on covariates. Under a randomization-type assumption, the probability
of receiving treatment is equal for treated and control units; a sensitivity analysis proposes a model for the
odds of receiving treatment and allows the probability of receiving treatment to differ between groups and
recalculates the p-values, confidence intervals or point estimates of interest. The analysis asks whether
small departures from the randomization-type assumption would alter the conclusions from the study. If,
for example, small differences in the probability of receiving treatment between treatment and control units
lead to markedly different conclusions (i.e., if the null hypothesis of no effect is initially rejected but then
ceases to be rejected), then we conclude that the results are sensitive and appropriately temper our
confidence in the results. This kind of analysis could be directly applied in our context inside W0. In this
window, our assumption is that the probability of receiving treatment is equal for all units (and that we can
estimate such probability); thus, a sensitivity analysis of this type could be applied directly to establish
whether our conclusions survive under progressively different probabilities of receiving treatment for
treated and control units inside W0.

6.5 Connection to standard RD setup

Our finite-sample RD inference framework may be regarded as an alternative approximation to the
conventional RD identifying conditions in Hahn et al. [5]. This section defines a large-sample identification
framework similar to the conventional one and discusses its connection to the finite-sample Assumption 1.

In the conventional RD setup, individuals have random potential outcomes Yiðr; dÞ which depend on the
value of a running variable, r 2 R , and treatment status d 2 f0; 1g. The observed outcome is Yi ;YiðRi;DiÞ,
and identification is achieved by imposing continuity, near the cutoff r0, on E½Yiðr; dÞjRi ¼ r� or
FYiðr;dÞjRi¼rðyÞ ¼ Pr½Yiðr; dÞ � yjRi ¼ r�. Consider the following alternative identifying condition.

Assumption 7: Conventional RD assumption. For all d 2 f0; 1g and i ¼ 1; 2; � � � ; n:
(a) Ri is continuously distributed,
(b) Yiðr; dÞ is (a.s.) Lipschitz continuous in r at r0,
(c) FYiðr0;dÞjRi¼rðyÞ ¼ Pr½Yiðr0; dÞ4 yjRi ¼ r� is Lipschitz continuous in r at r0.
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These conditions are very similar to those in Hahn et al. [5] and other (large-sample type) approaches to RD.
The main difference is that we require continuity of potential outcome functions, as opposed to just
continuity of the conditional expectation or distribution of potential outcomes. Continuity of the potential
outcome functions rules out knife-edge cases where confounding differences in potential outcomes at the
threshold (that is, discontinuities in Yiðr; dÞ) exactly offset sorting in the running variable at the threshold
so that the conditional expectation of potential outcomes is still continuous at the threshold. In ruling out
this knife-edge case, our condition is technically stronger, but arguably not stronger in substance, than
conventional identifying conditions.

The conventional RD approach approximates the conditional distribution of outcomes near the thresh-
old as locally linear and relies on large-sample asymptotics for inference. Our approach proposes an
alternative local constant approximation and uses finite-sample inference techniques. The local linear
approximation may be more accurate than local constant farther from the threshold but the large-sample
sample approximations may be poor. The local constant approximation will likely be appropriate only very
near the threshold, but the inference will remain valid for small samples. The following suggests that our
finite-sample condition in Assumption 1 can be seen as an approximation obtained from the more conven-
tional RD identifying conditions given in Assumption 7, with an approximation error that is controlled by
the window width.

Result 1: connection between RD frameworks. Suppose Assumption 7 holds. Then:
(i) FRijRi2½r;�r�;Yiðr0;dÞ¼yðrÞ ¼ FRijRi2½r;�r�ðrÞ þ Oasð�r � rÞ, and
(ii) Yiðr; dÞ ¼ Yiðr0; dÞ þ Oasð�r � rÞ.

Part (i) of this result says that the running variable is approximately independent of potential
outcomes near the threshold, or, in the finite-sample framework where potential outcomes are fixed,
each unit’s running variable has approximately the same distribution (under i.i.d. sampling). This corre-
sponds to part (a) of Assumption 1 (Local Randomization) and gives a formal connection between the usual
RD framework and our randomization-inference framework. Similarly, part (ii) implies that potential
outcomes depend approximately on treatment status only near the threshold r0, as assumed in
Assumption 1(b).

7 Conclusion

Motivated by the interpretation of regression discontinuity designs as local experiments, we proposed a
randomization inference framework to conduct exact finite-sample inference in this design. Our approach is
especially useful when only a few observations are available in the neighborhood of the cutoff where local
randomization is plausible. Our randomization-based methodology can be used both for validating (and
even selecting) this window around the RD threshold and performing statistical inference about the effects
in this window. Our analysis of party-level advantages in U.S. Senate elections illustrated our methodology
and showed that a randomization-based analysis can lead to different conclusions from standard RD
methods based on large-sample approximations.

We envision our approach as complementary to existing parametric and nonparametric methods for
the analysis of RD designs. Employing our proposed methodological approach, scholars can provide
evidence about the plausibility of the as-good-as-random interpretation of their RD designs, and also
conduct exact finite-sample inference employing only those few observations very close to the RD cutoff.
If even in a small window around the cutoff the sharp null hypothesis of no effect is rejected for
predetermined covariates, scholars should not rely on the local randomization interpretation of their
designs, and hence should pay special attention to the plausibility of the continuity assumptions imposed
by the standard approach.
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